Skip to content
2000
Volume 15, Issue 4
  • ISSN: 2468-1873
  • E-ISSN: 2468-1881

Abstract

Breast cancer is one of the most widespread and lethal malignancies afflicting females globally. The global incidence of breast cancer is on the rise, with an anticipated 4.4 million cases by 2070. Notably, breast cancer constitutes approximately 25% of all cancer diagnoses. In the realm of biomedical sciences, nanotechnology has ushered in a transformative era, particularly in cancer therapy and diagnostics. Nanoparticles offer the capability to tailor specific sizes, with elevated surface-to-volume ratios proving advantageous for drug distribution by ensuring a substantial medicines loading volume. Gold nanoparticles exhibit a remarkable selectivity for cancer cells, primarily attributed to the heightened permeability and retaining effects. This study aims to assess the effectiveness of gold nanoparticles in breast cancer therapy, comparing them with traditional techniques from previous research and elucidating their mechanism of action. Data for analysis were sourced from various platforms, including Web of Science and Google Scholar, comprising previously published information. Analysis revealed that historical studies employed conventional techniques for breast cancer therapy. However, contemporary approaches now favor nanomedicine, incorporating diverse drugs and delivery systems, surpassing traditional methods. In summary, nanomedicine emerges as an exceptionally effective mode of breast cancer treatment when juxtaposed with conventional approaches. Previous research also underscores the efficacy of gold nanoparticles as a viable treatment modality. Currently, a spectrum of nanomedicines, including gold nanoparticles, serves as a promising avenue for suppressing tumor development in breast cancer patients

Loading

Article metrics loading...

/content/journals/cnanom/10.2174/0124681873309222240426071220
2025-08-01
2025-10-11
Loading full text...

Full text loading...

References

  1. R MokoenaD. P GeorgeB. AbrahamseH. Enhancing breast cancer treatment using a combination of cannabidiol and gold nanoparticles for photodynamic therapy.Int. J. Mol. Sci.20192019477110.3390/ijms2019477131561450
    [Google Scholar]
  2. BrayF. FerlayJ. SoerjomataramI. SiegelR.L. TorreL.A. JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.201868639442410.3322/caac.2149230207593
    [Google Scholar]
  3. KesharwaniP. BanerjeeS. GuptaU. Mohd AminM.C.I. PadhyeS. SarkarF.H. IyerA.K. PAMAM dendrimers as promising nanocarriers for RNAi therapeutics.Mater. Today2015181056557210.1016/j.mattod.2015.06.003
    [Google Scholar]
  4. SoerjomataramI. BrayF. Planning for tomorrow: Global cancer incidence and the role of prevention 2020–2070.Nat. Rev. Clin. Oncol.2021181066367210.1038/s41571‑021‑00514‑z34079102
    [Google Scholar]
  5. ZhangJ. LuY. ZhangN. YuZ. LiH. HeR. MaoY. ZhuB. Global burden of female breast cancer and its association with socioeconomic development status, 1990–2044.Cancer Rep.20236S1Suppl. 1e182710.1002/cnr2.182737095062
    [Google Scholar]
  6. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  7. DesaiA. ScheckelC. JensenC.J. OrmeJ. WilliamsC. ShahN. LeventakosK. AdjeiA.A. Trends in prices of drugs used to treat metastatic non–small cell lung cancer in the US from 2015 to 2020.JAMA Netw. Open202251e214492310.1001/jamanetworkopen.2021.4492335076701
    [Google Scholar]
  8. PengL. WangZ. StebbingJ. YuZ. Novel immunotherapeutic drugs for the treatment of lung cancer.Curr. Opin. Oncol.2022341899410.1097/CCO.000000000000080034636350
    [Google Scholar]
  9. XuM. PengR. MinQ. HuiS. ChenX. YangG. QinS. Bisindole natural products: A vital source for the development of new anticancer drugs.Eur. J. Med. Chem.202224311474810.1016/j.ejmech.2022.11474836170798
    [Google Scholar]
  10. ZigrossiA. HongL.K. EkyalongoR.C. Cruz-AlvarezC. GornickE. DiamondA.M. KastratiI. SELENOF is a new tumor suppressor in breast cancer.Oncogene20224191263126810.1038/s41388‑021‑02158‑w35082382
    [Google Scholar]
  11. ChhikaraB.S. ParangK. Global cancer statistics 2022: The trends projection analysis.Chemical Biology Letters2023101451
    [Google Scholar]
  12. CheungE.C. VousdenK.H. The role of ROS in tumour development and progression.Nat. Rev. Cancer202222528029710.1038/s41568‑021‑00435‑035102280
    [Google Scholar]
  13. KumariS. SharmaV. TiwariR. MauryaJ.P. SubudhiB.B. SenapatiD. Therapeutic potential of p53 reactivation in prostate cancer: Strategies and opportunities.Eur. J. Pharmacol.202291917480710.1016/j.ejphar.2022.17480735151649
    [Google Scholar]
  14. PragerG.W. BragaS. BystrickyB. QvortrupC. CriscitielloC. EsinE. SonkeG.S. MartínezG. FrenelJ.S. KaramouzisM. StrijbosM. YaziciO. BossiP. BanerjeeS. TroianiT. EniuA. CiardielloF. TaberneroJ. ZielinskiC.C. CasaliP.G. CardosoF. DouillardJ.Y. JezdicS. McGregorK. BricalliG. VyasM. IlbawiA. Global cancer control: Responding to the growing burden, rising costs and inequalities in access.ESMO Open201832e00028510.1136/esmoopen‑2017‑00028529464109
    [Google Scholar]
  15. FerlayJ. SoerjomataramI. DikshitR. EserS. MathersC. RebeloM. ParkinD.M. FormanD. BrayF. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012.Int. J. Cancer20151365E359E38610.1002/ijc.2921025220842
    [Google Scholar]
  16. RizzaP. PellegrinoM. CarusoA. IacopettaD. SinicropiM.S. RaultS. LancelotJ.C. El-KashefH. LesnardA. RochaisC. DallemagneP. SaturninoC. GiordanoF. CatalanoS. AndòS. 3-(Dipropylamino)-5-hydroxybenzofuro[2,3-f]quinazolin-1(2H)-one (DPA-HBFQ-1) plays an inhibitory role on breast cancer cell growth and progression.Eur. J. Med. Chem.201610727528710.1016/j.ejmech.2015.11.00426599533
    [Google Scholar]
  17. FerlayJ. ShinH.R. BrayF. FormanD. MathersC. ParkinD.M. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008.Int. J. Cancer2010127122893291710.1002/ijc.2551621351269
    [Google Scholar]
  18. AkramM. IqbalM. DaniyalM. KhanA.U. Awareness and current knowledge of breast cancer.Biol. Res.20175013310.1186/s40659‑017‑0140‑928969709
    [Google Scholar]
  19. SakK. Chemotherapy and dietary phytochemical agents.Chemother. Res. Pract.2012201228257028257023320169
    [Google Scholar]
  20. GradisharW.J. AndersonB.O. BalassanianR. BlairS.L. BursteinH.J. CyrA. EliasA.D. FarrarW.B. ForeroA. GiordanoS.H. GoetzM.P. GoldsteinL.J. IsakoffS.J. LyonsJ. MarcomP.K. MayerI.A. McCormickB. MoranM.S. O’ReganR.M. PatelS.A. PierceL.J. ReedE.C. SalernoK.E. SchwartzbergL.S. SitapatiA. SmithK.L. SmithM.L. SolimanH. SomloG. TelliM.L. WardJ.H. KumarR. SheadD.A. Breast cancer, version 4.2017, NCCN clinical practice guidelines in oncology.J. Natl. Compr. Canc. Netw.201816331032010.6004/jnccn.2018.001229523670
    [Google Scholar]
  21. KhanI. KumarH. MishraG. GothwalA. KesharwaniP. GuptaU. Polymeric nanocarriers: A new horizon for the effective management of breast cancer.Curr. Pharm. Des.201723355315532628875848
    [Google Scholar]
  22. ShenX. LiT. ChenZ. XieX. ZhangH. FengY. LiS. QinX. YangH. WuC. ZhengC. ZhuJ. YouF. LiuY. NIR-light-triggered anticancer strategy for dual-modality imaging-guided combination therapy via a bioinspired hybrid PLGA nanoplatform.Mol. Pharm.20191631367138410.1021/acs.molpharmaceut.8b0132130776896
    [Google Scholar]
  23. WaksA.G. WinerE.P. Breast cancer treatment: A review.JAMA2019321328830010.1001/jama.2018.1932330667505
    [Google Scholar]
  24. ShumanA.G. The evolving nomenclature of thyroid cancer.JAMA Otolaryngol. Head Neck Surg.20181441087487510.1001/jamaoto.2018.127130335872
    [Google Scholar]
  25. GillM.I. SaqibF. Comparitive analysis of demographic, fertility and urban transition in Pakistan and the world around.Pak. Geogr. Rev2019743347
    [Google Scholar]
  26. MariottoA.B. Robin YabroffK. ShaoY. FeuerE.J. BrownM.L. Projections of the cost of cancer care in the United States: 2010-2020.J. Natl. Cancer Inst.2011103211712810.1093/jnci/djq49521228314
    [Google Scholar]
  27. WangX. Advances of cancer therapy by nanotechnology.Cancer Res Treat.200941111110.4143/crt.2009.41.1.1
    [Google Scholar]
  28. ByrneJ.D. BetancourtT. Brannon-PeppasL. Active targeting schemes for nanoparticle systems in cancer therapeutics.Adv. Drug Deliv. Rev.200860151615162610.1016/j.addr.2008.08.00518840489
    [Google Scholar]
  29. JoshiP. ChakrabortiS. Ramirez-VickJ.E. AnsariZ.A. ShankerV. ChakrabartiP. SinghS.P. The anticancer activity of chloroquine-gold nanoparticles against MCF-7 breast cancer cells.Colloids Surf. B Biointerfaces20129519520010.1016/j.colsurfb.2012.02.03922445746
    [Google Scholar]
  30. GrefR. MinamitakeY. PeracchiaM.T. TrubetskoyV. TorchilinV. LangerR. Biodegradable long-circulating polymeric nanospheres.Science199426351531600160310.1126/science.81282458128245
    [Google Scholar]
  31. MajidiS. Zeinali SehrigF. SamieiM. MilaniM. AbbasiE. DadashzadehK. AkbarzadehA. Magnetic nanoparticles: Applications in gene delivery and gene therapy.Artif. Cells Nanomed. Biotechnol.20164441186119325727710
    [Google Scholar]
  32. ChenY. WuY. GaoJ. ZhangZ. WangL. ChenX. MiJ. YaoY. GuanD. ChenB. DaiJ. Transdermal vascular endothelial growth factor delivery with surface engineered gold nanoparticles.ACS Appl. Mater. Interfaces2017965173518010.1021/acsami.6b1591428112909
    [Google Scholar]
  33. ChoiS.W. KimW.S. KimJ.H. Surface modification of functional nanoparticles for controlled drug delivery.J. Dispers. Sci. Technol.2003243-447548710.1081/DIS‑120021803
    [Google Scholar]
  34. SukK.H. GopinathS.C.B. Drug encapsulated nanoparticles for treating targeted cells.Curr. Med. Chem.201724303310332128464786
    [Google Scholar]
  35. Al-RadadiN.S. Facile one-step green synthesis of gold nanoparticles (AuNp) using licorice root extract: Antimicrobial and anticancer study against HepG2 cell line.Arab. J. Chem.202114210295610.1016/j.arabjc.2020.102956
    [Google Scholar]
  36. DeokarG.K. IngaleA. Green synthesis and study of crystallinity of AuNps.Acta Cryst.201773C49610.1107/S2053273317090775
    [Google Scholar]
  37. DeokarG.K. IngaleA.G. Green synthesis of gold nanoparticles (Elixir of Life) from banana fruit waste extract – an efficient multifunctional agent.RSC Advances2016678746207462910.1039/C6RA14567A
    [Google Scholar]
  38. SinghJ. DuttaT. KimK.H. RawatM. SamddarP. KumarP. ‘Green’ synthesis of metals and their oxide nanoparticles: Applications for environmental remediation.J. Nanobiotechnology20181618410.1186/s12951‑018‑0408‑430373622
    [Google Scholar]
  39. MohammadinejadR. KarimiS. IravaniS. VarmaR.S. Plant-derived nanostructures: Types and applications.Green Chem.2016181205210.1039/C5GC01403D
    [Google Scholar]
  40. VermaA. GautamS. BansalK. PrabhakarN. RosenholmJ. Green nanotechnology: Advancement in phytoformulation research.Medicines (Basel)2019613910.3390/medicines601003930875823
    [Google Scholar]
  41. AhmedS. AhmadM. SwamiB.L. IkramS. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise.J. Adv. Res.201671172810.1016/j.jare.2015.02.00726843966
    [Google Scholar]
  42. KuppusamyP. YusoffM.M. ManiamG.P. GovindanN. Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications – An updated report.Saudi Pharm. J.201624447348410.1016/j.jsps.2014.11.01327330378
    [Google Scholar]
  43. Al-RadadiN.S. Green synthesis of platinum nanoparticles using Saudi’s Dates extract and their usage on the cancer cell treatment.Arab. J. Chem.201912333034910.1016/j.arabjc.2018.05.008
    [Google Scholar]
  44. Al-RadadiN.S. Artichoke (Cynara scolymus L.,) mediated rapid analysis of silver nanoparticles and their utilisation on the cancer cell treatments.J. Comput. Theor. Nanosci.20181561818182910.1166/jctn.2018.7317
    [Google Scholar]
  45. Al-RadadiN.S. AdamS.I.Y. Green biosynthesis of Pt-nanoparticles from Anbara fruits: Toxic and protective effects on CCl4 induced hepatotoxicity in Wister rats.Arab. J. Chem.20201324386440310.1016/j.arabjc.2019.08.008
    [Google Scholar]
  46. LiJ.J. HartonoD. OngC.N. BayB.H. YungL.Y.L. Autophagy and oxidative stress associated with gold nanoparticles.Biomaterials201031235996600310.1016/j.biomaterials.2010.04.01420466420
    [Google Scholar]
  47. ZhangQ. YangW. ManN. ZhengF. ShenY. SunK. LiY. WenL.P. Autophagy-mediated chemosensitization in cancer cells by fullerene C60 nanocrystal.Autophagy2009581107111710.4161/auto.5.8.984219786831
    [Google Scholar]
  48. HongH. ShiJ. YangY. ZhangY. EngleJ.W. NicklesR.J. WangX. CaiW. Cancer-targeted optical imaging with fluorescent zinc oxide nanowires.Nano Lett.20111193744375010.1021/nl201782m21823599
    [Google Scholar]
  49. WeiP. ZhangL. LuY. ManN. WenL. C60(Nd) nanoparticles enhance chemotherapeutic susceptibility of cancer cells by modulation of autophagy.Nanotechnology2010214949510110.1088/0957‑4484/21/49/49510121071824
    [Google Scholar]
  50. YamawakiH. IwaiN. Cytotoxicity of water-soluble fullerene in vascular endothelial cells.Am. J. Physiol. Cell Physiol.20062906C1495C150210.1152/ajpcell.00481.200516407415
    [Google Scholar]
  51. SeleverstovO. ZabirnykO. ZscharnackM. BulavinaL. NowickiM. HeinrichJ.M. YezhelyevM. EmmrichF. O’ReganR. BaderA. Quantum dots for human mesenchymal stem cells labeling. A size-dependent autophagy activation.Nano Lett.20066122826283210.1021/nl061971117163713
    [Google Scholar]
  52. SternS.T. ZolnikB.S. McLelandC.B. ClogstonJ. ZhengJ. McNeilS.E. Induction of autophagy in porcine kidney cells by quantum dots: A common cellular response to nanomaterials?Toxicol. Sci.2008106114015210.1093/toxsci/kfn13718632727
    [Google Scholar]
  53. AnkamwarB. LaiT.C. HuangJ.H. LiuR.S. HsiaoM. ChenC.H. HwuY.K. Biocompatibility of Fe3O4 nanoparticles evaluated by in vitro cytotoxicity assays using normal, glia and breast cancer cells.Nanotechnology201021707510210.1088/0957‑4484/21/7/07510220090199
    [Google Scholar]
  54. TangH. ChenJ. NieL. KuangY. YaoS. A label-free electrochemical immunoassay for carcinoembryonic antigen (CEA) based on gold nanoparticles (AuNPs) and nonconductive polymer film.Biosens. Bioelectron.20072261061106710.1016/j.bios.2006.04.02716797959
    [Google Scholar]
  55. BedfordE.E. SpadavecchiaJ. PradierC.M. GuF.X. Surface plasmon resonance biosensors incorporating gold nanoparticles.Macromol. Biosci.201212672473910.1002/mabi.20110043522416018
    [Google Scholar]
  56. DuncanB. KimC. RotelloV.M. Gold nanoparticle platforms as drug and biomacromolecule delivery systems.J. Control. Release2010148112212710.1016/j.jconrel.2010.06.00420547192
    [Google Scholar]
  57. BooteE. FentG. KattumuriV. CasteelS. KattiK. ChandaN. KannanR. KattiK. ChurchillR. Gold nanoparticle contrast in a phantom and juvenile swine: Models for molecular imaging of human organs using x-ray computed tomography.Acad. Radiol.201017441041710.1016/j.acra.2010.01.00620207313
    [Google Scholar]
  58. ConnorE.E. MwamukaJ. GoleA. MurphyC.J. WyattM.D. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity.Small20051332532710.1002/smll.20040009317193451
    [Google Scholar]
  59. DreadenE.C. MackeyM.A. HuangX. KangB. El-SayedM.A. Beating cancer in multiple ways using nanogold.Chem. Soc. Rev.20114073391340410.1039/c0cs00180e21629885
    [Google Scholar]
  60. XiaoJ. QiL. Surfactant-assisted, shape-controlled synthesis of gold nanocrystals.Nanoscale2011341383139610.1039/c0nr00814a21290042
    [Google Scholar]
  61. PopovtzerR. AgrawalA. KotovN.A. PopovtzerA. BalterJ. CareyT.E. KopelmanR. Targeted gold nanoparticles enable molecular CT imaging of cancer.Nano Lett.20088124593459610.1021/nl802911419367807
    [Google Scholar]
  62. JyotiA. PandeyP. SinghS.P. JainS.K. ShankerR. Colorimetric detection of nucleic acid signature of shiga toxin producing Escherichia coli using gold nanoparticles.J. Nanosci. Nanotechnol.20101074154415810.1166/jnn.2010.264921128394
    [Google Scholar]
  63. AlexanderC.M. MayeM.M. DabrowiakJ.C. DNA-capped nanoparticles designed for doxorubicin drug delivery.Chem. Commun. (Camb.)201147123418342010.1039/c0cc04916f21286626
    [Google Scholar]
  64. HwuJ.R. LinY.S. JosephrajanT. HsuM.H. ChengF.Y. YehC.S. SuW.C. ShiehD.B. Targeted Paclitaxel by conjugation to iron oxide and gold nanoparticles.J. Am. Chem. Soc.20091311666810.1021/ja804947u19072111
    [Google Scholar]
  65. KuoT.R. HovhannisyanV.A. ChaoY.C. ChaoS.L. ChiangS.J. LinS.J. DongC.Y. ChenC.C. Multiple release kinetics of targeted drug from gold nanorod embedded polyelectrolyte conjugates induced by near-infrared laser irradiation.J. Am. Chem. Soc.201013240141631417110.1021/ja105360z20857981
    [Google Scholar]
  66. WangJ. ZhangG. LiQ. JiangH. LiuC. AmatoreC. WangX. in vivo self-bio-imaging of tumors through in situ biosynthesized fluorescent gold nanoclusters.Sci. Rep.201331115710.1038/srep0115723362457
    [Google Scholar]
  67. ChienC.C. ChenH.H. LaiS.F. WuK.C. CaiX. HwuY. PetiboisC. ChuY. MargaritondoG. Gold nanoparticles as high-resolution X-ray imaging contrast agents for the analysis of tumor-related micro-vasculature.J. Nanobiotechnology20121011010.1186/1477‑3155‑10‑1022409971
    [Google Scholar]
  68. HuangX. El-SayedI.H. QianW. El-SayedM.A. Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: A potential cancer diagnostic marker.Nano Lett.2007761591159710.1021/nl070472c17474783
    [Google Scholar]
  69. El-SayedI.H. HuangX. El-SayedM.A. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer.Nano Lett.20055582983410.1021/nl050074e15884879
    [Google Scholar]
  70. VijayakumarS. GanesanS. Size-dependent in vitro cytotoxicity assay of gold nanoparticles.Toxicol. Environ. Chem.201395227728710.1080/02772248.2013.770858
    [Google Scholar]
  71. AshaRaniP.V. Low Kah MunG. HandeM.P. ValiyaveettilS. Cytotoxicity and genotoxicity of silver nanoparticles in human cells.ACS Nano20093227929010.1021/nn800596w19236062
    [Google Scholar]
  72. KhanT. UllahN. KhanM.A. MashwaniZ.R. NadhmanA. Plant- based gold nanoparticles; a comprehensive review of the decade- long research on synthesis, mechanistic aspects and diverse applications.Adv. Colloid Interface Sci.201927210201710.1016/j.cis.2019.10201731437570
    [Google Scholar]
  73. RajeshkumarS. SherifM.H. MalarkodiC. PonnanikajamideenM. ArasuM.V. Al-DhabiN.A. RoopanS.M. Cytotoxicity behaviour of response surface model optimized gold nanoparticles by utilizing fucoidan extracted from padina tetrastromatica.J. Mol. Struct.2021122812944010.1016/j.molstruc.2020.129440
    [Google Scholar]
  74. SunderamV. ThiyagarajanD. LawrenceA.V. MohammedS.S.S. SelvarajA. In-vitro antimicrobial and anticancer properties of green synthesized gold nanoparticles using Anacardium occidentale leaves extract.Saudi J. Biol. Sci.201926345545910.1016/j.sjbs.2018.12.00130899157
    [Google Scholar]
  75. Ru HwuJ. Chieh LinC. Hsien ChuangS. Yung KingK. SuT.R. TsayS.C. Aminyl and iminyl radicals from arylhydrazones in the photo-induced DNA cleavage.Bioorg. Med. Chem.200412102509251510.1016/j.bmc.2004.03.03715110832
    [Google Scholar]
  76. CerutiJ.M. ScassaM.E. FlóJ.M. VaroneC.L. CánepaE.T. Induction of p19INK4d in response to ultraviolet light improves DNA repair and confers resistance to apoptosis in neuroblastoma cells.Oncogene200524254065408010.1038/sj.onc.120857015750620
    [Google Scholar]
  77. Uma SuganyaK.S. GovindarajuK. Ganesh KumarV. Stalin DhasT. KarthickV. SingaraveluG. ElanchezhiyanM. Blue green alga mediated synthesis of gold nanoparticles and its antibacterial efficacy against Gram positive organisms.Mater. Sci. Eng. C20154735135610.1016/j.msec.2014.11.04325492207
    [Google Scholar]
  78. KarthickV. KumarV.G. DhasT.S. SingaraveluG. SadiqA.M. GovindarajuK. Effect of biologically synthesized gold nanoparticles on alloxan-induced diabetic rats—An in vivo approach.Colloids Surf. B Biointerfaces201412250551110.1016/j.colsurfb.2014.07.02225092583
    [Google Scholar]
  79. ShedbalkarU. SinghR. WadhwaniS. GaidhaniS. ChopadeB.A. Microbial synthesis of gold nanoparticles: Current status and future prospects.Adv. Colloid Interface Sci.2014209404810.1016/j.cis.2013.12.01124456802
    [Google Scholar]
  80. SchröfelA. KratošováG. ŠafaříkI. ŠafaříkováM. RaškaI. ShorL.M. Applications of biosynthesized metallic nanoparticles – A review.Acta Biomater.201410104023404210.1016/j.actbio.2014.05.02224925045
    [Google Scholar]
  81. KajaniA.A. BordbarA-K. Zarkesh EsfahaniS.H. RazmjouA. Gold nanoparticles as potent anticancer agent: Green synthesis, characterization, and in vitro study.RSC Advances2016668639736398310.1039/C6RA09050H
    [Google Scholar]
  82. KhandanlouR. MurthyV. SaranathD. DamaniH. Synthesis and characterization of gold-conjugated Backhousia citriodora nanoparticles and their anticancer activity against MCF-7 breast and HepG2 liver cancer cell lines.J. Mater. Sci.20185353106311810.1007/s10853‑017‑1756‑4
    [Google Scholar]
  83. MohanU.P. SriramB. PanneerselvamT. DevarajS. MubarakAliD. ParasuramanP. PalanisamyP. PremanandA. ArunachalamS. KunjiappanS. Utilization of plant-derived Myricetin molecule coupled with ultrasound for the synthesis of gold nanoparticles against breast cancer.Naunyn Schmiedebergs Arch. Pharmacol.2020393101963197610.1007/s00210‑020‑01874‑632468137
    [Google Scholar]
  84. Uma SuganyaK.S. Anti-proliferative effect of biogenic gold nanoparticles against breast cancer cell lines (MDA-MB-231 & MCF-7).Appl. Surf. Sci.201637141542410.1016/j.apsusc.2016.03.004
    [Google Scholar]
  85. JoshiP. ChakrabortyS. DeyS. ShankerV. AnsariZ.A. SinghS.P. ChakrabartiP. Binding of chloroquine–conjugated gold nanoparticles with bovine serum albumin.J. Colloid Interface Sci.2011355240240910.1016/j.jcis.2010.12.03221216410
    [Google Scholar]
  86. Al-RadadiN.S. Green biosynthesis of flaxseed gold nanoparticles (Au-NPs) as potent anti-cancer agent against breast cancer cells.J. Saudi Chem. Soc.202125610124310.1016/j.jscs.2021.101243
    [Google Scholar]
  87. MuddinetiO.S. KumariP. AjjarapuS. LakhaniP.M. BahlR. GhoshB. BiswasS. Xanthan gum stabilized PEGylated gold nanoparticles for improved delivery of curcumin in cancer.Nanotechnology2016273232510110.1088/0957‑4484/27/32/32510127348749
    [Google Scholar]
  88. DeviL. GuptaR. JainS.K. SinghS. KesharwaniP. Synthesis, characterization and in vitro assessment of colloidal gold nanoparticles of Gemcitabine with natural polysaccharides for treatment of breast cancer.J. Drug Deliv. Sci. Technol.20205610156510.1016/j.jddst.2020.101565
    [Google Scholar]
  89. MukherjeeS. SushmaV. PatraS. BaruiA.K. BhadraM.P. SreedharB. PatraC.R. Green chemistry approach for the synthesis and stabilization of biocompatible gold nanoparticles and their potential applications in cancer therapy.Nanotechnology2012234545510310.1088/0957‑4484/23/45/45510323064012
    [Google Scholar]
  90. SelimM.E. HendiA.A. Gold nanoparticles induce apoptosis in MCF-7 human breast cancer cells.Asian Pac. J. Cancer Prev.20121341617162010.7314/APJCP.2012.13.4.161722799377
    [Google Scholar]
  91. ChuangS.M. LeeY.H. LiangR.Y. RoamG.D. ZengZ.M. TuH.F. WangS.K. ChuehP.J. Extensive evaluations of the cytotoxic effects of gold nanoparticles.Biochim. Biophys. Acta, Gen. Subj.20131830104960497310.1016/j.bbagen.2013.06.02523811345
    [Google Scholar]
  92. Priya M RK. IyerP.R. Antiproliferative effects on tumor cells of the synthesized gold nanoparticles against Hep2 liver cancer cell line.Egyptian Liver Journal20201011510.1186/s43066‑020‑0017‑4
    [Google Scholar]
  93. KudgusR.A. BhattacharyaR. MukherjeeP. Cancer nanotechnology: Emerging role of gold nanoconjugates.Anticancer. Agents Med. Chem.2011111096597310.2174/18715201179792765221864234
    [Google Scholar]
  94. DuanH. LiuY. GaoZ. HuangW. Recent advances in drug delivery systems for targeting cancer stem cells.Acta Pharm. Sin. B2021111557010.1016/j.apsb.2020.09.01633532180
    [Google Scholar]
  95. MaedaH. WuJ. SawaT. MatsumuraY. HoriK. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review.J. Control. Release2000651-227128410.1016/S0168‑3659(99)00248‑510699287
    [Google Scholar]
  96. BriggerI. DubernetC. CouvreurP. Nanoparticles in cancer therapy and diagnosis.Adv. Drug Deliv. Rev.201264243610.1016/j.addr.2012.09.00612204596
    [Google Scholar]
  97. AttiaM.F. AntonN. WallynJ. OmranZ. VandammeT.F. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites.J. Pharm. Pharmacol.20197181185119810.1111/jphp.1309831049986
    [Google Scholar]
  98. HuynhN.T. PassiraniC. SaulnierP. BenoitJ.P. Lipid nanocapsules: A new platform for nanomedicine.Int. J. Pharm.2009379220120910.1016/j.ijpharm.2009.04.02619409468
    [Google Scholar]
  99. MaedaH. Tumor-selective delivery of macromolecular drugs via the EPR effect: Background and future prospects.Bioconjug. Chem.201021579780210.1021/bc100070g20397686
    [Google Scholar]
  100. IacopettaD. GrandeF. CarusoA. MordoccoR.A. PlutinoM.R. ScrivanoL. CeramellaJ. MuiàN. SaturninoC. PuociF. RosanoC. SinicropiM.S. New insights for the use of quercetin analogs in cancer treatment.Future Med. Chem.20179172011202810.4155/fmc‑2017‑011829076772
    [Google Scholar]
  101. CrousA. AbrahamseH. Effective gold nanoparticle-antibody-mediated drug delivery for photodynamic therapy of lung cancer stem cells.Int. J. Mol. Sci.20202111374210.3390/ijms2111374232466428
    [Google Scholar]
  102. BhowmikT. GomesA. Down–regulation of cyclin–dependent kinase-4 and MAPK through estrogen receptor mediated cell cycle arrest in human breast cancer induced by gold nanoparticle tagged toxin protein NKCT1.Chem. Biol. Interact.201726811912810.1016/j.cbi.2017.03.00928322778
    [Google Scholar]
  103. BalakrishnanS. MukherjeeS. DasS. BhatF.A. Raja SinghP. PatraC.R. ArunakaranJ. Gold nanoparticles–conjugated quercetin induces apoptosis via inhibition of EGFR/PI3K/Akt–mediated pathway in breast cancer cell lines (MCF-7 and MDA-MB-231).Cell Biochem. Funct.201735421723110.1002/cbf.326628498520
    [Google Scholar]
  104. VemuriS.K. HalderS. BanalaR.R. RachamallaH.K. DevrajV.M. MallarpuC.S. NeeruduU.K. BodlapatiR. MukherjeeS. VenkataS.G.P. VenkataG.R.A. ThakkumalaiM. JanaK. Modulatory effects of biosynthesized gold nanoparticles conjugated with curcumin and paclitaxel on tumorigenesis and metastatic pathways— in vitro and in vivo studies.Int. J. Mol. Sci.2022234215010.3390/ijms2304215035216264
    [Google Scholar]
  105. YangF. HeQ. DaiX. ZhangX. SongD. The potential role of nanomedicine in the treatment of breast cancer to overcome the obstacles of current therapies.Front. Pharmacol.202314114310210.3389/fphar.2023.114310236909177
    [Google Scholar]
  106. XingJ. Gold-Based Nanoparticles for Breast Cancer Diagnosis and Treatment.2007 IEEE International Symposium on Circuits and Systems (ISCAS)27-30 May 2007New Orleans, LA, USA200710.1109/ISCAS.2007.378774
    [Google Scholar]
  107. IeloI. IacopettaD. SaturninoC. LongoP. GallettaM. DrommiD. RosaceG. SinicropiM.S. PlutinoM.R. Gold derivatives development as prospective anticancer drugs for breast cancer treatment.Appl. Sci. (Basel)2021115208910.3390/app11052089
    [Google Scholar]
  108. AlshareedaA.T. Nur KhatijahM.Z. Al-SowayanB.S. Nanotechnology: A revolutionary approach to prevent breast cancer recurrence.Asian J. Surg.2023461131710.1016/j.asjsur.2022.03.00235361551
    [Google Scholar]
  109. El-DeebN.M. KhattabS.M. Abu-YoussefM.A. BadrA.M.A. Green synthesis of novel stable biogenic gold nanoparticles for breast cancer therapeutics via the induction of extrinsic and intrinsic pathways.Sci. Rep.20221211151810.1038/s41598‑022‑15648‑y35798780
    [Google Scholar]
  110. NawazY. MunirS. TanvirF. UmarA. AliM. Nanoparticle’s efficacy in the suppression of heavy metals that affect breast cancer progression.J Shifa Tameer-e-Millat Uni.20246210611210.32593/jstmu/Vol6.Iss2.255
    [Google Scholar]
/content/journals/cnanom/10.2174/0124681873309222240426071220
Loading
/content/journals/cnanom/10.2174/0124681873309222240426071220
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test