Skip to content
2000
Volume 15, Issue 4
  • ISSN: 2468-1873
  • E-ISSN: 2468-1881

Abstract

Diabetic wounds represent a significant clinical challenge due to their chronic nature, slow healing rates, and susceptibility to infections, often leading to severe complications. Nanotechnology plays a transforming role in advancing diabetic wound repair therapies. The field of nanotechnology has shown great promise in the medical field in recent years, offering precise tools and materials at the nanoscale to address the complexities of diabetic wound management. The latest breakthroughs in nanomaterial design and fabrication showcase nanoparticles, nanofibers, and hydrogels tailored to enhance tissue regeneration, promote angiogenesis, and modulate the wound microenvironment. These engineered materials serve as versatile systems for the regulated release of cytokines and antimicrobial agents, offering a multifaceted approach to diabetic wound healing. Nanotechnology enables the growth of smart medication delivery technologies with accurate targeting and sustained delivery of medicinal substances right to the location of the wound. Prolonged injuries in hyperglycemic patients are particularly prone to infections, leading to prolonged healing times and increased morbidity. Some of the nanoscale antimicrobial agents, such as nanozyme-chitosan-derived hydrogel, silver nanoparticles, and antimicrobial peptides that exhibit potent bactericidal properties, reduce the risk of infections and associated complications. Nanosensors and advanced imaging techniques enable real-time monitoring of wound healing progress. These tools provide clinicians with valuable insights into tissue viability, inflammation levels, and treatment efficacy, facilitating timely adjustments to therapeutic regimens. This is an inclusive overview of the current state of nanotechnology for the treatment of diabetic wounds, offering insights into the promise and challenges of this innovative approach, by harnessing the unique properties of nanoscale materials and technologies.

Loading

Article metrics loading...

/content/journals/cnanom/10.2174/0124681873312611240520091435
2024-06-05
2025-10-11
Loading full text...

Full text loading...

References

  1. LovicD. PiperidouA. ZografouI. GrassosH. PittarasA. ManolisA. The growing epidemic of diabetes mellitus.Curr. Vasc. Pharmacol.202018210410910.2174/157016111766619040516591130961501
    [Google Scholar]
  2. BaltzisD. EleftheriadouI. VevesA. Pathogenesis and treatment of impaired wound healing in diabetes mellitus: New insights.Adv. Ther.201431881783610.1007/s12325‑014‑0140‑x25069580
    [Google Scholar]
  3. BurgessJ.L. WyantW.A. AbujamraA.B. KirsnerR.S. JozicI. Diabetic wound-healing science.Medicina20215710107210.3390/medicina5710107234684109
    [Google Scholar]
  4. KaderS.A. HoureldN.N. RajendranN.K. AbrahamseH. The link between advanced glycation end products and apoptosis in delayed wound healing.Cell Biochem. Funct.201937643244210.1002/cbf.342431318458
    [Google Scholar]
  5. Twarda-ClapaA. OlczakA. BiałkowskaA.M. KoziołkiewiczM. Advanced glycation end-products (AGEs): Formation, chemistry, classification, receptors, and diseases related to AGEs.Cells2022118131210.3390/cells1108131235455991
    [Google Scholar]
  6. GillV. KumarV. SinghK. KumarA. KimJ.J. Advanced glycation end products (AGEs) may be a striking link between modern diet and health.Biomolecules201991288810.3390/biom912088831861217
    [Google Scholar]
  7. LinJ.A. WuC.H. YenG.C. Perspective of advanced glycation end products on human health.J. Agric. Food Chem.20186692065207010.1021/acs.jafc.7b0594329421872
    [Google Scholar]
  8. MegallaaM.H. IsmailA.A. ZeitounM.H. KhalifaM.S. Association of diabetic foot ulcers with chronic vascular diabetic complications in patients with type 2 diabetes.Diabetes Metab. Syndr.20191321287129210.1016/j.dsx.2019.01.04831336479
    [Google Scholar]
  9. BlakytnyR. JudeE. The molecular biology of chronic wounds and delayed healing in diabetes.Diabet. Med.200623659460810.1111/j.1464‑5491.2006.01773.x16759300
    [Google Scholar]
  10. KolluruG.K. BirS.C. KevilC.G. Endothelial dysfunction and diabetes: Effects on angiogenesis, vascular remodeling, and wound healing.Int. J. Vasc. Med.2012201213010.1155/2012/91826722611498
    [Google Scholar]
  11. BoatengJ. CatanzanoO. Advanced therapeutic dressings for effective wound healing—a review.J. Pharm. Sci.2015104113653368010.1002/jps.2461026308473
    [Google Scholar]
  12. EverettE. MathioudakisN. Update on management of diabetic foot ulcers.Ann. N. Y. Acad. Sci.20181411115316510.1111/nyas.1356929377202
    [Google Scholar]
  13. FernandezB.B. CastañoO. TimonedaM.M.Á. EngelE. AmodioP.S. Nanotechnology approaches in chronic wound healing.Adv. Wound Care202110523425610.1089/wound.2019.109432320364
    [Google Scholar]
  14. RajendranN.K. KumarS.S.D. HoureldN.N. AbrahamseH. A review on nanoparticle based treatment for wound healing.J. Drug Deliv. Sci. Technol.20184442143010.1016/j.jddst.2018.01.009
    [Google Scholar]
  15. ChellappanK.D YeneseY WeiC.C GuptaG. Nanotechnology and diabetic wound healing: A review.Endocr Metab Immune Disord Drug Targets20171728795. 10.2174/1871530317666170421121202
    [Google Scholar]
  16. SchrandA.M. RahmanM.F. HussainS.M. SchlagerJ.J. SmithD.A. SyedA.F. Metal-based nanoparticles and their toxicity assessment.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.20102554456810.1002/wnan.10320681021
    [Google Scholar]
  17. WangW. LuK. YuC. HuangQ. DuY.Z. Nano-drug delivery systems in wound treatment and skin regeneration.J. Nanobiotechnology20191718210.1186/s12951‑019‑0514‑y31291960
    [Google Scholar]
  18. HebeishA. El-RafieM.H. EL-SheikhM.A. SeleemA.A. El-NaggarM.E. Antimicrobial wound dressing and anti-inflammatory efficacy of silver nanoparticles.Int. J. Biol. Macromol.20146550951510.1016/j.ijbiomac.2014.01.07124530328
    [Google Scholar]
  19. Encabo-BerzosaM.M. Sancho-AlberoM. CrespoA. AndreuV. SebastianV. IrustaS. ArrueboM. Martín-DuqueP. SantamariaJ. The effect of PEGylated hollow gold nanoparticles on stem cell migration: Potential application in tissue regeneration.Nanoscale20179289848985810.1039/C7NR01853C28650026
    [Google Scholar]
  20. HanD. WangF. QiaoZ. WangB. ZhangY. JiangQ. LiuM. ZhuangY. AnQ. BaiY. ShangguanJ. ZhangJ. LiangG. ShenD. Neutrophil membrane-camouflaged nanoparticles alleviate inflammation and promote angiogenesis in ischemic myocardial injury.Bioact. Mater.20232336938210.1016/j.bioactmat.2022.11.01636474655
    [Google Scholar]
  21. ChouhanD. DeyN. BhardwajN. MandalB.B. Emerging and innovative approaches for wound healing and skin regeneration: Current status and advances.Biomaterials201921611926710.1016/j.biomaterials.2019.11926731247480
    [Google Scholar]
  22. KumarA.S. KamalasananK. Drug delivery to optimize angiogenesis imbalance in keloid: A review.J. Control. Release20213291066107610.1016/j.jconrel.2020.10.03533091533
    [Google Scholar]
  23. EmejeMO ObidikeIC AkpabioEI OfoefuleSI Nanotechnology in drug delivery.Recent Advances in Novel Drug Carrier SystemsIntechOpen201211
    [Google Scholar]
  24. AlaviM. RaiM. Topical delivery of growth factors and metal/metal oxide nanoparticles to infected wounds by polymeric nanoparticles: An overview.Expert Rev. Anti Infect. Ther.202018101021103210.1080/14787210.2020.178274032536223
    [Google Scholar]
  25. SaghazadehS. RinoldiC. SchotM. KashafS.S. SharifiF. JalilianE. NuutilaK. GiatsidisG. MostafaluP. DerakhshandehH. YueK. SwieszkowskiW. MemicA. TamayolA. KhademhosseiniA. Drug delivery systems and materials for wound healing applications.Adv. Drug Deliv. Rev.201812713816610.1016/j.addr.2018.04.00829626550
    [Google Scholar]
  26. SinghA.P. BiswasA. ShuklaA. MaitiP. Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles.Signal Transduct. Target. Ther.2019413310.1038/s41392‑019‑0068‑331637012
    [Google Scholar]
  27. ChoudhuryH. PandeyM. LimY.Q. LowC.Y. LeeC.T. MarilynT.C.L. LohH.S. LimY.P. LeeC.F. BhattamishraS.K. KesharwaniP. GorainB. Silver nanoparticles: Advanced and promising technology in diabetic wound therapy.Mater. Sci. Eng. C202011211092510.1016/j.msec.2020.11092532409075
    [Google Scholar]
  28. CatanzanoO. QuagliaF. BoatengJ.S. Wound dressings as growth factor delivery platforms for chronic wound healing.Expert Opin. Drug Deliv.202118673775910.1080/17425247.2021.186709633338386
    [Google Scholar]
  29. OliveiraA. SimõesS. AscensoA. ReisC.P. Therapeutic advances in wound healing.J. Dermatolog. Treat.202233122210.1080/09546634.2020.173029632056472
    [Google Scholar]
  30. PatelS. SrivastavaS. SinghM.R. SinghD. Mechanistic insight into diabetic wounds: Pathogenesis, molecular targets and treatment strategies to pace wound healing.Biomed. Pharmacother.201911210861510.1016/j.biopha.2019.10861530784919
    [Google Scholar]
  31. BaiQ. HanK. DongK. ZhengC. ZhangY. LongQ. LuT. Potential applications of nanomaterials and technology for diabetic wound healing.Int. J. Nanomedicine2020159717974310.2147/IJN.S27600133299313
    [Google Scholar]
  32. RabieeN. AhmadiS. AkhavanO. LuqueR. Silver and gold nanoparticles for antimicrobial purposes against multi-drug resistance bacteria.Materials2022155179910.3390/ma1505179935269031
    [Google Scholar]
  33. KalantariK. MostafaviE. AfifiA.M. IzadiyanZ. JahangirianH. MoghaddamR.R. WebsterT.J. Wound dressings functionalized with silver nanoparticles: Promises and pitfalls.Nanoscale20201242268229110.1039/C9NR08234D31942896
    [Google Scholar]
  34. MarinS. VlasceanuG. TipleaR. BucurI. LemnaruM. MarinM. GrumezescuA. Applications and toxicity of silver nanoparticles: A recent review.Curr. Top. Med. Chem.201515161596160410.2174/156802661566615041414220925877089
    [Google Scholar]
  35. MuthukumarB. NandiniM.S. ElumalaiP. BalakrishnanM. SatheeshkumarA. AlSalhiM.S. DevanesanS. ParthipanP. RajasekarA. MalikT. Enhancement of cell migration and wound healing by nano-herb ointment formulated with biosurfactant, silver nanoparticles and Tridax procumbens. Front. Microbiol.202314122576910.3389/fmicb.2023.122576937601383
    [Google Scholar]
  36. KangK. LimD.H. ChoiI.H. KangT. LeeK. MoonE.Y. YangY. LeeM.S. LimJ.S. Vascular tube formation and angiogenesis induced by polyvinylpyrrolidone-coated silver nanoparticles.Toxicol. Lett.2011205322723410.1016/j.toxlet.2011.05.103321729742
    [Google Scholar]
  37. TianJ. WongK.K.Y. HoC.M. LokC.N. YuW.Y. CheC.M. ChiuJ.F. TamP.K.H. Topical delivery of silver nanoparticles promotes wound healing.ChemMedChem20072112913610.1002/cmdc.20060017117075952
    [Google Scholar]
  38. WuJ. ZhengY. SongW. LuanJ. WenX. WuZ. ChenX. WangQ. GuoS. In situ synthesis of silver-nanoparticles/bacterial cellulose composites for slow-released antimicrobial wound dressing.Carbohydr. Polym.201410276277110.1016/j.carbpol.2013.10.09324507345
    [Google Scholar]
  39. PachuauL. Recent developments in novel drug delivery systems for wound healing.Expert Opin. Drug Deliv.201512121895190910.1517/17425247.2015.107014326289672
    [Google Scholar]
  40. PaladiniF. PolliniM. Antimicrobial silver nanoparticles for wound healing application: Progress and future trends.Materials20191216254010.3390/ma1216254031404974
    [Google Scholar]
  41. ShuryginaI.A. ShuryginM.G. Nanoparticles in wound healing and regeneration.Metal Nanoparticles in PharmaSpringerCham20172137
    [Google Scholar]
  42. HamataniS KitagawaD MaegawaR KobatakeS. Photochromic behavior of diarylbenzene nanoparticles prepared by top-down and bottom-up approaches.Mater. Adv.2022321280128510.1039/D1MA00972A
    [Google Scholar]
  43. ArslanE. GaripI.C. GulserenG. TekinayA.B. GulerM.O. Bioactive supramolecular peptide nanofibers for regenerative medicine.Adv. Healthc. Mater.2014391357137610.1002/adhm.20130049124574311
    [Google Scholar]
  44. BarnesC.P. SellS.A. BolandE.D. SimpsonD.G. BowlinG.L. Nanofiber technology: Designing the next generation of tissue engineering scaffolds.Adv. Drug Deliv. Rev.200759141413143310.1016/j.addr.2007.04.02217916396
    [Google Scholar]
  45. ChenS. LiuB. CarlsonM.A. GombartA.F. ReillyD.A. XieJ. Recent advances in electrospun nanofibers for wound healing.Nanomedicine (Lond.)201712111335135210.2217/nnm‑2017‑001728520509
    [Google Scholar]
  46. LiuM. DuanX.P. LiY.M. YangD.P. LongY.Z. Electrospun nanofibers for wound healing.Mater. Sci. Eng. C2017761413142310.1016/j.msec.2017.03.03428482508
    [Google Scholar]
  47. MemicA. AbdullahT. MohammedH.S. Joshi NavareK. ColombaniT. BencherifS.A. Latest progress in electrospun nanofibers for wound healing applications.ACS Appl. Bio Mater.20192395296910.1021/acsabm.8b0063735021385
    [Google Scholar]
  48. VenugopalJ. LowS. ChoonA.T. RamakrishnaS. Interaction of cells and nanofiber scaffolds in tissue engineering.J. Biomed. Mater. Res. B Appl. Biomater.200884B1344810.1002/jbm.b.3084117477388
    [Google Scholar]
  49. YangY. DuY. ZhangJ. ZhangH. GuoB. Structural and functional design of electrospun nanofibers for hemostasis and wound healing.Advanced Fiber Materials2022451027105710.1007/s42765‑022‑00178‑z
    [Google Scholar]
  50. DaltonP.D. GrafahrendD. KlinkhammerK. KleeD. MöllerM. Electrospinning of polymer melts: Phenomenological observations.Polymer (Guildf.)200748236823683310.1016/j.polymer.2007.09.037
    [Google Scholar]
  51. ValizadehA. Mussa FarkhaniS. Electrospinning and electrospun nanofibres.IET Nanobiotechnol.201482839210.1049/iet‑nbt.2012.004025014079
    [Google Scholar]
  52. RathoreP. SchiffmanJ.D. Beyond the single-nozzle: coaxial electrospinning enables innovative nanofiber chemistries, geometries, and applications.ACS Appl. Mater. Interfaces2021131486610.1021/acsami.0c1770633356093
    [Google Scholar]
  53. VonchJ. YarinA. MegaridisC.M. Electrospinning: A study in the formation of nanofibers.Journal of Undergraduate Research at the University of Illinois at Chicago2007111510.5210/jur.v1i1.7444
    [Google Scholar]
  54. HuangX. WuD. ZhuY. SunD. Needleless electrospinning of multiple nanofibers.2007
    [Google Scholar]
  55. SallehA. FauziM.B. The in vivo, in vitro and in ovo evaluation of quantum dots in wound healing: a review.Polymers (Basel)202113219110.3390/polym1302019133430272
    [Google Scholar]
  56. MateaC. MocanT. TabaranF. PopT. MosteanuO. PuiaC. IancuC. MocanL. Quantum dots in imaging, drug delivery and sensor applications.Int. J. Nanomedicine2017125421543110.2147/IJN.S13862428814860
    [Google Scholar]
  57. AzzazyH.M.E. MansourM.M.H. KazmierczakS.C. From diagnostics to therapy: Prospects of quantum dots.Clin. Biochem.20074013-1491792710.1016/j.clinbiochem.2007.05.01817689518
    [Google Scholar]
  58. YukawaH. MizufuneS. MamoriC. KagamiY. OishiK. KajiN. OkamotoY. TakeshiM. NoguchiH. BabaY. HamaguchiM. HamajimaN. HayashiS. Quantum dots for labeling adipose tissue-derived stem cells.Cell Transplant.2009185-659160010.1177/096368970901805‑61519775521
    [Google Scholar]
  59. ProbstC.E. ZrazhevskiyP. BagalkotV. GaoX. Quantum dots as a platform for nanoparticle drug delivery vehicle design.Adv. Drug Deliv. Rev.201365570371810.1016/j.addr.2012.09.03623000745
    [Google Scholar]
  60. WangY. HuR. LinG. RoyI. YongK.T. Functionalized quantum dots for biosensing and bioimaging and concerns on toxicity.ACS Appl. Mater. Interfaces2013582786279910.1021/am302030a23394295
    [Google Scholar]
  61. RajendiranK. ZhaoZ. PeiD.S. FuA. Antimicrobial activity and mechanism of functionalized quantum dots.Polymers (Basel)20191110167010.3390/polym1110167031614993
    [Google Scholar]
  62. MandalA. CleggJ.R. AnselmoA.C. MitragotriS. Hydrogels in the clinic.Bioeng. Transl. Med.202052e1015810.1002/btm2.1015832440563
    [Google Scholar]
  63. FuY. ZhangJ. WangY. LiJ. BaoJ. XuX. ZhangC. LiY. WuH. GuZ. Reduced polydopamine nanoparticles incorporated oxidized dextran/chitosan hybrid hydrogels with enhanced antioxidative and antibacterial properties for accelerated wound healing.Carbohydr. Polym.202125711759810.1016/j.carbpol.2020.11759833541635
    [Google Scholar]
  64. SujanM.I. SarkarS.D. SultanaS. BushraL. TareqR. RoyC.K. AzamM.S. Bi-functional silica nanoparticles for simultaneous enhancement of mechanical strength and swelling capacity of hydrogels.RSC Advances202010116213622210.1039/C9RA09528D35496010
    [Google Scholar]
  65. ChangA. BabhadiasharN. Barrett-CattonE. AsuriP. Role of nanoparticle–polymer interactions on the development of double-network hydrogel nanocomposites with high mechanical strength.Polymers (Basel)202012247010.3390/polym1202047032085489
    [Google Scholar]
  66. TanH.L. TeowS.Y. PushpamalarJ. Application of metal nanoparticle–hydrogel composites in tissue regeneration.Bioengineering (Basel)2019611710.3390/bioengineering601001730754677
    [Google Scholar]
  67. XuY. ChenH. FangY. WuJ. Hydrogel combined with phototherapy in wound healing.Adv. Healthc. Mater.20221116220049410.1002/adhm.20220049435751637
    [Google Scholar]
  68. LiZ. FanX. LuoZ. LohX.J. MaY. YeE. WuY.L. HeC. LiZ. Nanoenzyme–chitosan hydrogel complex with cascade catalytic and self-reinforced antibacterial performance for accelerated healing of diabetic wounds.Nanoscale20221440149701498310.1039/D2NR04171E36217671
    [Google Scholar]
  69. PanJ. ChanS.Y. LeeW.G. KangL. Microfabricated particulate drug-delivery systems.Biotechnol. J.20116121477148710.1002/biot.20110023722076813
    [Google Scholar]
  70. AlphonsaB.M. Sudheesh KumarP.T. PraveenG. BiswasR. ChennazhiK.P. JayakumarR. Antimicrobial drugs encapsulated in fibrin nanoparticles for treating microbial infested wounds.Pharm. Res.20143151338135110.1007/s11095‑013‑1254‑624287625
    [Google Scholar]
  71. GainzaG. PastorM. AguirreJ.J. VillullasS. PedrazJ.L. HernandezR.M. IgartuaM. A novel strategy for the treatment of chronic wounds based on the topical administration of rhEGF-loaded lipid nanoparticles: in vitro bioactivity and in vivo effectiveness in healing-impaired db/db mice.J. Control. Release2014185516110.1016/j.jconrel.2014.04.03224794895
    [Google Scholar]
  72. FanX. YahiaL.H. SacherE. Antimicrobial properties of the ag, Cu nanoparticle system.Biology (Basel)202110213710.3390/biology1002013733578705
    [Google Scholar]
  73. GaoW. ThamphiwatanaS. AngsantikulP. ZhangL. Nanoparticle approaches against bacterial infections.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.20146653254710.1002/wnan.128225044325
    [Google Scholar]
  74. BurdușelA.C. GherasimO. GrumezescuA.M. MogoantăL. FicaiA. AndronescuE. Biomedical applications of silver nanoparticles: an up-to-date overview.Nanomaterials (Basel)20188968110.3390/nano809068130200373
    [Google Scholar]
  75. GhoshM SternfeldH.M AbramovichA.L. Bio mimicking of extracellular matrix.Biological and Bio-inspired Nanomaterials: Properties and Assembly Mechanisms20192019371399
    [Google Scholar]
  76. WangT. ZhengY. ShiY. ZhaoL. pH-responsive calcium alginate hydrogel laden with protamine nanoparticles and hyaluronan oligosaccharide promotes diabetic wound healing by enhancing angiogenesis and antibacterial activity.Drug Deliv. Transl. Res.20199122723910.1007/s13346‑018‑00609‑830519937
    [Google Scholar]
  77. ZhangX. TanB. WuY. ZhangM. LiaoJ. A review on hydrogels with photothermal effect in wound healing and bone tissue engineering.Polymers (Basel)20211313210010.3390/polym1313210034202237
    [Google Scholar]
  78. DongY. WuX. ChenX. ZhouP. XuF. LiangW. Nanotechnology shaping stem cell therapy: Recent advances, application, challenges, and future outlook.Biomed. Pharmacother.202113711123610.1016/j.biopha.2021.11123633486201
    [Google Scholar]
  79. Jari LitanyR.I. PraseethaP.K. Tiny tots for a big-league in wound repair: Tools for tissue regeneration by nanotechniques of today.J. Control. Release202234944345910.1016/j.jconrel.2022.07.00535835401
    [Google Scholar]
  80. MihaiM.M. DimaM.B. DimaB. HolbanA.M. Nanomaterials for wound healing and infection control.Materials (Basel)20191213217610.3390/ma1213217631284587
    [Google Scholar]
  81. GuoY. PanS. JiangF. WangE. MiineaL. MarchantN. CakmakM. Anisotropic swelling wound dressings with vertically aligned water absorptive particles.RSC Advances20188158173818010.1039/C7RA13764H35541992
    [Google Scholar]
  82. De LucaI. PedramP. MoeiniA. CerrutiP. PelusoG. Di SalleA. GermannN. Nanotechnology development for formulating essential oils in wound dressing materials to promote the wound-healing process: a review.Appl. Sci. (Basel)2021114171310.3390/app11041713
    [Google Scholar]
  83. StoicaA.E. ChircovC. GrumezescuA.M. Nanomaterials for wound dressings: an up-to-date overview.Molecules20202511269910.3390/molecules2511269932532089
    [Google Scholar]
  84. ZhangC. YangD. WangT.B. NieX. ChenG. WangL.H. YouY.Z. WangQ. Biodegradable hydrogels with photodynamic antibacterial activity promote wound healing and mitigate scar formation.Biomater. Sci.202211128829710.1039/D2BM01493A36444966
    [Google Scholar]
  85. AhnS. ChantreC.O. GannonA.R. LindJ.U. CampbellP.H. GrevesseT. O’ConnorB.B. ParkerK.K. Soy protein/cellulose nanofiber scaffolds mimicking skin extracellular matrix for enhanced wound healing.Adv. Healthc. Mater.201879170117510.1002/adhm.20170117529359866
    [Google Scholar]
  86. JeongD. KimT.S. ChungY.W. LeeB.J. KimI.Y. Selenoprotein W is a glutathione-dependent antioxidant in vivo.FEBS Lett.20025171-322522810.1016/S0014‑5793(02)02628‑512062442
    [Google Scholar]
  87. BryanN. AhswinH. SmartN. BayonY. WohlertS. HuntJ.A. Reactive oxygen species (ROS) – a family of fate deciding molecules pivotal in constructive inflammation and wound healing.Eur. Cell. Mater.20122424926510.22203/eCM.v024a1823007910
    [Google Scholar]
  88. YangB.Y. ZhouZ.Y. LiuS.Y. ShiM.J. LiuX.J. ChengT.M. DengG.Y. TianY. SongJ. LiX.H. Porous Se@SiO2 nanoparticles enhance wound healing by ROS-PI3K/Akt pathway in dermal fibroblasts and reduce scar formation.Front. Bioeng. Biotechnol.20221085248210.3389/fbioe.2022.85248235387298
    [Google Scholar]
  89. DingJ.Y. SunL. ZhuZ.H. WuX.C. XuX.L. XiangY.W. Nano drug delivery systems: a promising approach to scar prevention and treatment.J. Nanobiotechnology202321126810.1186/s12951‑023‑02037‑437568194
    [Google Scholar]
  90. CruzM.D SalehB CruaV.A AjoA RoyAK WebsterTJ Drug-delivery nanocarriers for skin wound-healing applications.wound Healing, Tissue Repair, and Regeneration in DiabetesAcademic Press2020439488
    [Google Scholar]
  91. GreenhalghD.G. The role of growth factors in wound healing.J. Trauma Inj. Infect. Crit. Care199641115916710.1097/00005373‑199607000‑000298676414
    [Google Scholar]
  92. WangQ. ZhangY. LiB. ChenL. Controlled dual delivery of low doses of BMP-2 and VEGF in a silk fibroin–nanohydroxyapatite scaffold for vascularized bone regeneration.J. Mater. Chem. B Mater. Biol. Med.20175336963697210.1039/C7TB00949F32264345
    [Google Scholar]
  93. VoT.N. KasperF.K. MikosA.G. Strategies for controlled delivery of growth factors and cells for bone regeneration.Adv. Drug Deliv. Rev.201264121292130910.1016/j.addr.2012.01.01622342771
    [Google Scholar]
  94. Fathi-AchacheloueiM. Knopf-MarquesH. Ribeiro da SilvaC.E. BarthèsJ. BatE. TezcanerA. VranaN.E. Use of nanoparticles in tissue engineering and regenerative medicine.Front. Bioeng. Biotechnol.2019711310.3389/fbioe.2019.0011331179276
    [Google Scholar]
  95. QuM. JiangX. ZhouX. WangC. WuQ. RenL. ZhuJ. ZhuS. TebonP. SunW. KhademhosseiniA. Stimuli-responsive delivery of growth factors for tissue engineering.Adv. Healthc. Mater.202097190171410.1002/adhm.20190171432125786
    [Google Scholar]
  96. LinX. GuanX. WuY. ZhuangS. WuY. DuL. ZhaoJ. RongJ. ZhaoJ. TuM. An alginate/poly(N-isopropylacrylamide)-based composite hydrogel dressing with stepwise delivery of drug and growth factor for wound repair.Mater. Sci. Eng. C202011511112310.1016/j.msec.2020.11112332600722
    [Google Scholar]
  97. SpampinatoS.F. CarusoG.I. De PasqualeR. SortinoM.A. MerloS. The treatment of impaired wound healing in diabetes: looking among old drugs.Pharmaceuticals (Basel)20201346010.3390/ph1304006032244718
    [Google Scholar]
  98. PunjataewakuptA. NapavichayanunS. AramwitP. The downside of antimicrobial agents for wound healing.Eur. J. Clin. Microbiol. Infect. Dis.2019381395410.1007/s10096‑018‑3393‑530291466
    [Google Scholar]
  99. LekhaD.C. ShanmugamR. MadhuriK. DwarampudiL.P. BhaskaranM. KongaraD. TesfayeJ.L. NagaprasadN. BhargaviV.L.N. KrishnarajR. Review on silver nanoparticle synthesis method, antibacterial activity, drug delivery vehicles, and toxicity pathways: recent advances and future aspects.J. Nanomater.2021202111110.1155/2021/4401829
    [Google Scholar]
  100. NithyaR. RagunathanR. Synthesis of silver nanoparticle using Pleurotus Sajor Caju and Its antimicrobial study.Dig. J. Nanomater. Biostruct.200944623629
    [Google Scholar]
  101. ZhaoX. PeiD. YangY. XuK. YuJ. ZhangY. ZhangQ. HeG. ZhangY. LiA. ChengY. ChenX. Green tea derivative driven Smart hydrogels with desired functions for chronic diabetic wound treatment.Adv. Funct. Mater.20213118200944210.1002/adfm.202009442
    [Google Scholar]
  102. LiJ. ZhangT. PanM. XueF. LvF. KeQ. XuH. Nanofiber/hydrogel core–shell scaffolds with three-dimensional multilayer patterned structure for accelerating diabetic wound healing.J. Nanobiotechnology20222012810.1186/s12951‑021‑01208‑534998407
    [Google Scholar]
  103. DingZ. ZhangY. GuoP. DuanT. ChengW. GuoY. ZhengX. LuG. LuQ. KaplanD.L. Injectable desferrioxamine-laden silk nanofiber hydrogels for accelerating diabetic wound healing.ACS Biomater. Sci. Eng.2021731147115810.1021/acsbiomaterials.0c0150233522800
    [Google Scholar]
  104. LiuJ. ZouQ. WangC. LinM. LiY. ZhangR. LiY. Electrospinning and 3D printed hybrid bi-layer scaffold for guided bone regeneration.Mater. Des.202121011004710.1016/j.matdes.2021.110047
    [Google Scholar]
  105. OgueriK.S. LaurencinC.T. Nanofiber technology for regenerative engineering.ACS Nano20201489347936310.1021/acsnano.0c0398132678581
    [Google Scholar]
  106. MuY. GongL. PengT. YaoJ. LinZ. Advances in pH-responsive drug delivery systems.OpenNano2021510003110.1016/j.onano.2021.100031
    [Google Scholar]
  107. WangC. WangG. WangZ. ZhangX. A pH-responsive superamphiphile based on dynamic covalent bonds.Chemistry201117123322332510.1002/chem.20100350221341334
    [Google Scholar]
  108. PanditaD PooniaN ChaudharyG JainGK LatherV KharRK pH-sensitive polymeric nanocarriers for enhanced intracellular drug delivery.Smart Polymeric Nano-Constructs in Drug DeliveryAcademic Press202365107
    [Google Scholar]
  109. KumarK. RawatS.G. Manjit MishraM. Priya KumarA. ChawlaR. Dual targeting pH responsive chitosan nanoparticles for enhanced active cellular internalization of gemcitabine in non-small cell lung cancer.Int. J. Biol. Macromol.202324912605710.1016/j.ijbiomac.2023.12605737524283
    [Google Scholar]
  110. JoorablooA. LiuT. Engineering exosome-based biomimetic nanovehicles for wound healing.J. Control. Release202335646348010.1016/j.jconrel.2023.03.01336907562
    [Google Scholar]
  111. LinY. LuY. LiX. Biological characteristics of exosomes and genetically engineered exosomes for the targeted delivery of therapeutic agents.J. Drug Target.202028212914110.1080/1061186X.2019.164150831280623
    [Google Scholar]
  112. LiS. MohamediA.H. SenkowskyJ. NairA. TangL. Imaging in chronic wound diagnostics.Adv. Wound Care (New Rochelle)20209524526310.1089/wound.2019.096732226649
    [Google Scholar]
  113. KimT. ZhangQ. LiJ. ZhangL. JokerstJ.V. GoldA.A. A Gold/Silver Hybrid Nanoparticle for Treatment and Photoacoustic Imaging of Bacterial Infection.ACS Nano20181265615562510.1021/acsnano.8b0136229746090
    [Google Scholar]
  114. DongY.C. HajfathalianM. MaidmentP.S.N. HsuJ.C. NahaP.C. Si-MohamedS. BreuillyM. KimJ. ChhourP. DouekP. LittH.I. CormodeD.P. Effect of gold nanoparticle size on their properties as contrast agents for computed tomography.Sci. Rep.2019911491210.1038/s41598‑019‑50332‑831624285
    [Google Scholar]
  115. YangN. GuoH. CaoC. WangX. SongX. WangW. YangD. XiL. MouX. DongX. Infection microenvironment-activated nanoparticles for NIR-II photoacoustic imaging-guided photothermal/chemodynamic synergistic anti-infective therapy.Biomaterials202127512091810.1016/j.biomaterials.2021.12091834058607
    [Google Scholar]
  116. García-ÁlvarezR. ChenL. NedilkoA. Sánchez-IglesiasA. RixA. LederleW. PathakV. LammersT. von PlessenG. KostarelosK. Liz-MarzánL.M. KuehneA.J.C. ChigrinD.N. Optimizing the geometry of photoacoustically active gold nanoparticles for biomedical imaging.ACS Photonics20207364665210.1021/acsphotonics.9b01418
    [Google Scholar]
  117. HeW. WangX. GaoX. LuZ. SongJ. Application of gold nanoparticles in photoacoustic imaging.IOP Conf Ser Mater Sci EngIOP Publishing.2020Vol. 72901208610.1088/1757‑899X/729/1/012086
    [Google Scholar]
  118. MantriY. JokerstJ.V. Engineering plasmonic nanoparticles for enhanced photoacoustic imaging.ACS Nano20201489408942210.1021/acsnano.0c0521532806027
    [Google Scholar]
  119. LiZ. FuQ. YeJ. GeX. WangJ. SongJ. YangH. Yang, H. Ag+-Coupled black phosphorus vesicles with emerging NIR-II photoacoustic imaging performance for cancer immune-dynamic therapy and fast wound healing.Angew. Chem. Int. Ed.20205949222022220910.1002/anie.20200960932841465
    [Google Scholar]
  120. HanX.X. RodriguezR.S. HaynesC.L. OzakiY. ZhaoB. RamanS-E. Surface-enhanced Raman spectroscopy.Nature Reviews Methods Primers2022118710.1038/s43586‑021‑00083‑6
    [Google Scholar]
  121. GuoJ. ZhongZ. LiY. LiuY. WangR. JuH. ‘Three-in-one’ SERS adhesive tape for rapid sampling, release, and detection of wound infectious pathogens.ACS Appl. Mater. Interfaces20191140363993640810.1021/acsami.9b1282331509379
    [Google Scholar]
  122. LiS. RenickP. SenkowskyJ. NairA. TangL. Diagnostics for wound infections.Adv. Wound Care (New Rochelle)202110631732710.1089/wound.2019.110332496977
    [Google Scholar]
  123. BlankenshipR.B. BakerT. Imaging modalities in wounds and superficial skin infections.Emerg. Med. Clin. North Am.200725122323410.1016/j.emc.2007.01.01117400083
    [Google Scholar]
  124. ZhangH. LiuX.L. FanH.M. Advances in magnetic nanoparticle-based magnetic resonance imaging contrast agents.Nano Res.20231611125311254210.1007/s12274‑023‑6214‑9
    [Google Scholar]
  125. LiH. YangS. HuiD. HongR. Progress in magnetic Fe 3 O 4 nanomaterials in magnetic resonance imaging.Nanotechnol. Rev.2020911265128310.1515/ntrev‑2020‑0095
    [Google Scholar]
  126. MetselaarJ.M. LammersT. Challenges in nanomedicine clinical translation.Drug Deliv. Transl. Res.202010372172510.1007/s13346‑020‑00740‑532166632
    [Google Scholar]
  127. GottardoS. MechA. DrbohlavováJ. MałyskaA. BøwadtS. Riego SintesJ. RauscherH. Towards safe and sustainable innovation in nanotechnology: State-of-play for smart nanomaterials.NanoImpact20212110029710.1016/j.impact.2021.10029733738354
    [Google Scholar]
  128. ZielińskaA. CostaB. FerreiraM.V. MiguéisD. LourosJ.M.S. DurazzoA. LucariniM. EderP. ChaudM.V. MorsinkM. WillemenN. SeverinoP. SantiniA. SoutoE.B. Nanotoxicology and nanosafety: safety-by-design and testing at a glance.Int. J. Environ. Res. Public Health20201713465710.3390/ijerph1713465732605255
    [Google Scholar]
  129. ZhouM. GeX. KeD.M. TangH. ZhangJ.Z. CalvaresiM. GaoB. SunL. SuQ. WangH. The bioavailability, biodistribution, and toxic effects of silica-coated upconversion nanoparticles in vivo.Front Chem.2019721810.3389/fchem.2019.0021831024902
    [Google Scholar]
  130. DriD.A. MarianecciC. CarafaM. GaucciE. GramagliaD. Surfactants, nanomedicines and nanocarriers: A critical evaluation on clinical trials.Pharmaceutics202113338110.3390/pharmaceutics1303038133805639
    [Google Scholar]
  131. European Medicines AgencyEMA regulatory science to 2025 strategic reflection.Available from: https://www.ema.europa.eu/en/documents/regulatory-procedural-guideline/ema-regulatory-science-2025-strategic-reflection_en.pdf 2020
  132. MirhajM. LabbafS. TavakoliM. SeifalianA.M. Emerging treatment strategies in wound care.Int. Wound J.20221971934195410.1111/iwj.1378635297170
    [Google Scholar]
  133. KhanF. KarimiM.N. KhanO. Exploring the scalability and commercial viability of biosynthesized nanoparticles for cooling panels with the help of Artificial Intelligence and solar energy systems.Green Technologies and Sustainability20231310003610.1016/j.grets.2023.100036
    [Google Scholar]
  134. SharifiS. HajipourM.J. GouldL. MahmoudiM. Nanomedicine in healing chronic wounds: opportunities and challenges.Mol. Pharm.202118255057510.1021/acs.molpharmaceut.0c0034632519875
    [Google Scholar]
  135. ChopraH. MohantaY.K. MahantaS. MohantaT.K. SinghI. AvulaS.K. MallickS.P. RabaanA.A. AlSaihatiH. AlsayyahA. AlissaM. AlturaifiH.R. AlAlwanB. AttiaM.S. ChakrabortyS. DhamaK. Recent updates in nanotechnological advances for wound healing: A narrative review.Nanotechnol. Rev.20231212023012910.1515/ntrev‑2023‑0129
    [Google Scholar]
  136. EzhilarasuH. VishalliD. DheenS.T. BayB.H. SrinivasanD.K. Nanoparticle-based therapeutic approach for diabetic wound healing.Nanomaterials (Basel)2020106123410.3390/nano1006123432630377
    [Google Scholar]
  137. KalashnikovaI. DasS. SealS. Nanomaterials for wound healing: scope and advancement.Nanomedicine (Lond.)201510162593261210.2217/nnm.15.8226295361
    [Google Scholar]
  138. GainzaG. VillullasS. PedrazJ.L. HernandezR.M. IgartuaM. Advances in drug delivery systems (DDSs) to release growth factors for wound healing and skin regeneration.Nanomedicine20151161551157310.1016/j.nano.2015.03.00225804415
    [Google Scholar]
  139. ChereddyK.K. CocoR. MemvangaP.B. UcakarB. des RieuxA. VandermeulenG. PréatV. Combined effect of PLGA and curcumin on wound healing activity.J. Control. Release2013171220821510.1016/j.jconrel.2013.07.01523891622
    [Google Scholar]
  140. RaniS. RitterT. The exosome-A naturally secreted nanoparticle and its application to wound healing.Adv. Mater.201628275542555210.1002/adma.20150400926678528
    [Google Scholar]
  141. ZhangX. KangX. JiL. BaiJ. LiuW. WangZ. Stimulation of wound healing using bioinspired hydrogels with basic fibroblast growth factor (bFGF).Int. J. Nanomedicine2018133897390610.2147/IJN.S16899830013343
    [Google Scholar]
/content/journals/cnanom/10.2174/0124681873312611240520091435
Loading
/content/journals/cnanom/10.2174/0124681873312611240520091435
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test