Skip to content
2000
Volume 15, Issue 4
  • ISSN: 2468-1873
  • E-ISSN: 2468-1881

Abstract

Silver nanoparticles (AgNPs), typically ranging in size from 10 to 1000 nm, are synthesize through physical, chemical, or biological methods. The biological approach, which often uses plant extracts, microbes, or fungi, is recommended for its eco-friendliness and lower dangers, while physical and chemical procedures can be costly and potentially dangerous. AgNPs are widely used in treatments and diagnostics in the medical field. Their exceptional antibacterial, antifungal, antiviral, anticancer, antiangiogenic, leishmanicidal, anti-inflammatory, antidiabetic, antioxidant, and anthelmintic action are just a few of their special qualities. However, AgNPs do have certain disadvantages due to worries about their nanotoxicity. This thorough study covers a wide range of AgNP topics, including their synthesis, properties, factors affecting particle size, and modes of action. Additionally, it covers their uses in the medical field, any potential toxicity issues, and the difficulties associated with their application.

Loading

Article metrics loading...

/content/journals/cnanom/10.2174/0124681873309773240515043837
2024-05-27
2025-10-11
Loading full text...

Full text loading...

References

  1. IslamM.M. RaikwarS. Enhancement of oral bioavailability of protein and peptide by polysaccharide-based nanoparticles.Protein Pept. Lett.202431320922810.2174/010929866529246924022806473938509673
    [Google Scholar]
  2. KarmakarD. An examination of the utilization of nanotechnology in various domains of life sciences.Int. J. Adv. Eng. Manag.202197712
    [Google Scholar]
  3. Heuer-JungemannA. FeliuN. BakaimiI. HamalyM. AlkilanyA. ChakrabortyI. MasoodA. CasulaM.F. KostopoulouA. OhE. SusumuK. StewartM.H. MedintzI.L. StratakisE. ParakW.J. KanarasA.G. The role of ligands in the chemical synthesis and applications of inorganic nanoparticles.Chem. Rev.201911984819488010.1021/acs.chemrev.8b0073330920815
    [Google Scholar]
  4. MarinE. History of dental biomaterials: Biocompatibility, durability and still open challenges.Herit. Sci.202311120710.1186/s40494‑023‑01046‑8
    [Google Scholar]
  5. Upson-SaiaK. Medicine, health, and healing in the ancient mediterranean (500 BCE–600 CE): A sourcebook.Oakland, CaliforniaUniversity of California Press2023
    [Google Scholar]
  6. SunejaS. Silver nanoparticles: Revival of the warrior in war against COVID-19.Int J Res Rev.20207122454237
    [Google Scholar]
  7. VermaP. MaheshwariS.K. Applications of silver nanoparticles in diverse sectors.Int. J. Nanodimens.20191011836
    [Google Scholar]
  8. TufailM.S. LiaqatI. Silver nanoparticles and their applications-A comprehensive review.Pure Appl. Biol.2021111315330
    [Google Scholar]
  9. PryshchepaO. PomastowskiP. BuszewskiB. Silver nanoparticles: Synthesis, investigation techniques, and properties.Adv. Colloid Interface Sci.202028410224610.1016/j.cis.2020.10224632977142
    [Google Scholar]
  10. ShanmuganathanR. KaruppusamyI. SaravananM. MuthukumarH. PonnuchamyK. RamkumarV.S. PugazhendhiA. Synthesis of silver nanoparticles and their biomedical applications-a comprehensive review.Curr. Pharm. Des.201925242650266010.2174/138161282566619070818550631298154
    [Google Scholar]
  11. VishwanathR. NegiB. Conventional and green methods of synthesis of silver nanoparticles and their antimicrobial properties.Curr. Res. Green Sust. Chem2021410020510.1016/j.crgsc.2021.100205
    [Google Scholar]
  12. AlbertiG. ZanoniC. MagnaghiL.R. BiesuzR. Gold and silver nanoparticle-based colorimetric sensors: New trends and applications.Chemosensors (Basel)202191130510.3390/chemosensors9110305
    [Google Scholar]
  13. DanaiL. RolbandL.A. PerdomoV.A. SkellyE. KimT. AfoninK.A. Optical, structural and antibacterial properties of silver nanoparticles and DNA-templated silver nanoclusters.Nanomedicine (Lond.)202318976978210.2217/nnm‑2023‑008237345552
    [Google Scholar]
  14. ElahiN.J. SalehmoghadamM. TaherzadehD. HashemzadehA. DarroudiM. Ammonia sensing and cytotoxicity of the biosynthesized silver nanoparticle by arabic gum (AG).Recent Pat. Biotechnol.201913322823810.2174/187220831366619011812314130657052
    [Google Scholar]
  15. YaqoobA.A. UmarK. IbrahimM.N.M. Silver nanoparticles: Various methods of synthesis, size affecting factors and their potential applications–a review.Appl. Nanosci.20201051369137810.1007/s13204‑020‑01318‑w
    [Google Scholar]
  16. ShyamA. Chandran SS. GeorgeB. eS. Plant mediated synthesis of AgNPs and its applications: An overview.Inorg. Nano-Metal Chem.202151121646166210.1080/24701556.2020.1852254
    [Google Scholar]
  17. AbdallaS.S.I. KatasH. AzmiF. BusraM.F.M. Antibacterial and anti-biofilm biosynthesised silver and gold nanoparticles for medical applications: Mechanism of action, toxicity and current status.Curr. Drug Deliv.20201728810010.2174/156720181766619122709433431880259
    [Google Scholar]
  18. ThiruvengadamV. BansodA.V. Characterization of silver nanoparticles synthesized using chemical method and its antibacterial property.Biointerface Res. Appl. Chem.20201067257726410.33263/BRIAC106.72577264
    [Google Scholar]
  19. RatanZ.A. HaidereM.F. NurunnabiM. ShahriarS.M. AhammadA.J.S. ShimY.Y. ReaneyM.J.T. ChoJ.Y. Green chemistry synthesis of silver nanoparticles and their potential anticancer effects.Cancers (Basel)202012485510.3390/cancers1204085532244822
    [Google Scholar]
  20. Jorge de SouzaT.A. Rosa SouzaL.R. FranchiL.P. Silver nanoparticles: An integrated view of green synthesis methods, transformation in the environment, and toxicity.Ecotoxicol. Environ. Saf.201917169170010.1016/j.ecoenv.2018.12.09530658305
    [Google Scholar]
  21. KaradeV.C. PatilR.B. ParitS.B. KimJ.H. ChougaleA.D. DawkarV.V. Insights into shape-based silver nanoparticles: A weapon to cope with pathogenic attacks.ACS Sustain. Chem. Eng.2021937124761250710.1021/acssuschemeng.1c03797
    [Google Scholar]
  22. PatilR.B. ChougaleA.D. Analytical methods for the identification and characterization of silver nanoparticles: A brief review.Mater. Today Proc.2021475520553210.1016/j.matpr.2021.03.384
    [Google Scholar]
  23. KhodashenasB. GhorbaniH.R. Synthesis of silver nanoparticles with different shapes.Arab. J. Chem.20191281823183810.1016/j.arabjc.2014.12.014
    [Google Scholar]
  24. AbdulsahibS.S. Synthesis, characterization and biomedical applications of silver nanoparticles.Biomedicine (Taipei)202141245846410.51248/.v41i2.1058
    [Google Scholar]
  25. BratovcicA. Biosynthesis of green silver nanoparticles and its uv-vis characterization. International Journal of Innovative Science.Eng Technol.202077170176
    [Google Scholar]
  26. GohiB.F.C.A. ZengH.Y. XuS. ZouK.M. LiuB. HuangX.L. CaoX.J. Optimization of ZnAl/Chitosan supra-nano hybrid preparation as efficient antibacterial material.Int. J. Mol. Sci.20192022570510.3390/ijms2022570531739485
    [Google Scholar]
  27. JaswalT. GuptaJ. A review on the toxicity of silver nanoparticles on human health.Mater. Today Proc.20238185986310.1016/j.matpr.2021.04.266
    [Google Scholar]
  28. ArishaA.H. AhmedM.M. KamelM.A. AttiaY.A. HusseinM.M.A. Morin ameliorates the testicular apoptosis, oxidative stress, and impact on blood–testis barrier induced by photo-extracellularly synthesized silver nanoparticles.Environ. Sci. Pollut. Res. Int.20192628287492876210.1007/s11356‑019‑06066‑131376127
    [Google Scholar]
  29. ZhangJ. LiuS. HanJ. WangZ. ZhangS. On the developmental toxicity of silver nanoparticles.Mater. Des.202120310961110.1016/j.matdes.2021.109611
    [Google Scholar]
  30. NarcisoL. CoppolaL. LoriG. AndreoliC. ZjinoA. BoccaB. PetrucciF. Di VirgilioA. MartinelliA. TinariA. MaranghiF. TassinariR. Genotoxicity, biodistribution and toxic effects of silver nanoparticles after in vivo acute oral administration.NanoImpact20201810022110.1016/j.impact.2020.100221
    [Google Scholar]
  31. GailletS. RouanetJ.M. Silver nanoparticles: Their potential toxic effects after oral exposure and underlying mechanisms – A review.Food Chem. Toxicol.201577586310.1016/j.fct.2014.12.01925556118
    [Google Scholar]
  32. StrużyńskaL. SkalskaJ. Mechanisms underlying neurotoxicity of silver nanoparticles.Adv Exp Med Biol.20181048227250
    [Google Scholar]
  33. EmaM. OkudaH. GamoM. HondaK. A review of reproductive and developmental toxicity of silver nanoparticles in laboratory animals.Reprod. Toxicol.20176714916410.1016/j.reprotox.2017.01.00528088501
    [Google Scholar]
  34. ChoudharyA. SinghS. RavichandiranV. Toxicity, preparation methods and applications of silver nanoparticles: An update.Toxicol. Mech. Methods202232965066110.1080/15376516.2022.206425735403559
    [Google Scholar]
  35. VandebrielR.J. TonkE.C.M. de la Fonteyne-BlankestijnL.J. GremmerE.R. VerharenH.W. van der VenL.T. van LoverenH. de JongW.H. Immunotoxicity of silver nanoparticles in an intravenous 28-day repeated-dose toxicity study in rats.Part. Fibre Toxicol.20141112110.1186/1743‑8977‑11‑2124885556
    [Google Scholar]
  36. De JongW.H. Van Der VenL.T.M. SleijffersA. ParkM.V.D.Z. JansenE.H.J.M. Van LoverenH. VandebrielR.J. Systemic and immunotoxicity of silver nanoparticles in an intravenous 28 days repeated dose toxicity study in rats.Biomaterials201334338333834310.1016/j.biomaterials.2013.06.04823886731
    [Google Scholar]
  37. McGillicuddyE. MurrayI. KavanaghS. MorrisonL. FogartyA. CormicanM. DockeryP. PrendergastM. RowanN. MorrisD. Silver nanoparticles in the environment: Sources, detection and ecotoxicology.Sci. Total Environ.201757523124610.1016/j.scitotenv.2016.10.04127744152
    [Google Scholar]
  38. ChandaD. DudefoiW. AnaduJ. MinghettiM. Evaluation of the effect of silver and silver nanoparticles on the function of selenoproteins using an in-vitro model of the fish intestine: The cell line RTgutGC.Ecotoxicol. Environ. Saf.202121111193010.1016/j.ecoenv.2021.11193033472113
    [Google Scholar]
  39. BehzadiS. SerpooshanV. TaoW. HamalyM.A. AlkawareekM.Y. DreadenE.C. BrownD. AlkilanyA.M. FarokhzadO.C. MahmoudiM. Cellular uptake of nanoparticles: Journey inside the cell.Chem. Soc. Rev.201746144218424410.1039/C6CS00636A28585944
    [Google Scholar]
  40. MikhailovaE.O. Silver nanoparticles: Mechanism of action and probable bio-application.J. Funct. Biomater.20201148410.3390/jfb1104008433255874
    [Google Scholar]
  41. Flores-LópezL.Z. Espinoza-GómezH. SomanathanR. Silver nanoparticles: Electron transfer, reactive oxygen species, oxidative stress, beneficial and toxicological effects. Mini review.J. Appl. Toxicol.2019391162610.1002/jat.365429943411
    [Google Scholar]
  42. XiaoH. ChenY. AlnaggarM. Silver nanoparticles induce cell death of colon cancer cells through impairing cytoskeleton and membrane nanostructure.Micron201912610275010.1016/j.micron.2019.10275031522088
    [Google Scholar]
  43. RajeshkumarS. BharathL.V. Mechanism of plant-mediated synthesis of silver nanoparticles – A review on biomolecules involved, characterisation and antibacterial activity.Chem. Biol. Interact.201727321922710.1016/j.cbi.2017.06.01928647323
    [Google Scholar]
  44. KailasaS.K. ParkT-J. RohitJ.V. KoduruJ.R. Antimicrobial activity of silver nanoparticles.Nanoparticles In PharmacotherapyAmsterdamElsevier2019461484
    [Google Scholar]
  45. YugayY.A. UsoltsevaR.V. Silant’evV.E. EgorovaA.E. KarabtsovA.A. KumeikoV.V. ErmakovaS.P. BulgakovV.P. ShkrylY.N. Synthesis of bioactive silver nanoparticles using alginate, fucoidan and laminaran from brown algae as a reducing and stabilizing agent.Carbohydr. Polym.202024511654710.1016/j.carbpol.2020.11654732718640
    [Google Scholar]
  46. GariboD. Borbón-NuñezH.A. de LeónJ.N.D. García MendozaE. EstradaI. Toledano-MagañaY. TiznadoH. Ovalle-MarroquinM. Soto-RamosA.G. BlancoA. RodríguezJ.A. RomoO.A. Chávez-AlmazánL.A. Susarrey-ArceA. Green synthesis of silver nanoparticles using Lysiloma acapulcensis exhibit high-antimicrobial activity.Sci. Rep.20201011280510.1038/s41598‑020‑69606‑732732959
    [Google Scholar]
  47. GopinathanM. BalasubramanianM. Green synthesis and characterization of silver nanoparticles using Heliotropium indicum L. leaves extract and antimicrobial activity.Int. J. Adv. Sci. Res.20221301365373
    [Google Scholar]
  48. SinclairT.R. van den HengelS.K. RazaB.G. RutjesS.A. de Roda HusmanA.M. PeijnenburgW.J.G.M. RoesinkH.E.D.W. de VosW.M. Surface chemistry-dependent antiviral activity of silver nanoparticles.Nanotechnology2021323636510110.1088/1361‑6528/ac03d634020439
    [Google Scholar]
  49. NaumenkoK. ZahorodniaS. PopC.V. RizunN. Antiviral activity of silver nanoparticles against the influenza A virus.J. Virus Erad.20239210033010.1016/j.jve.2023.10033037416089
    [Google Scholar]
  50. PanX. ZhangY. ZhaoY. YaoS. GuanC. WangL. ChenL. Inhibitory activity and mechanism of silver nanoparticles against herpes simplex virus type 1.Arch. Virol.202216781619163610.1007/s00705‑022‑05467‑x35648293
    [Google Scholar]
  51. AllawadhiP. SinghV. KhuranaA. KhuranaI. AllwadhiS. KumarP. BanothuA.K. ThalugulaS. BaraniP.J. NaikR.R. BharaniK.K. Silver nanoparticle based multifunctional approach for combating COVID-19.Sensors Int.2021210010110.1016/j.sintl.2021.10010134766057
    [Google Scholar]
  52. El-GanainyS.M. SolimanA.M. IsmailA.M. SattarM.N. FarrohK.Y. ShafieR.M. Antiviral Activity of chitosan nanoparticles and chitosan silver nanocomposites against alfalfa mosaic virus.Polymers (Basel)20231513296110.3390/polym1513296137447606
    [Google Scholar]
  53. AlgotimlR. Gab-AllaA. SeoudiR. AbulreeshH.H. El-ReadiM.Z. ElbannaK. Anticancer and antimicrobial activity of biosynthesized Red Sea marine algal silver nanoparticles.Sci. Rep.2022121242110.1038/s41598‑022‑06412‑335165346
    [Google Scholar]
  54. JabeenS. QureshiR. MunazirM. MaqsoodM. MunirM. ShahS.S.H. RahimB.Z. Application of green synthesized silver nanoparticles in cancer treatment—a critical review.Mater. Res. Express20218909200110.1088/2053‑1591/ac1de3
    [Google Scholar]
  55. RozalenM. Sánchez-PoloM. Fernández-PeralesM. WidmannT.J. Rivera-UtrillaJ. Synthesis of controlled-size silver nanoparticles for the administration of methotrexate drug and its activity in colon and lung cancer cells.RSC Advances20201018106461066010.1039/C9RA08657A35492913
    [Google Scholar]
  56. DingJ. ChenG. ChenG. GuoM. One-pot synthesis of epirubicin-capped silver nanoparticles and their anticancer activity against hep G2 cells.Pharmaceutics201911312310.3390/pharmaceutics1103012330884757
    [Google Scholar]
  57. BenyettouF. RezguiR. RavauxF. JaberT. BlumerK. JouiadM. MotteL. OlsenJ.C. Platas-IglesiasC. MagzoubM. TrabolsiA. Synthesis of silver nanoparticles for the dual delivery of doxorubicin and alendronate to cancer cells.J. Mater. Chem. B Mater. Biol. Med.20153367237724510.1039/C5TB00994D32262831
    [Google Scholar]
  58. JainA. AnithaR. RajeshkumarS. Anti inflammatory activity of Silver nanoparticles synthesised using Cumin oil.Res. J. Pharm. Technol.20191262790279310.5958/0974‑360X.2019.00469.4
    [Google Scholar]
  59. RajputS. KumarD. AgrawalV. Green synthesis of silver nanoparticles using Indian Belladonna extract and their potential antioxidant, anti-inflammatory, anticancer and larvicidal activities.Plant Cell Rep.202039792193910.1007/s00299‑020‑02539‑732300886
    [Google Scholar]
  60. FereigS.A. El-ZaafaranyG.M. ArafaM.G. Abdel-MottalebM.M.A. Tackling the various classes of nano-therapeutics employed in topical therapy of psoriasis.Drug Deliv.202027166268010.1080/10717544.2020.175452732393082
    [Google Scholar]
  61. AafreenM.M. AnithaR. PreethiR.C. RajeshkumarS. LakshmiT. Anti-inflammatory activity of silver nanoparticles prepared from ginger oil—An in vitro approach.Indian J. Public Health Res. Dev.201910714510.5958/0976‑5506.2019.01552.3
    [Google Scholar]
  62. PerumalsamyR. KrishnadhasL. Anti-diabetic activity of silver nanoparticles synthesized from the hydroethanolic extract of Myristica fragrans seeds.Appl. Biochem. Biotechnol.202219431136114810.1007/s12010‑022‑03825‑835091876
    [Google Scholar]
  63. KumarV. SinghS. SrivastavaB. BhadouriaR. SinghR. Green synthesis of silver nanoparticles using leaf extract of Holoptelea integrifolia and preliminary investigation of its antioxidant, anti-inflammatory, antidiabetic and antibacterial activities.J. Environ. Chem. Eng.20197310309410.1016/j.jece.2019.103094
    [Google Scholar]
  64. BedlovičováZ. StrapáčI. BalážM. SalayováA. A brief overview on antioxidant activity determination of silver nanoparticles.Molecules20202514319110.3390/molecules2514319132668682
    [Google Scholar]
  65. FliegerJ. FranusW. PanekR. Szymańska-ChargotM. FliegerW. FliegerM. KołodziejP. Green synthesis of silver nanoparticles using natural extracts with proven antioxidant activity.Molecules20212616498610.3390/molecules2616498634443574
    [Google Scholar]
  66. SinghR. SinghR. PariharP. ManiJ.V. Green synthesis of silver nanoparticles using Solanum sisymbriifolium leaf extract: Characterization and evaluation of antioxidant, antibacterial and photocatalytic degradation activities.Process Biochem.202410.1016/j.procbio.2024.04.026
    [Google Scholar]
  67. KeerthigaN. AnithaR. S RajeshkumarR. LakshmiT. Antioxidant activity of cumin oil mediated silver nanoparticles.Pharmacogn. J.201911478778910.5530/pj.2019.11.125
    [Google Scholar]
  68. MajumdarR. KarP.K. Biosynthesis, characterization and anthelmintic activity of silver nanoparticles of Clerodendrum infortunatum isolate.Sci. Rep.2023131741510.1038/s41598‑023‑34221‑937150767
    [Google Scholar]
  69. PreetS. TomarR.S. Anthelmintic effect of biofabricated silver nanoparticles using Ziziphus jujuba leaf extract on nutritional status of Haemonchus contortus.Small Rumin. Res.2017154455110.1016/j.smallrumres.2017.07.002
    [Google Scholar]
  70. OliveiraL. da SilvaU. BragaJ.P. TeixeiraÁ. RibonA. VarejãoE. CoelhoE. de FreitasC. TeixeiraR. MoreiraR. Green synthesis, characterization and antibacterial and leishmanicidal activities of silver nanoparticles obtained from aqueous extract of eucalyptus grandis.J. Braz. Chem. Soc.20233452753610.21577/0103‑5053.20220126
    [Google Scholar]
  71. GuerraR.O. do Carmo NetoJ.R. de Albuquerque MartinsT. Farnesi de-AssunçãoT.S. JuniorV.R. de OliveiraC.J.F. SilvaA.C.A. da SilvaM.V. Metallic nanoparticles: A new frontier in the fight against leishmaniasis.Curr. Med. Chem.202229264547457310.2174/092986732966622022511105235220932
    [Google Scholar]
  72. UllahI CosarG AbamorES BagirovaM ShinwariZK AllahverdiyevAM Comparative study on the antileishmanial activities of chemically and biologically synthesized silver nanoparticles (AgNPs).3 Biotech.2018818
    [Google Scholar]
  73. KitimuS.R. KiriraP. AbdilleA.A. SokeiJ. Ochwang’iD. MwitariP. MakanyaA. MainaN. Anti-angiogenic and anti-metastatic effects of biogenic silver nanoparticles synthesized using Azadirachta indica.Adv. Biosci. Biotechnol.202213418820610.4236/abb.2022.134010
    [Google Scholar]
  74. SubramaniamP. NishaK.J. VanithaA. KiruthikaM.L. SindhuP. ElesawyB.H. Synthesis of silver nanoparticles from wild and tissue cultured Ceropegia juncea plants and its antibacterial, anti-angiogenesis and cytotoxic activities.Appl. Nanosci.20212021115
    [Google Scholar]
  75. SharmaR SrivastavaN. Plant Mediated silver nanoparticles and mode of action in cancer therapy: A review.Anticancer Agents Med Chem.202121141793180110.2174/1871520621666201207085900
    [Google Scholar]
  76. HossainN. IslamM.A. ChowdhuryM.A. Synthesis and characterization of plant extracted silver nanoparticles and advances in dental implant applications.Heliyon2022812e1231310.1016/j.heliyon.2022.e1231336590472
    [Google Scholar]
  77. AhmedS.F. MofijurM. RafaN. ChowdhuryA.T. ChowdhuryS. NahrinM. IslamA.B.M.S. OngH.C. Green approaches in synthesising nanomaterials for environmental nanobioremediation: Technological advancements, applications, benefits and challenges.Environ. Res.2022204Pt A11196710.1016/j.envres.2021.11196734450159
    [Google Scholar]
  78. PetersenE.J. CegerP. AllenD.G. CoyleJ. DerkR. Garcia-ReyeroN. GordonJ. KleinstreuerN.C. MathesonJ. McShanD. NelsonB.C. PatriA.K. RiceP. RojanasakulL. SasidharanA. ScaranoL. ChangX. U.S. Federal Agency interests and key considerations for new approach methodologies for nanomaterials.Altern. Anim. Exp.202239218320634874455
    [Google Scholar]
  79. KowalczykP. SzymczakM. MaciejewskaM. LaskowskiŁ. LaskowskaM. OstaszewskiR. SkibaG. Franiak-PietrygaI. All that glitters is not silver—a new look at microbiological and medical applications of silver nanoparticles.Int. J. Mol. Sci.202122285410.3390/ijms2202085433467032
    [Google Scholar]
/content/journals/cnanom/10.2174/0124681873309773240515043837
Loading
/content/journals/cnanom/10.2174/0124681873309773240515043837
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test