Skip to content
2000
image of Next-Generation Multifunctional Nanocarriers: A Comprehensive Review

Abstract

Nanotechnology has revolutionized drug delivery by enabling the precise transport of therapeutics to specific sites with improved efficacy. By employing biocompatible and stable nanocarriers such as polymeric nanoparticles, liposomes, quantum dots, dendrimers, metallic nanoparticles, and carbon nanotubes, this field provides innovative solutions as both diagnostic tools and therapeutic agents. These carriers facilitate precise targeting and active drug delivery, protecting drugs from metabolic or chemical degradation during transit and enhancing bioavailability. The development of nanocarriers involves various preparation techniques, including solvent evaporation, emulsification, homogenization, and lyophilization, each tailored to optimize drug loading and stability. Customizable properties such as size, surface charge, and targeting ligands further improve drug uptake, biodistribution, and controlled release. However, toxicity remains a critical concern, necessitating thorough evaluation to ensure safety and efficacy. This review offers an in-depth exploration of diverse nanocarrier systems and preparation methods. By addressing the interplay between these factors, the review highlights the growing potential of nanomedicine in advancing personalized healthcare.

Loading

Article metrics loading...

/content/journals/cnanom/10.2174/0124681873353824250603105136
2025-06-10
2025-10-19
Loading full text...

Full text loading...

References

  1. Majumder J. Taratula O. Minko T. Nanocarrier-based systems for targeted and site specific therapeutic delivery. Adv. Drug Deliv. Rev. 2019 144 57 77 10.1016/j.addr.2019.07.010 31400350
    [Google Scholar]
  2. Chamundeeswari M. Jeslin J. Verma M.L. Nanocarriers for drug delivery applications. Environ. Chem. Lett. 2019 17 2 849 865 10.1007/s10311‑018‑00841‑1
    [Google Scholar]
  3. Wilczewska A.Z. Niemirowicz K. Markiewicz K.H. Car H. Nanoparticles as drug delivery systems. Pharmacol. Rep. 2012 64 5 1020 1037 10.1016/S1734‑1140(12)70901‑5 23238461
    [Google Scholar]
  4. Wang N. Cheng X. Li N. Wang H. Chen H. Nanocarriers and their loading strategies. Adv. Healthc. Mater. 2019 8 6 1801002 10.1002/adhm.201801002 30450761
    [Google Scholar]
  5. Girdhar V. Patil S. Banerjee S. Singhvi G. Nanocarriers for drug delivery: Mini review. Curr. Nanomed. 2018 8 2 88 99 10.2174/2468187308666180501092519
    [Google Scholar]
  6. Chenthamara D. Subramaniam S. Ramakrishnan S.G. Krishnaswamy S. Essa M.M. Lin F.H. Qoronfleh M.W. Therapeutic efficacy of nanoparticles and routes of administration. Biomater. Res. 2019 23 1 20 10.1186/s40824‑019‑0166‑x 31832232
    [Google Scholar]
  7. Benjamin S.R. Lima F.D. Florean E.O.P.T. Guedes M.I.F. Current trends in nanotechnology for bioremediation. Int. J. Environ. Pollut. 2019 66 1/2/3 19 40 10.1504/IJEP.2019.104526
    [Google Scholar]
  8. Shirsath N.R. Goswami A.K. Nanocarriers based novel drug delivery as effective drug delivery: A review. Curr. Nanomater. 2019 4 2 71 83 10.2174/2405461504666190527101436
    [Google Scholar]
  9. Patra J.K. Das G. Fraceto L.F. Campos E.V.R. Rodriguez-Torres M.P. Acosta-Torres L.S. Diaz-Torres L.A. Grillo R. Swamy M.K. Sharma S. Habtemariam S. Shin H.S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnology 2018 16 1 71 10.1186/s12951‑018‑0392‑8 30231877
    [Google Scholar]
  10. He X. Nie H. Wang K. Tan W. Wu X. Zhang P. In vivo study of biodistribution and urinary excretion of surface-modified silica nanoparticles. Anal. Chem. 2008 80 24 9597 9603 10.1021/ac801882g 19007246
    [Google Scholar]
  11. Huang X. Li L. Liu T. Hao N. Liu H. Chen D. Tang F. The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo. ACS Nano 2011 5 7 5390 5399 10.1021/nn200365a 21634407
    [Google Scholar]
  12. Kumar R. Roy I. Ohulchanskky T.Y. Vathy L.A. Bergey E.J. Sajjad M. Prasad P.N. In vivo biodistribution and clearance studies using multimodal organically modified silica nanoparticles. ACS Nano 2010 4 2 699 708 10.1021/nn901146y 20088598
    [Google Scholar]
  13. Liu T. Li L. Teng X. Huang X. Liu H. Chen D. Ren J. He J. Tang F. Single and repeated dose toxicity of mesoporous hollow silica nanoparticles in intravenously exposed mice. Biomaterials 2011 32 6 1657 1668 10.1016/j.biomaterials.2010.10.035 21093905
    [Google Scholar]
  14. Liu Y. Hu Y. Huang L. Influence of polyethylene glycol density and surface lipid on pharmacokinetics and biodistribution of lipid- calcium-phosphate nanoparticles. Biomaterials 2014 35 9 3027 3034 10.1016/j.biomaterials.2013.12.022 24388798
    [Google Scholar]
  15. Albanese A. Sykes E.A. Chan W.C.W. Rough around the edges: The inflammatory response of microglial cells to spiky nanoparticles. ACS Nano 2010 4 5 2490 2493 10.1021/nn100776z 20496953
    [Google Scholar]
  16. Carter J.M. Driscoll K.E.J.J.o.e.p. The role of inflammation, oxidative stress, and proliferation in silica-induced lung disease: A species comparison. J. Environ. Pathol. Toxicol. Oncol. 2001 20 Suppl 1 33 43
    [Google Scholar]
  17. Cho W. Choi M. Han B. Cho M. Oh J. Park K. Kim S. Kim S. Jeong J. Inflammatory mediators induced by intratracheal instillation of ultrafine amorphous silica particles. Toxicol. Lett. 2007 175 1-3 24 33 10.1016/j.toxlet.2007.09.008 17981407
    [Google Scholar]
  18. Driscoll K.E. TNFα and MIP-2: Role in particle-induced inflammation and regulation by oxidative stress. Toxicol. Lett. 2000 112-113 177 183 10.1016/S0378‑4274(99)00282‑9 10720729
    [Google Scholar]
  19. Dobrovolskaia M. McNeil S.J.N. Nanotechnol. Nat. Nanotechnol. 2007 ••• p. 469 478 10.1038/nnano.2007.223 18654343
    [Google Scholar]
  20. Dobrovolskaia M.A. Aggarwal P. Hall J.B. McNeil S.E. Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution. Mol. Pharm. 2008 5 4 487 495 10.1021/mp800032f 18510338
    [Google Scholar]
  21. Dobrovolskaia M.A. Germolec D.R. Weaver J.L. Evaluation of nanoparticle immunotoxicity. Nat. Nanotechnol. 2009 4 7 411 414 10.1038/nnano.2009.175 19581891
    [Google Scholar]
  22. Gustafson H.H. Holt-Casper D. Grainger D.W. Ghandehari H. Nanoparticle uptake: The phagocyte problem. Nano Today 2015 10 4 487 510 10.1016/j.nantod.2015.06.006 26640510
    [Google Scholar]
  23. Behzadi S. Serpooshan V. Tao W. Hamaly M.A. Alkawareek M.Y. Dreaden E.C. Brown D. Alkilany A.M. Farokhzad O.C. Mahmoudi M. Cellular uptake of nanoparticles: Journey inside the cell. Chem. Soc. Rev. 2017 46 14 4218 4244 10.1039/C6CS00636A 28585944
    [Google Scholar]
  24. Sandhiya V. Ubaidulla U.J.F.J.P.S. A review on herbal drug loaded into pharmaceutical carrier techniques and its evaluation process. Future J Pharm Sci. 2020 6 1 1 16
    [Google Scholar]
  25. Saadeh Y. Vyas D. Nanorobotic applications in medicine: Current proposals and designs. Am. J. Robot. Surg. 2014 1 1 4 11 10.1166/ajrs.2014.1010 26361635
    [Google Scholar]
  26. McNamara K. Tofail S.A.M. Nanosystems: The use of nanoalloys, metallic, bimetallic, and magnetic nanoparticles in biomedical applications. Phys. Chem. Chem. Phys. 2015 17 42 27981 27995 10.1039/C5CP00831J 26024211
    [Google Scholar]
  27. Oliveira O.N. Jr Iost R.M. Siqueira J.R. Jr Crespilho F.N. Caseli L. Nanomaterials for diagnosis: Challenges and applications in smart devices based on molecular recognition. ACS Appl. Mater. Interfaces 2014 6 17 14745 14766 10.1021/am5015056 24968359
    [Google Scholar]
  28. de Jong W.H. Borm P.J. Drug delivery and nanoparticles: Applications and hazards. Int. J. Nanomedicine 2008 3 2 133 149 10.2147/IJN.S596 18686775
    [Google Scholar]
  29. Mirza A.Z. Siddiqui F.A.J.I.N.L. Nanomedicine and drug delivery: A mini review. Int. Nano. Lett. 2014 4 1 94
    [Google Scholar]
  30. Lu H. Wang J. Wang T. Zhong J. Bao Y. Hao H. Recent progress on nanostructures for drug delivery applications. J Nanomater 2016 5762431 10.1155/2016/5762431
    [Google Scholar]
  31. Kumari A. Kumar V. Yadav S.J.T.M.R. Nanotechnology: A tool to enhance therapeutic values of natural plant products. Trends Med Res. 2012 7 34 42
    [Google Scholar]
  32. Decuzzi P. Pasqualini R. Arap W. Ferrari M. Intravascular delivery of particulate systems: Does geometry really matter? Pharm. Res. 2009 26 1 235 243 10.1007/s11095‑008‑9697‑x
    [Google Scholar]
  33. Blanco E. Shen H. Ferrari M.J.N.b. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 2015 33 9 941 951 10.1038/nbt.3330
    [Google Scholar]
  34. Yetisgin A.A. Cetinel S. Zuvin M. Kosar A. Kutlu O. Therapeutic nanoparticles and their targeted delivery applications. Molecules 2020 25 9 2193 10.3390/molecules25092193 32397080
    [Google Scholar]
  35. Chang S. Chen D. Kang B. Dai Y. UV-enhanced cytotoxicity of CdTe quantum dots in PANC-1 cells depend on their size distribution and surface modification. J. Nanosci. Nanotechnol. 2013 13 2 751 754 10.1166/jnn.2013.6085 23646509
    [Google Scholar]
  36. Angra P.K. Rizvi S.A.A. Oettinger C.W. D’Souza M.J. Novel approach for preparing nontoxic stealth microspheres for drug delivery. Eur. J. Chem. 2011 2 2 125 129
    [Google Scholar]
  37. Tsoi K.M. MacParland S.A. Ma X.Z. Spetzler V.N. Echeverri J. Ouyang B. Fadel S.M. Sykes E.A. Goldaracena N. Kaths J.M. Conneely J.B. Alman B.A. Selzner M. Ostrowski M.A. Adeyi O.A. Zilman A. McGilvray I.D. Chan W.C.W. Mechanism of hard- nanomaterial clearance by the liver. Nat. Mater. 2016 15 11 1212 1221 10.1038/nmat4718 27525571
    [Google Scholar]
  38. Dirisala A. Uchida S. Toh K. Li J. Osawa S. Tockary T.A. Liu X. Abbasi S. Hayashi K. Mochida Y. Fukushima S. Kinoh H. Osada K. Kataoka K. Transient stealth coating of liver sinusoidal wall by anchoring two-armed PEG for retargeting nanomedicines. Sci. Adv. 2020 6 26 eabb8133 10.1126/sciadv.abb8133 32637625
    [Google Scholar]
  39. Belletti D. Riva G. Luppi M. Tosi G. Forni F. Vandelli M.A. Ruozi B. Pederzoli F. Anticancer drug-loaded quantum dots engineered polymeric nanoparticles: Diagnosis/therapy combined approach. Eur J Pharm Sci. 2017 107 230 239 28728978
    [Google Scholar]
  40. Campos D.A. Madureira A.R. Sarmento B. Gomes A.M. Pintado M.M. Stability of bioactive solid lipid nanoparticles loaded with herbal extracts when exposed to simulated gastrointestinal tract conditions. Food Res Int. 2015 78 131 140 28433274
    [Google Scholar]
  41. Ajazuddin Saraf S. Applications of novel drug delivery system for herbal formulations. Fitoterapia 2010 81 7 680 689 20471457
    [Google Scholar]
  42. González-Monje P. Ayala García A. Ruiz-Molina D. Roscini C. Encapsulation and sedimentation of nanomaterials through complex coacervation. J. Colloid Interface Sci. 2021 589 500 510 10.1016/j.jcis.2020.12.067 33486285
    [Google Scholar]
  43. Fessi H. Puisieux F. Devissaguet J.P. Ammoury N. Benita S. Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int J Pharm 1989 55 R1 R4 10.1016/0378‑5173(89)90281‑0
    [Google Scholar]
  44. Mora-Huertas C.E. Fessi H. Elaissari A. Polymer-based nanocapsules for drug delivery. Int. J. Pharm. 2010 385 1-2 113 142 19825408
    [Google Scholar]
  45. Chorny M. Fishbein I. Danenberg H.D. Golomb G. Lipophilic drug loaded nanospheres prepared by nanoprecipitation: Effect of formulation variables on size, drug recovery and release kinetics. J. Control. Release 2002 83 3 389 400 10.1016/S0168‑3659(02)00211‑0 12387947
    [Google Scholar]
  46. Zweers M.L.T. Engbers G.H.M. Grijpma D.W. Feijen J. In vitro degradation of nanoparticles prepared from polymers based on dl-lactide, glycolide and poly(ethylene oxide). J. Control. Release 2004 100 3 347 356 10.1016/j.jconrel.2004.09.008 15567501
    [Google Scholar]
  47. Sahni J.K. Baboota S. Ali J.J.P.T. Promising role of nanopharmaceuticals in drug delivery. Pharma Times 2011 43 10 16 18
    [Google Scholar]
  48. Eley J.G. Pujari V.D. McLane J. Poly (lactide-co-glycolide) nanoparticles containing coumarin-6 for suppository delivery: In vitro release profile and in vivo tissue distribution. Drug Deliv. 2004 11 4 255 261 10.1080/10717540490467384 15371107
    [Google Scholar]
  49. Salvi V.R. Pawar P. Nanostructured lipid carriers (NLC) system: A novel drug targeting carrier. J. Drug Deliv. Sci. Technol. 2019 51 255 267 10.1016/j.jddst.2019.02.017
    [Google Scholar]
  50. Kumar R. Sharma M. Herbal nanomedicine interactions to enhance pharmacokinetics, pharmacodynamics, and therapeutic index for better bioavailability and biocompatibility of herbal formulations. Journal of Materials NanoScience 2018 5 1 35 60
    [Google Scholar]
  51. Kumar R. Lipid-based nanoparticles for drug-delivery systems. Nanocarriers for drug delivery. Elsevier 2019 249 284 10.1016/B978‑0‑12‑814033‑8.00008‑4
    [Google Scholar]
  52. Witika B.A. Poka M.S. Demana P.H. Matafwali S.K. Melamane S. Malungelo Khamanga S.M. Makoni P.A. Lipid-based nanocarriers for neurological disorders: A review of the state-of-the-art and therapeutic success to date. Pharmaceutics 2022 14 4 836 10.3390/pharmaceutics14040836 35456669
    [Google Scholar]
  53. Poovi G. Damodharan N. Lipid nanoparticles: A challenging approach for oral delivery of BCS Class-II drugs. Future Journal of Pharmaceutical Sciences 2018 4 2 191 205 10.1016/j.fjps.2018.04.001
    [Google Scholar]
  54. Emad N.A. Ahmed B. Alhalmi A. Alzobaidi N. Al-Kubati S.S. Recent progress in nanocarriers for direct nose to brain drug delivery. J. Drug Deliv. Sci. Technol. 2021 64 102642 10.1016/j.jddst.2021.102642
    [Google Scholar]
  55. Kesharwani R. Jaiswal P. Patel D.K. Yadav P.K. Lipid-based drug delivery system (LBDDS): An emerging paradigm to enhance oral bioavailability of poorly soluble drugs. Biomedical Materials & Devices 2023 1 2 648 663 10.1007/s44174‑022‑00041‑0
    [Google Scholar]
  56. Rao S. Prestidge C.A. Polymer-lipid hybrid systems: Merging the benefits of polymeric and lipid-based nanocarriers to improve oral drug delivery. Expert Opin. Drug Deliv. 2016 13 5 691 707 10.1517/17425247.2016.1151872 26866382
    [Google Scholar]
  57. Handa M. Almalki W.H. Shukla R. Afzal O. Altamimi A.S.A. Beg S. Rahman M. Active pharmaceutical ingredients (APIs) in ionic liquids: An effective approach for API physiochemical parameter optimization. Drug Discov. Today 2022 27 9 2415 2424 10.1016/j.drudis.2022.06.003 35697283
    [Google Scholar]
  58. Chime A. Onyishi I.V. Lipid-based drug delivery systems (LDDS): Recent advances and applications of lipids in drug delivery. Afr. J. Pharm. Pharmacol. 2013 7 48 3034 3059 10.5897/AJPPX2013.0004
    [Google Scholar]
  59. Bangham A.D. Membrane models with phospholipids. Prog. Biophys. Mol. Biol. 1968 18 29 95 10.1016/0079‑6107(68)90019‑9 4894874
    [Google Scholar]
  60. Gregoriadis G. The carrier potential of liposomes in biology and medicine (first of two parts). N. Engl. J. Med. 1976 295 13 704 710 10.1056/NEJM197609232951305 958245
    [Google Scholar]
  61. Etheridge M.L. Campbell S.A. Erdman A.G. Haynes C.L. Wolf S.M. McCullough J. The big picture on nanomedicine: The state of investigational and approved nanomedicine products. Nanomedicine 2013 9 1 1 14 10.1016/j.nano.2012.05.013 22684017
    [Google Scholar]
  62. Allen T.M. Cullis P.R. Liposomal drug delivery systems: From concept to clinical applications. Adv. Drug Deliv. Rev. 2013 65 1 36 48 10.1016/j.addr.2012.09.037 23036225
    [Google Scholar]
  63. Papahadjopoulos D. Kimelberg H.K. Phospholipid vesicles (liposomes) as models for biological membranes: Their properties and interactions with cholesterol and proteins. Prog. Surf. Sci. 1974 4 141 232 10.1016/S0079‑6816(74)80006‑7
    [Google Scholar]
  64. Shaheen S.M. Ahmed F.R.S. Hossen M.N. Ahmed M. Amran M.S. Islam M.A.U. Liposome as a carrier for advanced drug delivery. Pak. J. Biol. Sci. 2006 9 6 1181 1191 10.3923/pjbs.2006.1181.1191
    [Google Scholar]
  65. Sharma A. Sharma U.S. Liposomes in drug delivery: Progress and limitations. Int. J. Pharm. 1997 154 2 123 140 10.1016/S0378‑5173(97)00135‑X
    [Google Scholar]
  66. Akbarzadeh A. Rezaei-Sadabady R. Davaran S. Joo S.W. Zarghami N. Hanifehpour Y. Samiei M. Kouhi M. Nejati-Koshki K. Liposome: Classification, preparation, and applications. Nanoscale Res. Lett. 2013 8 1 102 10.1186/1556‑276X‑8‑102 23432972
    [Google Scholar]
  67. Samad A. Sultana Y. Aqil M. Liposomal drug delivery systems: An update review. Curr. Drug Deliv. 2007 4 4 297 305 10.2174/156720107782151269 17979650
    [Google Scholar]
  68. Mali A.D. Bathe R.S. An updated review on liposome drug delivery system. Asian Journal of Pharmaceutical Research 2015 5 3 151 157 10.5958/2231‑5691.2015.00023.4
    [Google Scholar]
  69. Laouini A. Jaafar-Maalej C. Limayem-Blouza I. Sfar S. Charcosset C. Fessi H. Preparation, characterization and applications of liposomes: State of the art. Journal of Colloid Science and Biotechnology 2012 1 2 147 168 10.1166/jcsb.2012.1020
    [Google Scholar]
  70. Sercombe L. Veerati T. Moheimani F. Wu S.Y. Sood A.K. Hua S. Advances and challenges of liposome assisted drug delivery. Front. Pharmacol. 2015 6 286 10.3389/fphar.2015.00286 26648870
    [Google Scholar]
  71. Tiwari A. Nordin A.N. Advanced biomaterials and biodevices. John Wiley & Sons 2014 10.1002/9781118774052
    [Google Scholar]
  72. Algan A.H. Gungor-Ak A. Karatas A. Nanoscale delivery systems of lutein: An updated review from a pharmaceutical perspective. Pharmaceutics 2022 14 9 1852 10.3390/pharmaceutics14091852 36145601
    [Google Scholar]
  73. Trucillo P. Martino M. Reverchon E. Supercritical assisted production of lutein-loaded liposomes and modelling of drug release. Processes 2021 9 7 1162 10.3390/pr9071162
    [Google Scholar]
  74. Bhardwaj P. Tripathi P. Gupta R. Pandey S. Niosomes: A review on niosomal research in the last decade. J Drug Deliv Sci Technol 2020 56 101581 10.1016/j.jddst.2020.101581
    [Google Scholar]
  75. Chacko I.A. Ghate V.M. Dsouza L. Lewis S.A. Lipid vesicles: A versatile drug delivery platform for dermal and transdermal applications. Colloids Surf B Biointerfaces 2020 195 111262 10.1016/j.colsurfb.2020.111262
    [Google Scholar]
  76. Rehman A. Tong Q. Jafari S.M. Assadpour E. Shehzad Q. Aadil R.M. Iqbal M.W. Rashed M.M.A. Mushtaq B.S. Ashraf W. Carotenoid-loaded nanocarriers: A comprehensive review. Adv Colloid Interface Sci. 2020 275 102048 31757387
    [Google Scholar]
  77. Kuotsu K. Karim K.M. Mandal A.S. Biswas N. Guha A. Chatterjee S. Behera M. Niosome: A future of targeted drug delivery systems. J. Adv. Pharm. Technol. Res. 2010 1 4 374 380 10.4103/0110‑5558.76435 22247876
    [Google Scholar]
  78. Khogta S. Patel J. Barve K. Londhe V. Herbal nano-formulations for topical delivery. J Herb Med 2020 20 100300 10.1016/j.hermed.2019.100300
    [Google Scholar]
  79. Böttger R. Pauli G. Chao P.H. Al Fayez N. Hohenwarter L. Li S.D. Lipid-based nanoparticle technologies for liver targeting. Adv Drug Deliv Rev. 2020 154-155 79 101 32574575
    [Google Scholar]
  80. Maqsoudlou A. Assadpour E. Mohebodini H. Jafari S.M. Improving the efficiency of natural antioxidant compounds via different nanocarriers. Adv Colloid Interface Sci. 2020 278 102122 32097732
    [Google Scholar]
  81. Hatem S. El Hoffy N.M. Elezaby R.S. Nasr M. Kamel A.O. Elkheshen S.A. Background and different treatment modalities for melasma: Conventional and nanotechnology-based approaches. J Drug Deliv Sci Technol 2020 60 101984 10.1016/j.jddst.2020.101984
    [Google Scholar]
  82. Patel R. Prabhu P. Nanocarriers as versatile delivery systems for effective management of acne. Int. J Pharm. 2020 579 119140 32061843
    [Google Scholar]
  83. Frank L.A. Onzi G.R. Morawski A.S. Pohlmann A.R. Guterres S.S. Contri R.V. Chitosan as a coating material for nanoparticles intended for biomedical applications. React Funct Polym 2020 147 104459 10.1016/j.reactfunctpolym.2019.104459
    [Google Scholar]
  84. Godin B. Touitou E. Ethosomes: New prospects in transdermal delivery. Crit. Rev. Ther. Drug Carrier Syst. 2003 20 1 63 102 10.1615/CritRevTherDrugCarrierSyst.v20.i1.20 12911264
    [Google Scholar]
  85. Touitou E. Dayan N. Bergelson L. Godin B. Eliaz M. Ethosomes — novel vesicular carriers for enhanced delivery: Characterization and skin penetration properties. J. Control. Release 2000 65 3 403 418 10.1016/S0168‑3659(99)00222‑9 10699298
    [Google Scholar]
  86. Sala M. Diab R. Elaissari A. Fessi H. Lipid nanocarriers as skin drug delivery systems: Properties, mechanisms of skin interactions and medical applications. Int. J. Pharm. 2018 535 1-2 1 17 29111097
    [Google Scholar]
  87. Nava-Arzaluz M.G. Piñón-Segundo E. Ganem-Rondero A. Lipid nanocarriers as skin drug delivery systems. Nanoparticles in Pharmacotherapy. Elsevier 2019 311 390 10.1016/B978‑0‑12‑816504‑1.00007‑7
    [Google Scholar]
  88. Adki K.M. Kulkarni Y.A. Chemistry, pharmacokinetics, pharmacology and recent novel drug delivery systems of paeonol. Life Sci. 2020 250 117544 32179072
    [Google Scholar]
  89. Lin H. Lin L. Choi Y. Michniak-Kohn B. Development and in-vitro evaluation of co-loaded berberine chloride and evodiamine ethosomes for treatment of melanoma. Int. J. Pharm. 2020 581 119278 32229284
    [Google Scholar]
  90. Van Tran V. Moon J.Y. Lee Y.C. Liposomes for delivery of antioxidants in cosmeceuticals: Challenges and development strategies. J. Control. Release 2019 300 114 140 10.1016/j.jconrel.2019.03.003 30853528
    [Google Scholar]
  91. Garg V. Singh H. Bimbrawh S. Singh S.K. Gulati M. Vaidya Y. Kaur P. Ethosomes and transfersomes: Principles, perspectives and practices. Curr Drug Deliv. 2017 14 5 613 633 27199229
    [Google Scholar]
  92. Mota A.H. Rijo P. Molpeceres J. Reis C.P. Broad overview of engineering of functional nanosystems for skin delivery. Int. J. Pharm. 2017 532 2 710 728 28764984
    [Google Scholar]
  93. Alexander A. Ajazuddin Patel R.J. Saraf S. Saraf S. Recent expansion of pharmaceutical nanotechnologies and targeting strategies in the field of phytopharmaceuticals for the delivery of herbal extracts and bioactives. J. Control. Release 2016 241 110 124 10.1016/j.jconrel.2016.09.017 27663228
    [Google Scholar]
  94. Fernández-García R. Lalatsa A. Statts L. Bolás-Fernández F. Ballesteros M.P. Serrano D.R. Transferosomes as nanocarriers for drugs across the skin: Quality by design from lab to industrial scale. Int. J. Pharm. 2020 573 118817 31678520
    [Google Scholar]
  95. Kapoor B. Gupta R. Singh S.K. Gulati M. Singh S. Prodrugs, phospholipids and vesicular delivery - An effective triumvirate of pharmacosomes. Adv. Colloid Interface Sci. 2018 253 35 65 29454464
    [Google Scholar]
  96. Joshi A. Kaur J. Kulkarni R. Chaudhari R. In-vitro and ex-vivo evaluation of Raloxifene hydrochloride delivery using nano-transfersome based formulations. J Drug Deliv Sci Technol 2018 45 151 158 10.1016/j.jddst.2018.02.006
    [Google Scholar]
  97. Malakar J. Sen S.O. Nayak A.K. Sen K.K. Formulation, optimization and evaluation of transferosomal gel for transdermal insulin delivery. Saudi Pharm. J. 2012 20 4 355 363 10.1016/j.jsps.2012.02.001 23960810
    [Google Scholar]
  98. El-Nabarawi M.A. Shamma R.N. Farouk F. Nasralla S.M. Dapsone-loaded invasomes as a potential treatment of acne: Preparation, characterization, and in vivo skin deposition assay. AAPS PharmSciTech 2018 19 5 2174 2184 10.1208/s12249‑018‑1025‑0 29725903
    [Google Scholar]
  99. Babaie S. Bakhshayesh A.R.D. Ha J.W. Hamishehkar H. Kim K.H. Invasome: A novel nanocarrier for transdermal drug delivery. Nanomaterials 2020 10 2 341 10.3390/nano10020341 32079276
    [Google Scholar]
  100. Dwivedi M. Sharma V. Pathak K. Pilosebaceous targeting by isotretenoin-loaded invasomal gel for the treatment of eosinophilic pustular folliculitis: Optimization, efficacy and cellular analysis. Drug Dev. Ind. Pharm. 2017 43 2 293 304 10.1080/03639045.2016.1239628 27649797
    [Google Scholar]
  101. Qadri G.R. Ahad A. Aqil M. Imam S.S. Ali A. Invasomes of isradipine for enhanced transdermal delivery against hypertension: Formulation, characterization, and in vivo pharmacodynamic study. Artif. Cells Nanomed. Biotechnol. 2017 45 1 139 145 10.3109/21691401.2016.1138486 26829018
    [Google Scholar]
  102. Zhou X. Hao Y. Yuan L. Pradhan S. Shrestha K. Pradhan O. Liu H. Li W. Nano-formulations for transdermal drug delivery: A review. Chin Chem Lett 2018 29 12 1713 1724 10.1016/j.cclet.2018.10.037
    [Google Scholar]
  103. Karami Z. Hamidi M. Cubosomes: Remarkable drug delivery potential. Drug Discov. Today. 2016 21 5 789 801 26780385
    [Google Scholar]
  104. El-Enin H.A. AL-Shanbari A.H. Nanostructured liquid crystalline formulation as a remarkable new drug delivery system of anti-epileptic drugs for treating children patients. Saudi Pharm. J. 2018 26 6 790 800 10.1016/j.jsps.2018.04.004 30202219
    [Google Scholar]
  105. Nithya R. Jerold P. Siram K. Cubosomes of dapsone enhanced permeation across the skin. J Drug Deliv Sci Technol 2018 48 75 81 10.1016/j.jddst.2018.09.002
    [Google Scholar]
  106. Nasr M. Younes H. Abdel-Rashid R.S. Formulation and evaluation of cubosomes containing colchicine for transdermal delivery. Drug Deliv. Transl. Res. 2020 10 5 1302 1313 10.1007/s13346‑020‑00785‑6 32399604
    [Google Scholar]
  107. Bolla P.K. Meraz C.A. Rodriguez V.A. Deaguero I. Singh M. Yellepeddi V.K. Renukuntla J. Clotrimazole loaded ufosomes for topical delivery: Formulation development and in-vitro studies. Molecules 2019 24 17 3139 10.3390/molecules24173139 31470517
    [Google Scholar]
  108. Patel D. Jani R. Patel C.J.S.p. Ufasomes: A vesicular drug delivery. Syst Rev Pharm 2011 2 2 72
    [Google Scholar]
  109. Sharma A. Arora S.J.I.S.R.N. Formulation and in vitro evaluation of ufasomes for dermal administration of methotrexate. ISRN Pharm. 2012 873653 10.5402/2012/873653
    [Google Scholar]
  110. Lakshmi P. Kalpana B. Prasanthi D.J.S.R.P. Invasomes-novel vesicular carriers for enhanced skin permeation. Syst. Rev. Pharm. 2013 4 1 26
    [Google Scholar]
  111. Gebicki J.M. Hicks M. Ufasomes are stable particles surrounded by unsaturated fatty acid membranes. Nature 1973 243 5404 232 234 10.1038/243232a0 4706295
    [Google Scholar]
  112. Jain N. Phytosome: A novel drug delivery system for herbal medicine. Int. J. Pharm. Sci. Drug Res. 2010 2 4 224 228
    [Google Scholar]
  113. Lu M. Qiu Q. Luo X. Liu X. Sun J. Wang C. Lin X. Deng Y. Song Y. Phyto-phospholipid complexes (phytosomes): A novel strategy to improve the bioavailability of active constituents. Asian J Pharm Sci. 2019 14 3 265 274 32104457
    [Google Scholar]
  114. Talware N.S. Dias R.J. Gupta V.R. Recent approaches in the development of Phytolipid complexes as novel drug delivery. Curr Drug Deliv. 2018 15 6 755 764 29424315
    [Google Scholar]
  115. Djekic L. Čalija B. Micov A. Tomić M. Stepanović-Petrović R. Topical hydrogels with escin β‐sitosterol phytosome and escin: Formulation development and in vivo assessment of antihyperalgesic activity. Drug Dev. Res. 2019 80 7 921 932 10.1002/ddr.21572 31298752
    [Google Scholar]
  116. Ebada H.M.K. Nasra M.M.A. Elnaggar Y.S.R. Abdallah O.Y. Novel rhein–phospholipid complex targeting skin diseases: Development, in vitro, ex vivo, and in vivo studies. Drug Deliv. Transl. Res. 2021 11 3 1107 1118 10.1007/s13346‑020‑00833‑1 32815084
    [Google Scholar]
  117. Kalita B. Das M.K. Sarma M. Deka A. Sustained anti-inflammatory effect of Resveratrol-Phospholipid complex embedded polymeric patch. AAPS PharmSciTech 2017 18 3 629 645 10.1208/s12249‑016‑0542‑y 27173988
    [Google Scholar]
  118. Barani M. Sangiovanni E. Angarano M. Rajizadeh M.A. Mehrabani M. Piazza S. Gangadharappa H.V. Pardakhty A. Mehrbani M. Dell’Agli M. Nematollahi M.H. Phytosomes as innovative delivery systems for phytochemicals: A comprehensive review of literature. Int. J. Nanomedicine 2021 16 6983 7022 10.2147/IJN.S318416 34703224
    [Google Scholar]
  119. Mirchandani Y. Patravale V.B. S B. Solid lipid nanoparticles for hydrophilic drugs. J. Control. Release 2021 335 457 464 10.1016/j.jconrel.2021.05.032 34048841
    [Google Scholar]
  120. Muller H. R., R. Shegokar, and C. M Keck, 20 years of lipid nanoparticles (SLN & NLC): Present state of development & industrial applications. Curr. Drug Discov. Technol. 2011 8 3 207 227 10.2174/157016311796799062 21291409
    [Google Scholar]
  121. Baran E.T. Reis R.L. Biomimetic approach to drug delivery and optimization of nanocarrier systems. Nanocarrier technologies: Frontiers of nanotherapy. Springer 2006 75 86 10.1007/978‑1‑4020‑5041‑1_5
    [Google Scholar]
  122. Souto E.B. Müller R.H. Investigation of the factors influencing the incorporation of clotrimazole in SLN and NLC prepared by hot high-pressure homogenization. J. Microencapsul. 2006 23 4 377 388 10.1080/02652040500435295 16854814
    [Google Scholar]
  123. Yuan H. Wang L.L. Du Y.Z. You J. Hu F.Q. Zeng S. Preparation and characteristics of nanostructured lipid carriers for control-releasing progesterone by melt-emulsification. Colloids Surf. B Biointerfaces 2007 60 2 174 179 10.1016/j.colsurfb.2007.06.011 17656075
    [Google Scholar]
  124. Saupe A. Wissing S.A. Lenk A. Schmidt C. Müller R.H. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) - structural investigations on two different carrier systems. Biomed. Mater. Eng. 2005 15 5 393 402 16179760
    [Google Scholar]
  125. Attama A.A. SLN, NLC, LDC: State of the art in drug and active delivery. Recent Pat. Drug Deliv. Formul. 2011 5 3 178 187 10.2174/187221111797200524 21834777
    [Google Scholar]
  126. Müller R.H. Radtke M. Wissing S.A. Nanostructured lipid matrices for improved microencapsulation of drugs. Int. J. Pharm. 2002 242 1-2 121 128 10.1016/S0378‑5173(02)00180‑1 12176234
    [Google Scholar]
  127. Li Q. Cai T. Huang Y. Xia X. Cole S. Cai Y. A review of the structure, preparation, and application of NLCs, PNPs, and PLNs. Nanomaterials 2017 7 6 122 10.3390/nano7060122 28554993
    [Google Scholar]
  128. Naseri N. Valizadeh H. Zakeri-Milani P. Solid lipid nanoparticles and nanostructured lipid carriers: Structure, preparation and application. Adv. Pharm. Bull. 2015 5 3 305 313 10.15171/apb.2015.043 26504751
    [Google Scholar]
  129. Liu C.H. Wu C.T. Optimization of nanostructured lipid carriers for lutein delivery. Colloids Surf. A Physicochem. Eng. Asp. 2010 353 2-3 149 156 10.1016/j.colsurfa.2009.11.006
    [Google Scholar]
  130. Pardeike J. Hommoss A. Müller R.H. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int. J. Pharm. 2009 366 1-2 170 184 10.1016/j.ijpharm.2008.10.003 18992314
    [Google Scholar]
  131. Bettencourt A. Gonçalves L.M.  Trends in the design and evaluation of polymeric nanocarriers: The in vitro nano-bio interactions 2022 10.1007/978‑3‑030‑88071‑2_2
    [Google Scholar]
  132. Ward M.A. Georgiou T.K. Thermoresponsive polymers for biomedical applications. Polymers 2011 3 3 1215 1242 10.3390/polym3031215
    [Google Scholar]
  133. Lammers T. Subr V. Ulbrich K. Hennink W.E. Storm G. Kiessling F. Polymeric nanomedicines for image-guided drug delivery and tumor-targeted combination therapy. Nano Today 2010 5 3 197 212 10.1016/j.nantod.2010.05.001
    [Google Scholar]
  134. Zielińska A. Carreiró F. Oliveira A.M. Neves A. Pires B. Venkatesh D.N. Durazzo A. Lucarini M. Eder P. Silva A.M. Santini A. Souto E.B. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology. Molecules 2020 25 16 3731 10.3390/molecules25163731 32824172
    [Google Scholar]
  135. Agnihotri S.A. Mallikarjuna N.N. Aminabhavi T.M. Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J. Control. Release 2004 100 1 5 28 10.1016/j.jconrel.2004.08.010 15491807
    [Google Scholar]
  136. Ahmad Z. Pandey R. Sharma S. Khuller G. Pharmacokinetic and pharmacodynamic behaviour of antitubercular drugs encapsulated in alginate nanoparticles at two doses. Int. J. Antimicrob. Agents 2006 27 5 409 416 10.1016/j.ijantimicag.2005.12.009 16624533
    [Google Scholar]
  137. Coester C. Nayyar P. Samuel J. In vitro uptake of gelatin nanoparticles by murine dendritic cells and their intracellular localisation. Eur. J. Pharm. Biopharm. 2006 62 3 306 314 10.1016/j.ejpb.2005.09.009 16316749
    [Google Scholar]
  138. Elzoghby A.O. Samy W.M. Elgindy N.A. Albumin-based nanoparticles as potential controlled release drug delivery systems. J. Control. Release 2012 157 2 168 182 10.1016/j.jconrel.2011.07.031 21839127
    [Google Scholar]
  139. Markovsky E. Koroukhov N. Golomb G. Additive-free albumin nanoparticles of alendronate for attenuating inflammation through monocyte inhibition. Nanomedicine 2007 2 4 545 553 10.2217/17435889.2.4.545
    [Google Scholar]
  140. Bourges J.L. Gautier S.E. Delie F. Bejjani R.A. Jeanny J.C. Gurny R. BenEzra D. Behar-Cohen F.F. Ocular drug delivery targeting the retina and retinal pigment epithelium using polylactide nanoparticles. Invest. Ophthalmol. Vis. Sci. 2003 44 8 3562 3569 10.1167/iovs.02‑1068 12882808
    [Google Scholar]
  141. Xu Z.P. Zeng Q.H. Lu G.Q. Yu A.B. Inorganic nanoparticles as carriers for efficient cellular delivery. Chem. Eng. Sci. 2006 61 3 1027 1040 10.1016/j.ces.2005.06.019
    [Google Scholar]
  142. Pandey P. Dahiya M. A brief review on inorganic nanoparticles. J Crit Rev 2016 3 3 18 26
    [Google Scholar]
  143. Vauthier C. Bouchemal K. Methods for the preparation and manufacture of polymeric nanoparticles. Pharm. Res. 2009 26 5 1025 1058 10.1007/s11095‑008‑9800‑3 19107579
    [Google Scholar]
  144. Nagavarma B.V.N. Yadav H. Ayaz A. Vasudha L. Shivakumar H. Different techniques for preparation of polymeric nanoparticles- A review. Asian J Pharm Clin Res 2012 5 16 23
    [Google Scholar]
  145. Koo Y. Reddy G. Bhojani M. Schneider R. Philbert M. Rehemtulla A. Ross B. Kopelman R. Brain cancer diagnosis and therapy with nanoplatforms. Adv. Drug Deliv. Rev. 2006 58 14 1556 1577 10.1016/j.addr.2006.09.012 17107738
    [Google Scholar]
  146. Jain K.K. Nanobiotechnology-based drug delivery to the central nervous system. Neurodegener. Dis. 2007 4 4 287 291 10.1159/000101884 17627131
    [Google Scholar]
  147. Singh H. Tarannum S. Sahoo R.K. Kumar V. Gupta U. Dendritic polymer macromolecular carriers for drug delivery. Smart Polymeric Nano-Constructs in Drug Delivery. Elsevier 2023 289 328 10.1016/B978‑0‑323‑91248‑8.00006‑4
    [Google Scholar]
  148. Medina S.H. El-Sayed M.E.H. Dendrimers as carriers for delivery of chemotherapeutic agents. Chem. Rev. 2009 109 7 3141 3157 10.1021/cr900174j 19534493
    [Google Scholar]
  149. Klajnert B. Bryszewska M. Dendrimers: Properties and applications. Acta Biochim. Pol. 2001 48 1 199 208 10.18388/abp.2001_5127 11440170
    [Google Scholar]
  150. Tomalia D.A. Birth of a new macromolecular architecture: Dendrimers as quantized building blocks for nanoscale synthetic polymer chemistry. Prog. Polym. Sci. 2005 30 3-4 294 324 10.1016/j.progpolymsci.2005.01.007
    [Google Scholar]
  151. Gupta U. Perumal O. Dendrimers and its biomedical applications. Natural and synthetic biomedical polymers. Elsevier 2014 243 257 10.1016/B978‑0‑12‑396983‑5.00016‑8
    [Google Scholar]
  152. Priya L.B. Baskaran R. Padma V.V. Phytonanoconjugates in oral medicine. Nanostructures for Oral Medicine. Elsevier 2017 639 668 10.1016/B978‑0‑323‑47720‑8.00022‑5
    [Google Scholar]
  153. Abasian P. Ghanavati S. Rahebi S. Nouri Khorasani S. Khalili S. Polymeric nanocarriers in targeted drug delivery systems: A review. Polym. Adv. Technol. 2020 31 12 2939 2954 10.1002/pat.5031
    [Google Scholar]
  154. Abbasi E. Aval S.F. Akbarzadeh A. Milani M. Nasrabadi H.T. Joo S.W. Hanifehpour Y. Nejati-Koshki K. Pashaei-Asl R. Dendrimers: Synthesis, applications, and properties. Nanoscale Res. Lett. 2014 9 1 247 10.1186/1556‑276X‑9‑247 24994950
    [Google Scholar]
  155. Jain K. Kesharwani P. Gupta U. Jain N.K. Dendrimer toxicity: Let’s meet the challenge. Int. J. Pharm. 2010 394 1-2 122 142 10.1016/j.ijpharm.2010.04.027 20433913
    [Google Scholar]
  156. Kataoka K. Harada A. Nagasaki Y. Block copolymer micelles for drug delivery: Design, characterization and biological significance. Adv. Drug Deliv. Rev. 2012 64 37 48 10.1016/j.addr.2012.09.013 11251249
    [Google Scholar]
  157. Kwon G.S. Polymeric micelles for delivery of poorly water-soluble compounds. Crit Rev Ther Drug Carrier Syst. 2003 20 5
    [Google Scholar]
  158. Le Garrec D. Gori S. Luo L. Lessard D. Smith D.C. Yessine M.A. Ranger M. Leroux J.C. Poly(N-vinylpyrrolidone)-block-poly(d,l-lactide) as a new polymeric solubilizer for hydrophobic anticancer drugs: In vitro and in vivo evaluation. J. Control. Release 2004 99 1 83 101 10.1016/j.jconrel.2004.06.018 15342183
    [Google Scholar]
  159. Strickley R.G. Solubilizing excipients in oral and injectable formulations. Pharm. Res. 2004 21 2 201 230 10.1023/B:PHAM.0000016235.32639.23 15032302
    [Google Scholar]
  160. Lavasanifar A. Samuel J. Kwon G.S. Poly(ethylene oxide)-block-poly(l-amino acid) micelles for drug delivery. Adv. Drug Deliv. Rev. 2002 54 2 169 190 10.1016/S0169‑409X(02)00015‑7 11897144
    [Google Scholar]
  161. Li T. Lin J. Chen T. Zhang S. Polymeric micelles formed by polypeptide graft copolymer and its mixtures with polypeptide block copolymer. Polymer (Guildf.) 2006 47 13 4485 4489 10.1016/j.polymer.2006.04.011
    [Google Scholar]
  162. Dirisala A. Uchida S. Li J. Van Guyse J.F.R. Hayashi K. Vummaleti S.V.C. Kaur S. Mochida Y. Fukushima S. Kataoka K. Effective mRNA Protection by Poly( l ‐ornithine) Synergizes with Endosomal Escape Functionality of a Charge‐Conversion Polymer toward Maximizing mRNA Introduction Efficiency. Macromol. Rapid Commun. 2022 43 12 2100754 10.1002/marc.202100754 35286740
    [Google Scholar]
  163. Dirisala A. Osada K. Chen Q. Tockary T.A. Machitani K. Osawa S. Liu X. Ishii T. Miyata K. Oba M. Uchida S. Itaka K. Kataoka K. Optimized rod length of polyplex micelles for maximizing transfection efficiency and their performance in systemic gene therapy against stroma-rich pancreatic tumors. Biomaterials 2014 35 20 5359 5368 10.1016/j.biomaterials.2014.03.037 24720877
    [Google Scholar]
  164. Shen X. Dirisala A. Toyoda M. Xiao Y. Guo H. Honda Y. Nomoto T. Takemoto H. Miura Y. Nishiyama N. pH-responsive polyzwitterion covered nanocarriers for DNA delivery. J. Control. Release 2023 360 928 939 10.1016/j.jconrel.2023.07.038 37495117
    [Google Scholar]
  165. De Matteis V. Exposure to inorganic nanoparticles: Routes of entry, immune response, biodistribution and in vitro/in vivo toxicity evaluation. Toxics 2017 5 4 29 10.3390/toxics5040029 29051461
    [Google Scholar]
  166. Rosi N.L. Mirkin C.A. Nanostructures in Biodiagnostics. Chem. Rev. 2005 105 4 1547 1562 10.1021/cr030067f 15826019
    [Google Scholar]
  167. Wang Y.X.J. Hussain S.M. Krestin G.P. Superparamagnetic iron oxide contrast agents: Physicochemical characteristics and applications in MR imaging. Eur. Radiol. 2001 11 11 2319 2331 10.1007/s003300100908 11702180
    [Google Scholar]
  168. Rousserie G. Sukhanova A. Even-Desrumeaux K. Fleury F. Chames P. Baty D. Oleinikov V. Pluot M. Cohen J.H.M. Nabiev I. Semiconductor quantum dots for multiplexed bio-detection on solid-state microarrays. Crit. Rev. Oncol. Hematol. 2010 74 1 1 15 10.1016/j.critrevonc.2009.04.006 19467882
    [Google Scholar]
  169. Jain P.K. El-Sayed I.H. El-Sayed M.A. Au nanoparticles target cancer. Nano Today 2007 2 1 18 29 10.1016/S1748‑0132(07)70016‑6
    [Google Scholar]
  170. Brongersma M.L. Nanoshells: Gifts in a gold wrapper. Nat. Mater. 2003 2 5 296 297 10.1038/nmat891 12728232
    [Google Scholar]
  171. Elsayed I. Huang X. Elsayed M. Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett. 2006 239 1 129 135 10.1016/j.canlet.2005.07.035 16198049
    [Google Scholar]
  172. Jadzinsky P.D. Calero G. Ackerson C.J. Bushnell D.A. Kornberg R.D. Structure of a thiol monolayer-protected gold nanoparticle at 1.1 A resolution. Science 2007 318 5849 430 433 10.1126/science.1148624 17947577
    [Google Scholar]
  173. Bhattacharya S. Srivastava A. Synthesis of gold nanoparticles stabilised by metal-chelator and the controlled formation of close- packed aggregates by them. J. Chem. Sci. 2003 115 5-6 613 619 10.1007/BF02708252
    [Google Scholar]
  174. Malik M.A. O’Brien P. Revaprasadu N. A simple route to the synthesis of core/shell nanoparticles of chalcogenides. Chem. Mater. 2002 14 5 2004 2010 10.1021/cm011154w
    [Google Scholar]
  175. Sriram M.I. Kanth S.B. Kalishwaralal K. Gurunathan S. Antitumor activity of silver nanoparticles in Dalton’s lymphoma ascites tumor model. Int. J. Nanomedicine 2010 5 753 762 21042421
    [Google Scholar]
  176. Kumar A. Zhang X. Liang X.J. Gold nanoparticles: Emerging paradigm for targeted drug delivery system. Biotechnol. Adv. 2013 31 5 593 606 10.1016/j.biotechadv.2012.10.002 23111203
    [Google Scholar]
  177. Srivatsan A. Jenkins S.V. Jeon M. Wu Z. Kim C. Chen J. Pandey R. Gold nanocage-photosensitizer conjugates for dual-modal image-guided enhanced photodynamic therapy. Theranostics 2014 4 2 163 174 10.7150/thno.7064 24465274
    [Google Scholar]
  178. Zhou Z. Kong B. Yu C. Shi X. Wang M. Liu W. Sun Y. Zhang Y. Yang H. Yang S. Tungsten oxide nanorods: An efficient nanoplatform for tumor CT imaging and photothermal therapy. Sci. Rep. 2014 4 1 3653 10.1038/srep03653 24413483
    [Google Scholar]
  179. Teja A.S. Koh P.Y. Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Prog. Cryst. Growth Charact. Mater. 2009 55 1-2 22 45 10.1016/j.pcrysgrow.2008.08.003
    [Google Scholar]
  180. Couto D. Freitas M. Carvalho F. Fernandes E. Iron oxide nanoparticles: An insight into their biomedical applications. Curr. Med. Chem. 2015 22 15 1808 1828 10.2174/0929867322666150311151403 25760089
    [Google Scholar]
  181. Peng X-H. Qian X. Mao H. Wang A.Y. Chen Z.G. Nie S. Shin D.M. Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy. Int. J. Nanomedicine 2008 3 3 311 321 18990940
    [Google Scholar]
  182. Elias A. Tsourkas A. Imaging circulating cells and lymphoid tissues with iron oxide nanoparticles. Hematology (Am. Soc. Hematol. Educ. Program) 2009 2009 1 720 726 10.1182/asheducation‑2009.1.720 20008258
    [Google Scholar]
  183. Basak S. Chen D.R. Biswas P. Electrospray of ionic precursor solutions to synthesize iron oxide nanoparticles: Modified scaling law. Chem. Eng. Sci. 2007 62 4 1263 1268 10.1016/j.ces.2006.11.029
    [Google Scholar]
  184. Hasany S.F. Ahmad I. Ranjan J. Rehman A. Systematic review of the preparation techniques of iron oxide magnetic nanoparticles. Nanosci. Nanotechnol 2012 2 6 148 158 10.5923/j.nn.20120206.01
    [Google Scholar]
  185. Hildebrandt N. Hermsdorf D. Signorell R. Schmitz S.A. Diederichsen U. Superparamagnetic iron oxide nanoparticles functionalized with peptides by electrostatic interactions. ARKIVOC 2006 2007 5 79 90 10.3998/ark.5550190.0008.508
    [Google Scholar]
  186. Khalil M.I. Co-precipitation in aqueous solution synthesis of magnetite nanoparticles using iron(III) salts as precursors. Arab. J. Chem. 2015 8 2 279 284 10.1016/j.arabjc.2015.02.008
    [Google Scholar]
  187. Qiu J. Yang R. Li M. Jiang N. Preparation and characterization of porous ultrafine Fe2O3 particles. Mater. Res. Bull. 2005 40 11 1968 1975 10.1016/j.materresbull.2005.05.025
    [Google Scholar]
  188. Lu A.H. Salabas E.L. Schüth F. Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. 2007 46 8 1222 1244 10.1002/anie.200602866 17278160
    [Google Scholar]
  189. Si S. Kotal A. Mandal T.K. Giri S. Nakamura H. Kohara T. Size- controlled synthesis of magnetite nanoparticles in the presence of polyelectrolytes. Chem. Mater. 2004 16 18 3489 3496 10.1021/cm049205n
    [Google Scholar]
  190. Qi L. Gao X. Emerging application of quantum dots for drug delivery and therapy. Expert Opin. Drug Deliv. 2008 5 3 263 267 10.1517/17425247.5.3.263 18318649
    [Google Scholar]
  191. Gao X. Cui Y. Levenson R.M. Chung L.W.K. Nie S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 2004 22 8 969 976 10.1038/nbt994 15258594
    [Google Scholar]
  192. Wu X. Liu H. Liu J. Haley K.N. Treadway J.A. Larson J.P. Ge N. Peale F. Bruchez M.P. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat. Biotechnol. 2003 21 1 41 46 10.1038/nbt764 12459735
    [Google Scholar]
  193. Chang Y.P. Pinaud F. Antelman J. Weiss S. Tracking bio‐molecules in live cells using quantum dots. J. Biophotonics 2008 1 4 287 298 10.1002/jbio.200810029 19343652
    [Google Scholar]
  194. Tsutsui K. Hu E.L. Wilkinson C.D.W. Reactive ion etched II-VI quantum dots: Dependence of etched profile on pattern geometry. Jpn. J. Appl. Phys. 1993 32 12S 6233 10.1143/JJAP.32.6233
    [Google Scholar]
  195. Bera D. Qian L. Tseng T-K. Holloway P.H. Quantum dots and their multimodal applications: A review. Materials 2010 3 4 2260 2345 10.3390/ma3042260
    [Google Scholar]
  196. Drbohlavova J. Adam V. Kizek R. Hubalek J. Quantum dots - Characterization, preparation and usage in biological systems. Int. J. Mol. Sci. 2009 10 2 656 673 10.3390/ijms10020656 19333427
    [Google Scholar]
  197. Smith A.T. LaChance A.M. Zeng S. Liu B. Sun L. Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Materials Science 2019 1 1 31 47 10.1016/j.nanoms.2019.02.004
    [Google Scholar]
  198. Li Y. Wu J. Chopra N. Nano-carbon-based hybrids and heterostructures: Progress in growth and application for lithium-ion batteries. J. Mater. Sci. 2015 50 24 7843 7865 10.1007/s10853‑015‑9429‑7
    [Google Scholar]
  199. Willner I. Willner B. Biomolecule-based nanomaterials and nanostructures. Nano Lett. 2010 10 10 3805 3815 10.1021/nl102083j 20843088
    [Google Scholar]
  200. Kaur R. Vatta P. Kaur M. Carbon nanotubes: A review article. Int. J. Res. Appl. Sci. Eng. Technol. 2018 6 4 5075 5079 10.22214/ijraset.2018.4827
    [Google Scholar]
  201. Dolatabadi J.E.N. Jamali A.A. Hasanzadeh M. Omidi Y. Quercetin delivery into cancer cells with single walled carbon nanotubes. Int. J. Biosci. Biochem. Bioinform. 2011 1 1 21 25 10.7763/IJBBB.2011.V1.4
    [Google Scholar]
  202. Jin H. Heller D.A. Strano M.S. Single-particle tracking of endocytosis and exocytosis of single-walled carbon nanotubes in NIH-3T3 cells. Nano Lett. 2008 8 6 1577 1585 10.1021/nl072969s 18491944
    [Google Scholar]
  203. Feazell R.P. Nakayama-Ratchford N. Dai H. Lippard S.J. Soluble single-walled carbon nanotubes as longboat delivery systems for platinum(IV) anticancer drug design. J. Am. Chem. Soc. 2007 129 27 8438 8439 10.1021/ja073231f 17569542
    [Google Scholar]
  204. Rasmussen A.J. Ebbesen M. Characteristics, properties and ethical issues of carbon nanotubes in biomedical applications. NanoEthics 2014 8 1 29 48 10.1007/s11569‑014‑0187‑9
    [Google Scholar]
  205. Prasek J. Drbohlavova J. Chomoucka J. Hubalek J. Jasek O. Adam V. Kizek R. Methods for carbon nanotubes synthesis—review. J. Mater. Chem. 2011 21 40 15872 15884 10.1039/c1jm12254a
    [Google Scholar]
  206. Varshney K. Carbon nanotubes: A review on synthesis, properties and applications. International Journal of Engineering Research and General Science 2014 2 4 660 677
    [Google Scholar]
  207. Shin U.S. Yoon I.K. Lee G.S. Jang W.C. Knowles J.C. Kim H.W. Carbon nanotubes in nanocomposites and hybrids with hydroxyapatite for bone replacements. J. Tissue Eng. 2011 2011 674287 10.4061/2011/674287 21776341
    [Google Scholar]
  208. Mignani S. El Kazzouli S. Bousmina M. Majoral J.P. Expand classical drug administration ways by emerging routes using dendrimer drug delivery systems: A concise overview. Adv Drug Deliv Rev. 2013 65 10 1316 1330 23415951
    [Google Scholar]
  209. He X. Deng H. Hwang H.M. The current application of nanotechnology in food and agriculture. Yao Wu Shi Pin Fen Xi 2019 27 1 1 21 30648562
    [Google Scholar]
  210. Gupta A. Eral H.B. Hatton T.A. Doyle P.S. Nanoemulsions: Formation, properties and applications. Soft Matter 2016 12 11 2826 2841 10.1039/C5SM02958A 26924445
    [Google Scholar]
  211. Misra R. Acharya S. Sahoo S.K. Cancer nanotechnology: Application of nanotechnology in cancer therapy. Drug Discov Today. 2010 15 19-20 842 850 20727417
    [Google Scholar]
  212. Santos A.C. Morais F. Simões A. Pereira I. Sequeira J.A.D. Pereira-Silva M. Veiga F. Ribeiro A. Nanotechnology for the development of new cosmetic formulations. Expert Opin. Drug Deliv. 2019 16 4 313 330 10.1080/17425247.2019.1585426 30793641
    [Google Scholar]
  213. Morganti P. Use and potential of nanotechnology in cosmetic dermatology. Clin. Cosmet. Investig. Dermatol. 2010 3 5 13 10.2147/CCID.S4506 21437055
    [Google Scholar]
  214. Parashar T. Soniya Sachan R. Singh V. Singh G. Tyagi S. Patel C. Gupta A. Ethosomes: A recent vesicle of transdermal drug delivery system. Int J Res Dev Pharm Life Sci. 2013 2 2 285 292
    [Google Scholar]
  215. Lacatusu I. Niculae G. Badea N. Stan R. Popa O. Oprea O. Meghea A. Design of soft lipid nanocarriers based on bioactive vegetable oils with multiple health benefits. Chem Eng J 2014 246 311 321 10.1016/j.cej.2014.02.041
    [Google Scholar]
  216. Li G. Jin R.J.N.R. Catalysis by gold nanoparticles: Carbon-carbon coupling reactions. Nanotechnol Rev. 2013 2 5 529 545
    [Google Scholar]
  217. Guerra F.D. Attia M.F. Whitehead D.C. Alexis F. Nanotechnology for environmental remediation: Materials and applications. Molecules 2018 23 7 1760 10.3390/molecules23071760 30021974
    [Google Scholar]
/content/journals/cnanom/10.2174/0124681873353824250603105136
Loading
/content/journals/cnanom/10.2174/0124681873353824250603105136
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test