Skip to content
2000
Volume 15, Issue 4
  • ISSN: 2468-1873
  • E-ISSN: 2468-1881

Abstract

Hydrophilic drugs are proficient therapeutic drug candidates; however, their effective delivery poses a formidable challenge. Therefore, the development of an efficient drug delivery system demands a multifaceted approach. In recent decades, nanolipid carriers have emerged as promising drug delivery systems, offering enhanced stability, improved bioavailability, and controlled release profiles. Although nanolipid carriers have been widely investigated as carriers for hydrophobic drugs and have demonstrated remarkable success in encapsulating hydrophobic drugs, encapsulating a hydrophilic drug moiety still remains a challenge.

The current study provides a comprehensive review of innovative methods developed for the successful encapsulation of hydrophilic drugs into nanolipid carriers. The first section of the study explores the physicochemical properties of hydrophilic drugs and the inherent challenges associated with their encapsulation in lipid-based carriers. The subsequent sections delve into the various strategies employed to overcome these challenges. Emphasis is placed on novel formulation techniques investigated for the encapsulation of hydrophilic drugs into nano lipid carriers. The present review not only delineates the various traditional methods for high entrapment of hydrophilic drugs but also underscores modifications to the hydrophilic drug candidates, facilitating their efficient encapsulation into nanolipid carrier drug carriers.

This study explores the current state of knowledge regarding methods for encapsulating hydrophilic drugs into nanolipid carriers. By addressing the challenges associated with hydrophilic drug encapsulation and presenting innovative strategies, this review aims to provide valuable insights to researchers and pharmaceutical scientists working in the field of nanomedicine and drug delivery.

Loading

Article metrics loading...

/content/journals/cnanom/10.2174/0124681873316337240515080103
2024-05-23
2025-10-11
Loading full text...

Full text loading...

References

  1. BuseJ. El-AneedA. Properties, engineering and applications of lipid-based nanoparticle drug-delivery systems: Current research and advances.Nanomedicine2010581237126010.2217/nnm.10.10721039200
    [Google Scholar]
  2. PathakK. ShankarR. JoshiM. An update of patents, preclinical and clinical outcomes of lipid nanoparticulate systems.Curr. Pharm. Des.201823436602661210.2174/138161282366617112210421629173150
    [Google Scholar]
  3. AttamaAA MomohMA BuildersPF Lipid nanoparticulate drug delivery systems: A revolution in dosage form design and development.Curr Pharm Des2012234366026612
    [Google Scholar]
  4. EbrahimiS. FarhadianN. KarimiM. EbrahimiM. Enhanced bactericidal effect of ceftriaxone drug encapsulated in nanostructured lipid carrier against gram-negative Escherichia coli bacteria: drug formulation, optimization, and cell culture study.Antimicrob. Resist. Infect. Control2020912810.1186/s13756‑020‑0690‑432041660
    [Google Scholar]
  5. Varela-FernándezR. García-OteroX. Díaz-ToméV. RegueiroU. López-LópezM. González-BarciaM. Isabel LemaM. Javier Otero-EspinarF. Lactoferrin-loaded nanostructured lipid carriers (NLCs) as a new formulation for optimized ocular drug delivery.Eur. J. Pharm. Biopharm.202217214415610.1016/j.ejpb.2022.02.01035183717
    [Google Scholar]
  6. Becker PeresL. Becker PeresL. de AraújoP.H.H. SayerC. Solid lipid nanoparticles for encapsulation of hydrophilic drugs by an organic solvent free double emulsion technique.Colloids Surf. B Biointerfaces201614014031732310.1016/j.colsurfb.2015.12.03326764112
    [Google Scholar]
  7. SilvaA.C. González-MiraE. GarcíaM.L. EgeaM.A. FonsecaJ. SilvaR. SantosD. SoutoE.B. FerreiraD. Preparation, characterization and biocompatibility studies on risperidone-loaded solid lipid nanoparticles (SLN): High pressure homogenization versus ultrasound.Colloids Surf. B Biointerfaces201186115816510.1016/j.colsurfb.2011.03.03521530187
    [Google Scholar]
  8. YadavN. KhatakS. SaraU.V.S. Solid lipid nanoparticles: A review.Int J Appl Pharm201352818
    [Google Scholar]
  9. MirchandaniY. PatravaleV.B. SB. Solid lipid nanoparticles for hydrophilic drugs.J. Control. Release202133545746410.1016/j.jconrel.2021.05.03234048841
    [Google Scholar]
  10. LucksS. MullerR. Medication vehicles made of solid lipid particles (solid lipid nanospheres-SLN).EP0605497A11996
  11. OnugwuA.L. AttamaA.A. NnamaniP.O. OnugwuS.O. OnuigboE.B. KhutoryanskiyV.V. Development and optimization of solid lipid nanoparticles coated with chitosan and poly(2-ethyl-2-oxazoline) for ocular drug delivery of ciprofloxacin.J. Drug Deliv. Sci. Technol.20227410352710.1016/j.jddst.2022.103527
    [Google Scholar]
  12. El-TelbanyD.F.A. El-TelbanyR.F.A. ZakariaS. AhmedK.A. El-FekyY.A. Formulation and assessment of hydroxyzine HCL solid lipid nanoparticles by dual emulsification technique for transdermal delivery.Biomed. Pharmacother.202114311213010.1016/j.biopha.2021.11213034560549
    [Google Scholar]
  13. RyanA. PatelP. O’ConnorP.M. CookmanJ. RossR.P. HillC. HudsonS.P. Single versus double occupancy solid lipid nanoparticles for delivery of the dual-acting bacteriocin, lacticin 3147.Eur. J. Pharm. Biopharm.202217617619921010.1016/j.ejpb.2022.05.01635640784
    [Google Scholar]
  14. DuanY. DharA. PatelC. KhimaniM. NeogiS. SharmaP. Siva KumarN. VekariyaR.L. A brief review on solid lipid nanoparticles: Part and parcel of contemporary drug delivery systems.RSC Advances20201045267772679110.1039/D0RA03491F35515778
    [Google Scholar]
  15. Geszke-MoritzM. MoritzM. Solid lipid nanoparticles as attractive drug vehicles: Composition, properties and therapeutic strategies.Mater. Sci. Eng. C20166898299410.1016/j.msec.2016.05.11927524099
    [Google Scholar]
  16. FedererC. SpleisH.V. SummonteS. FriedlJ.D. WibelR. Bernkop-SchnürchA. Preparation and evaluation of charge reversal solid lipid nanoparticles.J. Pharm. Sci.202211182270227910.1016/j.xphs.2022.02.01435235841
    [Google Scholar]
  17. WissingS. MüllerR.H. Cosmetic applications for solid lipid nanoparticles (SLN).Int. J. Pharm.20032541656810.1016/S0378‑5173(02)00684‑112615411
    [Google Scholar]
  18. JenningV. GohlaS.H. Volkhard Jenning, Sven H. Gohla Encapsulation of retinoids in solid lipid nanoparticles (SLN).J. Microencapsul.200118214915810.1080/0265204001000036111253932
    [Google Scholar]
  19. WeissJ. DeckerE.A. McClementsD.J. KristbergssonK. HelgasonT. AwadT. Solid lipid nanoparticles as delivery systems for bioactive food components.Food Biophys.20083214615410.1007/s11483‑008‑9065‑8
    [Google Scholar]
  20. López-GarcíaR. Ganem-RonderoA. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC): occlusive effect and penetration enhancement ability.J. Cosmet. Dermatol. Sci. Appl.201552627210.4236/jcdsa.2015.52008
    [Google Scholar]
  21. NarangJ.K. KhanS. BabootaS. AliJ. KhanS. NarangR. Nanostructured lipid carriers: An emerging platform for improving oral bioavailability of lipophilic drugs.Int. J. Pharm. Investig.20155418219110.4103/2230‑973X.16766126682188
    [Google Scholar]
  22. DuongV.A. NguyenT.T.L. MaengH.J. Preparation of solid lipid nanoparticles and nanostructured lipid carriers for drug delivery and the effects of preparation parameters of solvent injection method.Molecules20202520478110.3390/molecules2520478133081021
    [Google Scholar]
  23. RajinikanthP. ChellianJ. Development and evaluation of nanostructured lipid carrier-based hydrogel for topical delivery of 5-fluorouracil.Int. J. Nanomedicine2016115067507710.2147/IJN.S11751127785014
    [Google Scholar]
  24. JaiswalP. GidwaniB. VyasA. Nanostructured lipid carriers and their current application in targeted drug delivery.Artif. Cells Nanomed. Biotechnol.2016441274010.3109/21691401.2014.90982224813223
    [Google Scholar]
  25. NaseriN. ValizadehH. Zakeri-MilaniP. Solid lipid nanoparticles and nanostructured lipid carriers: Structure, preparation and application.Adv. Pharm. Bull.20155330531310.15171/apb.2015.04326504751
    [Google Scholar]
  26. ChauhanI. YasirM. VermaM. SinghA.P. Nanostructured lipid carriers: A groundbreaking approach for transdermal drug delivery.Adv. Pharm. Bull.202010215016510.34172/apb.2020.02132373485
    [Google Scholar]
  27. TamjidiF. ShahediM. VarshosazJ. NasirpourA. Nanostructured lipid carriers (NLC): A potential delivery system for bioactive food molecules.Innov. Food Sci. Emerg. Technol.201319294310.1016/j.ifset.2013.03.002
    [Google Scholar]
  28. de OliveiraI.F. BarbosaE.J. PetersM.C.C. HenostrozaM.A.B. YukuyamaM.N. dos Santos NetoE. LöbenbergR. Bou-ChacraN. Cutting-edge advances in therapy for the posterior segment of the eye: Solid lipid nanoparticles and nanostructured lipid carriers.Int. J. Pharm.202058911983110.1016/j.ijpharm.2020.11983132877729
    [Google Scholar]
  29. AlskärL.C. PorterC.J.H. BergströmC.A.S. Tools for early prediction of drug loading in lipid-based formulations.Mol. Pharm.201613125126110.1021/acs.molpharmaceut.5b0070426568134
    [Google Scholar]
  30. GökeK. BunjesH. Drug solubility in lipid nanocarriers: Influence of lipid matrix and available interfacial area.Int. J. Pharm.20175291-261762810.1016/j.ijpharm.2017.07.02528705617
    [Google Scholar]
  31. HanschC. HoekmanD. LeoA. ZhangL. LiP. The expanding role of quantitative structure-activity relationships (QSAR) in toxicology.Toxicol. Lett.1995791-3455310.1016/0378‑4274(95)03356‑P7570673
    [Google Scholar]
  32. MuH. HolmR. MüllertzA. Lipid-based formulations for oral administration of poorly water-soluble drugs.Int. J. Pharm.2013453121522410.1016/j.ijpharm.2013.03.05423578826
    [Google Scholar]
  33. VelmuruganR. SelvamuthukumarS. Development and optimization of ifosfamide nanostructured lipid carriers for oral delivery using response surface methodology.Appl. Nanosci.20166215917310.1007/s13204‑015‑0434‑6
    [Google Scholar]
  34. González-ChávezS.A. Arévalo-GallegosS. Rascón-CruzQ. Lactoferrin: Structure, function and applications.Int. J. Antimicrob. Agents2009334301.e1301.e810.1016/j.ijantimicag.2008.07.02018842395
    [Google Scholar]
  35. AppelmelkB.J. AnY.Q. GeertsM. ThijsB.G. de BoerH.A. MacLarenD.M. de GraaffJ. NuijensJ.H. Lactoferrin is a lipid A-binding protein.Infect. Immun.19946262628263210.1128/iai.62.6.2628‑2632.19948188389
    [Google Scholar]
  36. JounakiK. MakhmalzadehB.S. FeghhiM. HeidarianA. Topical ocular delivery of vancomycin loaded cationic lipid nanocarriers as a promising and non-invasive alternative approach to intravitreal injection for enhanced bacterial endophthalmitis management.Eur. J. Pharm. Sci.202116710599110.1016/j.ejps.2021.10599134517103
    [Google Scholar]
  37. Nayeri RadA. ShamsG. SafdarianM. KhorsandiL. GrillariJ. Sharif MakhmalzadehB. Metformin loaded cholesterol-lysine conjugate nanoparticles: A novel approach for protecting HDFs against UVB-induced senescence.Int. J. Pharm.202058611960310.1016/j.ijpharm.2020.11960332629071
    [Google Scholar]
  38. KalamM.A. SultanaY. AliA. AqilM. MishraA.K. ChuttaniK. Preparation, characterization, and evaluation of gatifloxacin loaded solid lipid nanoparticles as colloidal ocular drug delivery system.J. Drug Target.201018319120410.3109/1061186090333846219839712
    [Google Scholar]
  39. DukovskiB.J. BračkoA. ŠareM. PepićI. LovrićJ. in vitro evaluation of stearylamine cationic nanoemulsions for improved ocular drug delivery.Acta Pharm.201969462163410.2478/acph‑2019‑005431639085
    [Google Scholar]
  40. SharifmakhmalzadehB. JavadiM. SalimiA. The depigmentation effect of hydroquinone-loaded nanostructured lipid carriers (NLCs) on the rat skin.J Reports Pharm Sci20221117178
    [Google Scholar]
  41. AbbasniaM. VatanaraA. MahjubR. Preparation, statistical optimization and in vitro characterization of solid lipid nanoparticles as a potential vehicle for transdermal delivery of tramadol hydrochloride as a hydrophilic Compound.Nanomedicine Res J202052120131
    [Google Scholar]
  42. SeverinoP. SilveiraE.F. LoureiroK. ChaudM.V. AntoniniD. LancellottiM. SarmentoV.H. da SilvaC.F. SantanaM.H.A. SoutoE.B. Antimicrobial activity of polymyxin-loaded solid lipid nanoparticles (PLX-SLN): Characterization of physicochemical properties and in vitro efficacy.Eur. J. Pharm. Sci.201710610617718410.1016/j.ejps.2017.05.06328576561
    [Google Scholar]
  43. MugaJ.O. GathirwaJ.W. TukululaM. JuraW.G.Z.O. in vitro evaluation of chloroquine-loaded and heparin surface-functionalized solid lipid nanoparticles.Malar. J.201817113310.1186/s12936‑018‑2302‑929606144
    [Google Scholar]
  44. HosseiniS.M. AbbasalipourkabirR. JalilianF.A. AslS.S. FarmanyA. RoshanaeiG. ArabestaniM.R. Doxycycline-encapsulated solid lipid nanoparticles as promising tool against Brucella melitensis enclosed in macrophage: A pharmacodynamics study on J774A.1 cell line.Antimicrob. Resist. Infect. Control2019816210.1186/s13756‑019‑0504‑830988946
    [Google Scholar]
  45. RassuG. SodduE. PosadinoA.M. PintusG. SarmentoB. GiunchediP. GaviniE. Nose-to-brain delivery of BACE1 siRNA loaded in solid lipid nanoparticles for Alzheimer’s therapy.Colloids Surf. B Biointerfaces201715229630110.1016/j.colsurfb.2017.01.03128126681
    [Google Scholar]
  46. GascoM.R. Method for producing solid lipid microspheres having a narrow size distribution.US Patent 52502361993
  47. DiaconA. MiyaharaS. DawsonR. SunX. HoggE. DonahueK. UrbanowskiM. De JagerV. FletcherC.V. HafnerR. SwindellsS. BishaiW. Assessing whether isoniazid is essential during the first 14 days of tuberculosis therapy: A phase 2a, open-label, randomised controlled trial.Lancet Microbe202012e84e9210.1016/S2666‑5247(20)30011‑233834177
    [Google Scholar]
  48. BhandariR. KaurI.P. Pharmacokinetics, tissue distribution and relative bioavailability of isoniazid-solid lipid nanoparticles.Int. J. Pharm.20134411-220221210.1016/j.ijpharm.2012.11.04223220081
    [Google Scholar]
  49. ChirioD. PeiraE. BattagliaL. FerraraB. BargeA. SapinoS. GiordanoS. DianzaniC. GallarateM. Lipophilic prodrug of floxuridine loaded into solid lipid nanoparticles: in vitro cytotoxicity studies on different human cancer cell lines.J. Nanosci. Nanotechnol.201818155656310.1166/jnn.2018.1396429768881
    [Google Scholar]
  50. StellaB. PeiraE. DianzaniC. GallarateM. BattagliaL. GigliottiC. BoggioE. DianzaniU. DosioF. Development and characterization of solid lipid nanoparticles loaded with a highly active doxorubicin derivative.Nanomaterials (Basel)20188211010.3390/nano802011029462932
    [Google Scholar]
  51. BottiG. DalpiazA. PavanB. Targeting systems to the brain obtained by merging prodrugs, nanoparticles, and nasal administration.Pharmaceutics2021138114410.3390/pharmaceutics1308114434452105
    [Google Scholar]
  52. MaW. ChenX. FuL. ZhuJ. FanM. ChenJ. YangC. YangG. WuL. MaoG. YangX. MouX. GuZ. CaiX. Ultra-efficient antibacterial system based on photodynamic therapy and CO gas therapy for synergistic antibacterial and ablation biofilms.ACS Appl. Mater. Interfaces20201220224792249110.1021/acsami.0c0196732329344
    [Google Scholar]
  53. YueD. CaiX. FanM. ZhuJ. TianJ. WuL. JiangQ. GuZ. An alternating irradiation strategy- driven combination therapy of PDT and RNAi for highly efficient inhibition of tumor growth and metastasis.Adv. Healthc. Mater.2021108200185010.1002/adhm.20200185033314663
    [Google Scholar]
  54. ChenS. GanD. LinS. ZhongY. ChenM. ZouX. ShaoZ. XiaoG. Metformin in aging and aging-related diseases: Clinical applications and relevant mechanisms.Theranostics20221262722274010.7150/thno.7136035401820
    [Google Scholar]
  55. DebP.K. Al-AttraqchiO. JaberA.Y. AmarjiB. TekadeR.K. Physicochemical aspects to be considered in pharmaceutical product development.Dosage Form Design Considerations. TekadeR.K. Academic Press2018578310.1016/B978‑0‑12‑814423‑7.00002‑2
    [Google Scholar]
  56. WongH.L. RauthA.M. BendayanR. ManiasJ.L. RamaswamyM. LiuZ. ErhanS.Z. WuX.Y. A new polymer-lipid hybrid nanoparticle system increases cytotoxicity of doxorubicin against multidrug-resistant human breast cancer cells.Pharm. Res.20062371574158510.1007/s11095‑006‑0282‑x16786442
    [Google Scholar]
  57. DimiouS. McCabeJ. BoothR. BoothJ. NidadavoleK. SvenssonO. SparénA. LindforsL. ParaskevopoulouV. MeadH. CoatesL. WorkmanD. MartinD. TreacherK. PuriS. TaylorL.S. YangB. Selecting counterions to improve ionized hydrophilic drug encapsulation in polymeric nanoparticles.Mol. Pharm.20232021138115510.1021/acs.molpharmaceut.2c0085536653946
    [Google Scholar]
  58. ZhuJ TianJ YangC Amphiphilic dendritic peptide as a versatile NO donor for NO/photodynamic synergistic treatment of bacterial infections and promoting wound healing.Small17322101495
    [Google Scholar]
  59. RistrophK.D. Prud’hommeR.K. Hydrophobic ion pairing: Encapsulating small molecules, peptides, and proteins into nanocarriers.Nanoscale Adv.20191114207423710.1039/C9NA00308H33442667
    [Google Scholar]
  60. GallarateM. BattagliaL. PeiraE. TrottaM. Peptide-loaded solid lipid nanoparticles prepared through coacervation technique.Int. J. Chem. Eng.201120111610.1155/2011/132435
    [Google Scholar]
  61. AwadeenR.H. BoughdadyM.F. MeshaliM.M. Quality by design approach for preparation of zolmitriptan/chitosan nanostructured lipid carrier particles – Formulation and pharmacodynamic assessment.Int. J. Nanomedicine2020158553856810.2147/IJN.S27435233173292
    [Google Scholar]
  62. SinghS. DobhalA.K. JainA. PanditJ.K. ChakrabortyS. Formulation and evaluation of solid lipid nanoparticles of a water soluble drug: Zidovudine.Chem. Pharm. Bull.201058565065510.1248/cpb.58.65020460791
    [Google Scholar]
  63. WanF. YouJ. SunY. ZhangX.G. CuiF.D. DuY.Z. YuanH. HuF.Q. Studies on PEG-modified SLNs loading vinorelbine bitartrate (I): Preparation and evaluation in vitro .Int. J. Pharm.20083591-210411010.1016/j.ijpharm.2008.03.03018450394
    [Google Scholar]
  64. ShahR.M. MalherbeF. EldridgeD. PalomboE.A. HardingI.H. Physicochemical characterization of solid lipid nanoparticles (SLNs) prepared by a novel microemulsion technique.J. Colloid Interface Sci.201442842828629410.1016/j.jcis.2014.04.05724910064
    [Google Scholar]
  65. LiuD. GeY. TangY. YuanY. ZhangQ. LiR. XuQ. Solid lipid nanoparticles for transdermal delivery of diclofenac sodium: Preparation, characterization and in vitro studies.J. Microencapsul.201027872673410.3109/02652048.2010.51345621034365
    [Google Scholar]
  66. VakilinezhadM.A. AminiA. Akbari JavarH. Baha’addini Beigi ZarandiB.F. MontaseriH. DinarvandR. Nicotinamide loaded functionalized solid lipid nanoparticles improves cognition in Alzheimer’s disease animal model by reducing Tau hyperphosphorylation.Daru201826216517710.1007/s40199‑018‑0221‑530386982
    [Google Scholar]
  67. GhadiriM. FatemiS. VatanaraA. DoroudD. NajafabadiA.R. DarabiM. RahimiA.A. Loading hydrophilic drug in solid lipid media as nanoparticles: Statistical modeling of entrapment efficiency and particle size.Int. J. Pharm.20124241-212813710.1016/j.ijpharm.2011.12.03722227603
    [Google Scholar]
  68. BattagliaL. SerpeL. MuntoniE. ZaraG. TrottaM. GallarateM. Methotrexate-loaded SLNs prepared by coacervation technique: in vitro cytotoxicity and in vivo pharmacokinetics and biodistribution.Nanomedicine2011691561157310.2217/nnm.11.5222011315
    [Google Scholar]
/content/journals/cnanom/10.2174/0124681873316337240515080103
Loading
/content/journals/cnanom/10.2174/0124681873316337240515080103
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test