Skip to content
2000
image of Advancements in Anti-Diabetic Therapy: A Review of Enhanced Efficacy and Bioavailability of Voglibose Nanoformulations

Abstract

The global incidence of type 2 diabetes mellitus (T2DM) is escalating, with projections indicating that 440 million individuals will be affected by 2030. T2DM accounts for 85-95% of all diabetes cases in affluent nations and an even higher proportion in less developed countries. This widespread disease is influenced by numerous factors including cultural shifts, aging populations, urbanization, dietary changes, reduced physical activity, and other unhealthy lifestyle behaviors. Pathophysiologically, T2DM is characterized by insulin resistance, β-cell dysfunction, increased hepatic glucose production, and decreased glucagon-like peptide 1 (GLP-1) levels. Management challenges such as suboptimal medication regimens, poor patient adherence, and inadequate treatment strategies contribute to the prevalence of diabetes-related complications. Alpha-glucosidase inhibitors (α-GIs) like acarbose, voglibose, and miglitol, which primarily act in the gastrointestinal tract to reduce postprandial hyperglycaemia, have been identified as beneficial in managing these issues. Particularly, voglibose has shown superior efficacy and tolerance compared to other α-GIs. Despite their effectiveness, α-GIs are sometimes limited by gastrointestinal side effects, affecting long-term treatment adherence. Recent advancements in nanotechnology offer promising enhancements in the delivery and efficacy of these medications. Nano-formulations, ranging from 10 to 100 nm, can protect drugs from environmental degradation and improve bioavailability by optimizing the dissolution rate and increasing the saturation solubility of poorly soluble drugs. The development of nanoparticle formulations is emerging as a critical strategy to enhance the oral bioavailability of α-GIs, potentially revolutionizing T2DM management by improving drug absorption and minimizing side effects.

Loading

Article metrics loading...

/content/journals/cnanom/10.2174/0124681873337339250114074235
2025-01-23
2025-10-19
Loading full text...

Full text loading...

References

  1. Papazafiropoulou A.K. Kardara M.S. Pappas S.I. Challenges for the treatment of diabetes mellitus. Recent Pat. Endocr. Metab. Immune Drug Discov. 2011 5 3 203 209 10.2174/187221411797265953 21913881
    [Google Scholar]
  2. Atlas D. International diabetes federation. IDF Diabetes Atlas. 7th Ed. Brussels International Diabetes Federation 2015
    [Google Scholar]
  3. Das A.K. Singh D. Mahmood M.A. Development and characterization of chitosan nanoparticles loaded with amoxicillin. Int. Res. J. Pharm. 2011 2 5 145 151
    [Google Scholar]
  4. Sena CM Bento CF Pereira P Seiça R Diabetes mellitus: new challenges and innovative therapies. EPMA J. 2010 1 1 138 163 10.1007/s13167‑010‑0010‑9 23199048
    [Google Scholar]
  5. Dabhi A.S. Bhatt N.R. Shah M.J. Voglibose: an alpha glucosidase inhibitor. J. Clin. Diagn. Res. 2013 7 12 3023 3027 24551718
    [Google Scholar]
  6. Bennet D. Marimuthu M. Kim S. An J. Dual drug-loaded nanoparticles on self-integrated scaffold for controlled delivery. Int. J. Nanomedicine 2012 7 3 3399 3419 22888222
    [Google Scholar]
  7. Jeevanandam J. Chan Y.S. Danquah M.K. Nano-formulations of drugs: Recent developments, impact and challenges. Biochimie 2016 128-129 99 112 10.1016/j.biochi.2016.07.008 27436182
    [Google Scholar]
  8. Kalita P. Jesudasan R. Maut C. Advancements in antidiabetic therapy: An extensive study on the use of polypills to treat type 2 diabetes. Bioequiv. Bioavail. Int. J. 2024 1 8 1 5 10.23880/beba‑16000234
    [Google Scholar]
  9. Zorkina Y. Abramova O. Ushakova V. Morozova A. Zubkov E. Valikhov M. Melnikov P. Majouga A. Chekhonin V. Nanocarrier drug delivery systems for the treatment of neuropsychiatric disorders: advantages and limitations. Molecules 2020 25 22 5294 10.3390/molecules25225294 33202839
    [Google Scholar]
  10. Dhanalekshmi U.M. Poovi G. Kishore N. in-vitro observation of repaglinide engineered polymeric nanoparticles. Dig. J. Nanopart. Biostructures. 2012 7 1 1 18
    [Google Scholar]
  11. Mukherjee B. Santra K. Pattnaik G. Preparation, characterization, and in vitro evaluation of sustained release protein-loaded nanoparticles. Int. J. Nanomedicine 2008 3 4 487 496 10.2147/IJN.S3938 19337417
    [Google Scholar]
  12. Jia L. Nanoparticle formulation increases oral bioavailability of poorly soluble drugs: Approaches, experimental evidence, and theory. Curr. Nanosci. 2005 1 3 237 243 10.2174/157341305774642939 19865587
    [Google Scholar]
  13. Das RJ Kalita P Nanodrug delivery systems for the enhancement of bioavailability and bioactivity. Scispace 2024 3 336 366 10.58532/v3bapn3ch18
    [Google Scholar]
  14. Vijayan V. Reddy K.R. Sakthivel S. Optimization and characterization of repaglinide biodegradable polymeric nanoparticle-loaded transdermal patches. Colloids Surf. B Biointerfaces 2013 111 150 155 10.1016/j.colsurfb.2013.05.020 23792547
    [Google Scholar]
  15. Murakami H. Kobayashi M. Takeuchi H. Kawashima Y. Preparation of poly(dl-lactide-co-glycolide) nanoparticles by modified spontaneous emulsification solvent diffusion method. Int. J. Pharm. 1999 187 2 143 152 10.1016/S0378‑5173(99)00187‑8 10502620
    [Google Scholar]
  16. Jain S. Swarnalata S. Glipizide-loaded biodegradable polymeric nanoparticles. Diabetes Metab. Syndr. 2009 3 2 113 117 10.1016/j.dsx.2009.04.003
    [Google Scholar]
  17. Sinha B. Mukherjee B. Development of an inhalation chamber and a dry powder inhaler device for administration of pulmonary medication in animal model. Drug Dev. Ind. Pharm. 2012 38 2 171 179 10.3109/03639045.2011.592532 21721851
    [Google Scholar]
  18. Kaku K. Efficacy of voglibose in type 2 diabetes. Expert Opin. Pharmacother. 2014 15 8 1181 1190 10.1517/14656566.2014.918956 24798092
    [Google Scholar]
  19. Derosa G. Maffioli P. Mini-Special Issue paper Management of diabetic patients with hypoglycemic agents α-Glucosidase inhibitors and their use in clinical practice. Arch. Med. Sci. 2012 5 5 899 906 10.5114/aoms.2012.31621 23185202
    [Google Scholar]
  20. Saboktakin M. Synthesis and characterization of biodegradable thiolated chitosan nanoparticles as a targeted drug delivery system. J. Nanomed. Nanotechnol. 2011 S4 1 400 10.4172/2157‑7439.S4‑001
    [Google Scholar]
  21. Chen X. Zheng Y. Shen Y. Voglibose (Basen, AO-128), one of the most important α-glucosidase inhibitors. Curr. Med. Chem. 2006 13 1 109 116 10.2174/092986706789803035 16457643
    [Google Scholar]
  22. Saha P. Goyal A.K. Rath G. Formulation and evaluation of chitosan-based ampicillin trihydrate nanoparticles. Trop. J. Pharm. Res. 2010 9 5 483 488 10.4314/tjpr.v9i5.61061
    [Google Scholar]
  23. Guerrero S. Herance J.R. Rojas S. Mena J.F. Gispert J.D. Acosta G.A. Albericio F. Kogan M.J. Synthesis and in vivo evaluation of the biodistribution of a 18F-labeled conjugate gold-nanoparticle-peptide with potential biomedical application. Bioconjug. Chem. 2012 23 3 399 408 10.1021/bc200362a 22284226
    [Google Scholar]
  24. Holman R.R. Cull C.A. Turner R.C. A randomized double-blind trial of acarbose in type 2 diabetes shows improved glycemic control over 3 years (U.K. Prospective Diabetes Study 44). Diabetes Care 1999 22 6 960 964 10.2337/diacare.22.6.960 10372249
    [Google Scholar]
  25. Kuo W.S. Chang Y.T. Cho K.C. Chiu K.C. Lien C.H. Yeh C.S. Chen S.J. Gold nanomaterials conjugated with indocyanine green for dual-modality photodynamic and photothermal therapy. Biomaterials 2012 33 11 3270 3278 10.1016/j.biomaterials.2012.01.035 22289264
    [Google Scholar]
  26. Chiasson J.L. Josse R.G. Gomis R. Hanefeld M. Karasik A. Laakso M. Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised trial. Lancet 2002 359 9323 2072 2077 10.1016/S0140‑6736(02)08905‑5 12086760
    [Google Scholar]
  27. Nagao T. Chikamori T. Hida S. Igarashi Y. Kuwabara Y. Nishimura S. Yamazaki J. Yamashina A. Quantitative gated single-photon emission computed tomography with (99m)Tc sestamibi predicts major cardiac events in elderly patients with known or suspected coronary artery disease: the QGS-Prognostic Value in the Elderly (Q-PROVE) Study. Circ. J. 2007 71 7 1029 1034 10.1253/circj.71.1029 17587706
    [Google Scholar]
  28. Law M. Jafari M. Chen P. Physicochemical characterization of siRNA-peptide complexes. Biotechnol. Prog. 2008 24 4 957 963 10.1002/btpr.13 19194904
    [Google Scholar]
  29. Jafari M. Chen P. Peptide mediated siRNA delivery. Curr. Top. Med. Chem. 2009 9 12 1088 1097 10.2174/156802609789630839 19860709
    [Google Scholar]
  30. Jafari M. Soltani M. Naahidi S. Karunaratne D.N. Chen P. Nonviral approach for targeted nucleic acid delivery. Curr. Med. Chem. 2012 19 2 197 208 10.2174/092986712803414141 22320298
    [Google Scholar]
  31. Chiasson J.L. Josse R.G. Gomis R. Hanefeld M. Karasik A. Laakso M. Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance: the STOP-NIDDM trial. JAMA 2003 290 4 486 494 10.1001/jama.290.4.486 12876091
    [Google Scholar]
  32. Blanco I. Krähenbühl S. Schlienger R.G. Corticosteroid-associated tendinopathies: an analysis of the published literature and spontaneous pharmacovigilance data. Drug Saf. 2005 28 7 633 643 10.2165/00002018‑200528070‑00005 15963008
    [Google Scholar]
  33. Fischer H.C. Chan W.C.W. Nanotoxicity: the growing need for in vivo study. Curr. Opin. Biotechnol. 2007 18 6 565 571 10.1016/j.copbio.2007.11.008 18160274
    [Google Scholar]
  34. Lebovitz H.E. alpha-Glucosidase inhibitors. Endocrinol. Metab. Clin. North Am. 1997 26 3 539 551 10.1016/S0889‑8529(05)70266‑8 9314014
    [Google Scholar]
  35. Goldberg M. Langer R. Jia X. Nanostructured materials for applications in drug delivery and tissue engineering. J. Biomater. Sci. Polym. Ed. 2007 18 3 241 268 10.1163/156856207779996931 17471764
    [Google Scholar]
  36. Scheen A.J. Is there a role for α-glucosidase inhibitors in the prevention of type 2 diabetes mellitus? Drugs 2003 63 10 933 951 10.2165/00003495‑200363100‑00002 12699398
    [Google Scholar]
  37. Chen X. Lu Y. Fan Y. Shen Y. Chapter 5 — Voglibose: An important drug for type 2 diabetes, validamycin, and its derivatives. Curr. Med. Chem. 2006 13 1 109 116 10.2174/092986706789803035 16457643
    [Google Scholar]
  38. Kalita P. Pathak K. Borah A. Herbal nanotechnology: Innovation and application in modern medicine. Indian J. Nat. Sci. 2023 14 80 561 10.1016/C2021‑0‑01789‑2
    [Google Scholar]
  39. Williams D.F. On the mechanisms of biocompatibility. Biomaterials 2008 29 20 2941 2953 10.1016/j.biomaterials.2008.04.023 18440630
    [Google Scholar]
  40. Luan C. Liu P. Chen R. Chen B. Nanotechnology reviews: Just accepted papers. Nanotechnol. Rev. 2011 1 6
    [Google Scholar]
  41. Gutierro I. Hernández R.M. Igartua M. Gascón A.R. Pedraz J.L. Size dependent immune response after subcutaneous, oral and intranasal administration of BSA loaded nanospheres. Vaccine 2002 21 1-2 67 77 10.1016/S0264‑410X(02)00435‑8 12443664
    [Google Scholar]
  42. Babadi D. Dadashzadeh S. Osouli M. Daryabari M.S. Haeri A. Nanoformulation strategies for improving intestinal permeability of drugs: A more precise look at permeability assessment methods and pharmacokinetic properties changes. J. Control. Release 2020 321 669 709 10.1016/j.jconrel.2020.02.041 32112856
    [Google Scholar]
  43. Lim J. Yeap S.P. Che H.X. Low S.C. Characterization of magnetic nanoparticle by dynamic light scattering. Nanoscale Res. Lett. 2013 8 1 381 10.1186/1556‑276X‑8‑381
    [Google Scholar]
  44. Chong C.S.W. Cao M. Wong W.W. Fischer K.P. Addison W.R. Kwon G.S. Tyrrell D.L. Samuel J. Enhancement of T helper type 1 immune responses against hepatitis B virus core antigen by PLGA nanoparticle vaccine delivery. J. Control. Release 2005 102 1 85 99 10.1016/j.jconrel.2004.09.014 15653136
    [Google Scholar]
  45. Nicolete R. Santos D.F. Faccioli L.H. The uptake of PLGA micro or nanoparticles by macrophages provokes distinct in vitro inflammatory response. Int. Immunopharmacol. 2011 11 10 1557 1563 10.1016/j.intimp.2011.05.014 21621649
    [Google Scholar]
  46. Davatgaran Taghipour Y. Hajialyani M. Naseri R. Hesari M. Mohammadi P. Stefanucci A. Mollica A. Farzaei M.H. Abdollahi M. Nanoformulations of natural products for management of metabolic syndrome. Int. J. Nanomedicine 2019 14 5303 5321 10.2147/IJN.S213831 31406461
    [Google Scholar]
  47. Liu Z. Zhang X. Wu H. Li J. Shu L. Liu R. Li L. Li N. Preparation and evaluation of solid lipid nanoparticles of baicalin for ocular drug delivery system in vitro and in vivo. Drug Dev. Ind. Pharm. 2011 37 4 475 481 10.3109/03639045.2010.522193 21054217
    [Google Scholar]
  48. Göke B. Fuder H. Wieckhorst G. Theiss U. Stridde E. Littke T. Kleist P. Arnold R. Lücker P.W. Voglibose (AO-128) is an efficient α-glucosidase inhibitor and mobilizes the endogenous GLP-1 reserve. Digestion 1995 56 6 493 501 10.1159/000201282 8536820
    [Google Scholar]
  49. Efthimiadou E.K. Tziveleka L.A. Bilalis P. Kordas G. Novel PLA modification of organic microcontainers based on ring opening polymerization: Synthesis, characterization, biocompatibility and drug loading/release properties. Int. J. Pharm. 2012 428 1-2 134 142 10.1016/j.ijpharm.2012.02.030 22402473
    [Google Scholar]
  50. Abhilash M. Potential applications of nanoparticles. Int J Pharm Bio Sci. 2010 1 1 29
    [Google Scholar]
  51. Kayser O. Lemke A. Hernández-Trejo N. The impact of nanobiotechnology on the development of new drug delivery systems. Curr. Pharm. Biotechnol. 2005 6 1 3 5 10.2174/1389201053167158 15727551
    [Google Scholar]
  52. Ghosh P.K. Hydrophilic polymeric nanoparticles as drug carriers. Indian J. Biochem. Biophys. 2000 37 273 282
    [Google Scholar]
  53. Pinto Reis C. Neufeld R.J. Ribeiro A.J. Veiga F. Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine 2006 2 1 8 21 10.1016/j.nano.2005.12.003 17292111
    [Google Scholar]
  54. Lemoine D. Préat V. Polymeric nanoparticles as delivery system for influenza virus glycoproteins. J. Control. Release 1998 54 1 15 27 10.1016/S0168‑3659(97)00241‑1 9741900
    [Google Scholar]
  55. Todkar B.S. Patil S. Ravi T.K. Spectrophotometric determination of voglibose in bulk and tablet dosage form by absorption maxima, first-order derivative spectroscopy, and area under the curve method. Int J Pharm Res Dev. 2013 5 3 200 206
    [Google Scholar]
  56. Ahire B.R. Rane B.R. Joseph L. Solubility enhancement of poorly water-soluble drugs by solid dispersion techniques. Int. J. Pharm. Tech. Res. 2015 2 3 2007 2015
    [Google Scholar]
  57. Brittain H.G. Florey K. Analytical profile of drug substances and excipients. Elsevier India 1999 21 277 305
    [Google Scholar]
  58. Sangster J. Octanol-water partition coefficients: Fundamentals and physical chemistry. Wiley Series in Solution Chemistry. Chichester Wiley 1997 2 178
    [Google Scholar]
  59. Narita T. Yokoyama H. Yamashita R. Sato T. Hosoba M. Morii T. Fujita H. Tsukiyama K. Yamada Y. Comparisons of the effects of 12-week administration of miglitol and voglibose on the responses of plasma incretins after a mixed meal in Japanese type 2 diabetic patients. Diabetes Obes. Metab. 2012 14 3 283 287 10.1111/j.1463‑1326.2011.01526.x 22051162
    [Google Scholar]
  60. Kageyama S. Nakamichi N. Sekino H. Nakano S. Comparison of the effects of acarbose and voglibose in healthy subjects. Clin. Ther. 1997 19 4 720 729 10.1016/S0149‑2918(97)80096‑3 9377616
    [Google Scholar]
  61. Matsumoto K. Yano M. Miyake S. Ueki Y. Yamaguchi Y. Akazawa S. Tominaga Y. Effects of voglibose on glycemic excursions, insulin secretion, and insulin sensitivity in non-insulin-treated NIDDM patients. Diabetes Care 1998 21 2 256 260 10.2337/diacare.21.2.256 9539992
    [Google Scholar]
  62. Negishi M. Shimomura K. Proks P. Shimomura Y. Mori M. Alpha glucosidase inhibitor voglibose can prevent pioglitazone-induced body weight gain in Type 2 diabetic patients. Br. J. Clin. Pharmacol. 2008 66 2 318 319 10.1111/j.1365‑2125.2008.03216.x 18507653
    [Google Scholar]
  63. Satoh N. Shimatsu A. Yamada K. Aizawa-Abe M. Suganami T. Kuzuya H. Ogawa Y. An α-glucosidase inhibitor, voglibose, reduces oxidative stress markers and soluble intercellular adhesion molecule 1 in obese type 2 diabetic patients. Metabolism 2006 55 6 786 793 10.1016/j.metabol.2006.01.016 16713439
    [Google Scholar]
  64. Kawamori R. Tajima N. Iwamoto Y. Kashiwagi A. Shimamoto K. Kaku K. Voglibose for prevention of type 2 diabetes mellitus: a randomised, double-blind trial in Japanese individuals with impaired glucose tolerance. Lancet 2009 373 9675 1607 1614 10.1016/S0140‑6736(09)60222‑1 19395079
    [Google Scholar]
  65. Elias A.M. SaravanaKumar M.P. A review on the classification, characterization, synthesis of nanoparticles and their application. IOP Conf Ser Mater Sci Eng 2017 263 032019 10.1088/1757‑899X/263/3/032019
    [Google Scholar]
  66. Nyenwe E.A. Jerkins T.W. Umpierrez G.E. Kitabchi A.E. Management of type 2 diabetes: evolving strategies for the treatment of patients with type 2 diabetes. Metabolism 2011 60 1 1 23 10.1016/j.metabol.2010.09.010 21134520
    [Google Scholar]
  67. Soares S. Sousa J. Pais A. Vitorino C. Nanomedicine: Principles, properties, and regulatory issues. Front Chem. 2018 6 360 10.3389/fchem.2018.00360 30177965
    [Google Scholar]
  68. Desai N. Challenges in development of nanoparticle-based therapeutics. AAPS J. 2012 14 2 282 295 10.1208/s12248‑012‑9339‑4 22407288
    [Google Scholar]
  69. Crist R.M. Grossman J.H. Patri A.K. Stern S.T. Dobrovolskaia M.A. Adiseshaiah P.P. Clogston J.D. McNeil S.E. Common pitfalls in nanotechnology: lessons learned from NCI’s Nanotechnology Characterization Laboratory. Integr. Biol. 2013 5 1 66 73 10.1039/c2ib20117h 22772974
    [Google Scholar]
  70. Amjad S. Jafri A. Sharma A.K. Serajuddin M. A novel strategy of nanotized herbal drugs and their delivery in the treatment of diabetes: Present status and future prospects. J. Herb. Med. 2019 17-18 100279 10.1016/j.hermed.2019.100279
    [Google Scholar]
  71. Maruta T. Komai K. Takamori M. Yamada M. Voglibose inhibits postprandial hypotension in neurologic disorders and elderly people. Neurology 2006 66 9 1432 1434 10.1212/01.wnl.0000214102.65215.76 16682681
    [Google Scholar]
  72. Mentreddy S.R. Medicinal plant species with potential antidiabetic properties. J. Sci. Food Agric. 2007 87 5 743 750 10.1002/jsfa.2811
    [Google Scholar]
  73. Sahibzada M.U.K. Sadiq A. Khan S. Faidah H.S. Ullah N. Khurram M. Amin M.U. Haseeb A. Fabrication, characterization and in vitro evaluation of silibinin nanoparticles: an attempt to enhance its oral bioavailability. Drug Des. Devel. Ther. 2017 11 1453 1464 10.2147/DDDT.S133806 28553075
    [Google Scholar]
  74. Bharali D.J. Khalil M. Gurbuz M. Simone T.M. Mousa S.A. Nanoparticles and cancer therapy: a concise review with emphasis on dendrimers. Int. J. Nanomedicine 2009 4 1 7 19421366
    [Google Scholar]
  75. Das A. Saikia R. Pathak K. Gogoi U. Pathak M.P. Anti-diabetic nano-formulation from herbal sources. Nano Medicine and Nano Safety. Springer Singapore Recent Trends and Clinical Evidences. 2020 61 84 10.1007/978‑981‑15‑6255‑6_4
    [Google Scholar]
  76. Gadekar V. Borade Y. Kannaujia S. Rajpoot K. Anup N. Tambe V. Kalia K. Tekade R.K. Nanomedicines accessible in the market for clinical interventions. J. Control. Release 2021 330 372 397 10.1016/j.jconrel.2020.12.034 33370576
    [Google Scholar]
  77. Chen H. Zhang M. Structure and health effects of natural products on diabetes mellitus. Singapore Springer 2021 981 10.1007/978‑981‑15‑8791‑7
    [Google Scholar]
  78. Dirir A.M. Daou M. Yousef A.F. Yousef L.F. A review of alpha-glucosidase inhibitors from plants as potential candidates for the treatment of type-2 diabetes. Phytochem. Rev. 2022 21 4 1049 1079 10.1007/s11101‑021‑09773‑1 34421444
    [Google Scholar]
  79. Kaur G. Kumar R. Singh P. Singh A.P. Sharma P. Anti-diabetic therapies, strategies for diabetes management, and advancement in drug delivery systems: A review. International Journal of Rural Development, Environment and Health Research 2024 8 2 10.22161/ijreh.8.2
    [Google Scholar]
  80. Downing N.S. Aminawung J.A. Shah N.D. Krumholz H.M. Ross J.S. Clinical trial evidence supporting FDA approval of novel therapeutic agents, 2005-2012. JAMA 2014 311 4 368 377 10.1001/jama.2013.282034 24449315
    [Google Scholar]
  81. Padhi S. Nayak A.K. Behera A. Type II diabetes mellitus: a review on recent drug based therapeutics. Biomed. Pharmacother. 2020 131 110708 10.1016/j.biopha.2020.110708 32927252
    [Google Scholar]
  82. Chalasani N. Younossi Z. Lavine J.E. Diehl A.M. Brunt E.M. Cusi K. Charlton M. Sanyal A.J. The diagnosis and management of non-alcoholic fatty liver disease: practice Guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatology 2012 55 6 2005 2023 10.1002/hep.25762 22488764
    [Google Scholar]
  83. Moghimi S.M. Hunter A.C. Murray J.C. Nanomedicine: current status and future prospects. FASEB J. 2005 19 3 311 330 10.1096/fj.04‑2747rev 15746175
    [Google Scholar]
  84. Freitas R.A. Jr What is nanomedicine? Nanomedicine 2005 1 1 2 9 10.1016/j.nano.2004.11.003 17292052
    [Google Scholar]
  85. Brocchini S. Duncan R. Encyclopedia of Controlled Drug Delivery. New York Wiley 1999 786
    [Google Scholar]
/content/journals/cnanom/10.2174/0124681873337339250114074235
Loading
/content/journals/cnanom/10.2174/0124681873337339250114074235
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test