Skip to content
2000
Volume 15, Issue 4
  • ISSN: 2468-1873
  • E-ISSN: 2468-1881

Abstract

Cancer is the second leading cause of global mortality. Modern medical technologies, including chemotherapy, radiation treatment, and surgery, are extending the lifespan of cancer patients. The potential of nano medicine opens up a new way to get over the restrictions of traditional cancer treatments. Due to their unique basic features, gold nanoparticles (AuNPs) have been extensively explored and used in the field of tumor diagnostics and therapy. Two perspectives are presented on the physical and chemical aspects of AuNPs' characteristics. Localized surface plasmon resonance (LSPR), radioactivity, and a high X-ray absorption coefficient are among the physical characteristics of AuNPs that are commonly employed in tumor diagnostics and therapy. AuNPs also have some advantages like customizable size and shape, as well as various physiochemical properties. Additionally, they can effectively encapsulate drugs to enable simultaneous therapy and incorporate supplementary imaging labels. Recent research has emphasized the use of multifunctional AuNPs in techniques that involve simultaneous diagnosis and therapy. This article explores the use of AuNPs in cancer diagnosis and treatment, detailing clinical trials and providing insights for researchers on their physiochemical properties.

Loading

Article metrics loading...

/content/journals/cnanom/10.2174/0124681873309210240525182209
2024-06-07
2025-10-11
Loading full text...

Full text loading...

References

  1. BoisselierE. AstrucD. Gold nanoparticles in nanomedicine: Preparations, imaging, diagnostics, therapies and toxicity.Chem. Soc. Rev.20093861759178210.1039/b806051g19587967
    [Google Scholar]
  2. OnaciuA. BraicuC. ZimtaA.A. MoldovanA. StiufiucR. BuseM. CiocanC. BuduruS. Berindan-NeagoeI. Gold nanorods: From anisotropy to opportunity. An evolution update.Nanomedicine20191491203122610.2217/nnm‑2018‑040931075049
    [Google Scholar]
  3. VucicS. KiernanM.C. MenonP. HuynhW. RyndersA. HoK.S. GlanzmanR. HotchkinM.T. Study protocol of RESCUE-ALS: A Phase 2, randomised, double-blind, placebo-controlled study in early symptomatic amyotrophic lateral sclerosis patients to assess bioenergetic catalysis with CNM-Au8 as a mechanism to slow disease progression.BMJ Open2021111e04147910.1136/bmjopen‑2020‑04147933431491
    [Google Scholar]
  4. ChenF. SiP. de la ZerdaA. JokerstJ.V. MyungD. Gold nanoparticles to enhance ophthalmic imaging.Biomater. Sci.20219236739010.1039/D0BM01063D33057463
    [Google Scholar]
  5. YangJ. ZhaiS. QinH. YanH. XingD. HuX. NIR-controlled morphology transformation and pulsatile drug delivery based on multifunctional phototheranostic nanoparticles for photoacoustic imaging-guided photothermal-chemotherapy.Biomaterials201817611210.1016/j.biomaterials.2018.05.03329842986
    [Google Scholar]
  6. ChenY.S. ZhaoY. YoonS.J. GambhirS.S. EmelianovS. Miniature gold nanorods for photoacoustic molecular imaging in the second near-infrared optical window.Nat. Nanotechnol.201914546547210.1038/s41565‑019‑0392‑330833692
    [Google Scholar]
  7. MaysingerD. GranE.R. BertorelleF. FakhouriH. AntoineR. KaulE.S. SamhadanehD.M. StochajU. Gold nanoclusters elicit homeostatic perturbations in glioblastoma cells and adaptive changes of lysosomes.Theranostics20201041633164810.7150/thno.3767432042327
    [Google Scholar]
  8. GrzincicE.M. MurphyC.J. Gold nanorods indirectly promote migration of metastatic human breast cancer cells in three-dimensional cultures.ACS Nano2015976801681610.1021/acsnano.5b0336226118624
    [Google Scholar]
  9. CuiX. LaiY. QinF. ShaoL. WangJ. LinH.Q. Strengthening Fano resonance on gold nanoplates with gold nanospheres.Nanoscale20201231975198410.1039/C9NR09976J31912072
    [Google Scholar]
  10. AbbasiJ. Gold nanoshells ablate prostate tumors.JAMA201932214134310.1001/jama.2019.1586831593251
    [Google Scholar]
  11. WangC. WangY. ZhangL. MironR.J. LiangJ. ShiM. MoW. ZhengS. ZhaoY. ZhangY. Pretreated macrophage-membrane-coated gold nanocages for precise drug delivery for treatment of bacterial infections.Adv. Mater.20183046180402310.1002/adma.20180402330285289
    [Google Scholar]
  12. SpedalieriC. SzekeresG.P. WernerS. GuttmannP. KneippJ. Intracellular optical probing with gold nanostars.Nanoscale202113296897910.1039/D0NR07031A33367430
    [Google Scholar]
  13. KesharwaniP. JainK. JainN.K. Dendrimer as nanocarrier for drug delivery.Prog. Polym. Sci.201439226830710.1016/j.progpolymsci.2013.07.005
    [Google Scholar]
  14. TangG. PengL. BaldwinP.R. MannD.S. JiangW. ReesI. LudtkeS.J. EMAN2: An extensible image processing suite for electron microscopy.J. Struct. Biol.20071571384610.1016/j.jsb.2006.05.00916859925
    [Google Scholar]
  15. DaiQ. LiuX. CouttsJ. AustinL. HuoQ. A one-step highly sensitive method for DNA detection using dynamic light scattering.J. Am. Chem. Soc.2008130268138813910.1021/ja801947e18540598
    [Google Scholar]
  16. MajumdarR. BagB.G. GhoshP. Mimusops elengi bark extract mediated green synthesis of gold nanoparticles and study of its catalytic activity.Appl. Nanosci.20166452152810.1007/s13204‑015‑0454‑2
    [Google Scholar]
  17. KesharwaniP. MaR. SangL. FatimaM. SheikhA. AbourehabM.A.S. GuptaN. ChenZ.S. ZhouY. Gold nanoparticles and gold nanorods in the landscape of cancer therapy.Mol. Cancer20232219810.1186/s12943‑023‑01798‑837344887
    [Google Scholar]
  18. PatinoT. MahajanU. PalankarR. MedvedevN. WalowskiJ. MünzenbergM. MayerleJ. DelceaM. Multifunctional gold nanorods for selective plasmonic photothermal therapy in pancreatic cancer cells using ultra-short pulse near-infrared laser irradiation.Nanoscale20157125328533710.1039/C5NR00114E25721177
    [Google Scholar]
  19. ZeidermanM.R. MorganD.E. ChristeinJ.D. GrizzleW.E. McMastersK.M. McNallyL.R. Acidic pH-targeted chitosan capped mesoporous silica coated gold nanorods facilitate detection of pancreatic tumors via multispectral optoacoustic tomography.ACS Biomater. Sci. Eng.2016271108112010.1021/acsbiomaterials.6b0011128626793
    [Google Scholar]
  20. MaoW. SonY.J. YooH.S. Gold nanospheres and nanorods for anti-cancer therapy: Comparative studies of fabrication, surface-decoration, and anti-cancer treatments.Nanoscale20201228149961502010.1039/D0NR01690J32666990
    [Google Scholar]
  21. MurphyC.J. ChangH.H. Falagan-LotschP. GoleM.T. HofmannD.M. HoangK.N.L. McClainS.M. MeyerS.M. TurnerJ.G. UnnikrishnanM. WuM. ZhangX. ZhangY. Virus-sized gold nanorods: Plasmonic particles for biology.Acc. Chem. Res.20195282124213510.1021/acs.accounts.9b0028831373796
    [Google Scholar]
  22. LiaoS. YueW. CaiS. TangQ. LuW. HuangL. QiT. LiaoJ. Improvement of gold nanorods in photothermal therapy: Recent progress and perspective.Front. Pharmacol.20211266412310.3389/fphar.2021.66412333967809
    [Google Scholar]
  23. ZhangN. ZhuD. LiF. HuaH. TianX. ZhaoY. Low density lipoprotein peptide-conjugated gold nanorods for combating gastric cancer.J. Biomed. Nanotechnol.201713213414310.1166/jbn.2017.233029376627
    [Google Scholar]
  24. XinJ. WangS. WangB. WangJ. WangJ. ZhangL. XinB. ShenL. ZhangZ. YaoC. AlPcS4-PDT for gastric cancer therapy using gold nanorod, cationic liposome, and Pluronic ® F127 nanomicellar drug carriers.Int. J. Nanomedicine2018132017203610.2147/IJN.S15405429670347
    [Google Scholar]
  25. SunQ. WuJ. JinL. HongL. WangF. MaoZ. WuM. Cancer cell membrane-coated gold nanorods for photothermal therapy and radiotherapy on oral squamous cancer.J. Mater. Chem. B Mater. Biol. Med.20208327253726310.1039/D0TB01063D32638824
    [Google Scholar]
  26. ChengD. JiY. WangB. WangY. TangY. FuY. XuY. QianX. ZhuW. Dual-responsive nanohybrid based on degradable silica-coated gold nanorods for triple-combination therapy for breast cancer.Acta Biomater.202112843544610.1016/j.actbio.2021.04.00633862284
    [Google Scholar]
  27. EmamiF. PathakS. NguyenT.T. ShresthaP. MaharjanS. KimJ.O. JeongJ.H. YookS. Photoimmunotherapy with cetuximab-conjugated gold nanorods reduces drug resistance in triple negative breast cancer spheroids with enhanced infiltration of tumor-associated macrophages.J. Control. Release202132964566410.1016/j.jconrel.2020.10.00133022330
    [Google Scholar]
  28. LeeC. LimK. KimS.S. ThienL.X. LeeE.S. OhK.T. ChoiH.G. YounY.S. Chlorella-gold nanorods hydrogels generating photosynthesis-derived oxygen and mild heat for the treatment of hypoxic breast cancer.J. Control. Release2019294779010.1016/j.jconrel.2018.12.01130543822
    [Google Scholar]
  29. HeidariZ. SaririR. SaloutiM. Gold nanorods-bombesin conjugate as a potential targeted imaging agent for detection of breast cancer.J. Photochem. Photobiol. B2014130404610.1016/j.jphotobiol.2013.10.01924300991
    [Google Scholar]
  30. YeL. ChenY. MaoJ. LeiX. YangQ. CuiC. Dendrimer-modified gold nanorods as a platform for combinational gene therapy and photothermal therapy of tumors.J. Exp. Clin. Cancer Res.202140130310.1186/s13046‑021‑02105‑334579760
    [Google Scholar]
  31. TangX. TanL. ShiK. PengJ. XiaoY. LiW. ChenL. YangQ. QianZ. Gold nanorods together with HSP inhibitor-VER-155008 micelles for colon cancer mild-temperature photothermal therapy.Acta Pharm. Sin. B20188458760110.1016/j.apsb.2018.05.01130109183
    [Google Scholar]
  32. JiangY. GuoZ. FangJ. WangB. LinZ. ChenZ.S. ChenY. ZhangN. YangX. GaoW. A multi-functionalized nanocomposite constructed by gold nanorod core with triple-layer coating to combat multidrug resistant colorectal cancer.Mater. Sci. Eng. C202010711022410.1016/j.msec.2019.11022431761194
    [Google Scholar]
  33. MahmoudN.N. AqabaniH. HikmatS. Abu-DahabR. Colloidal stability and cytotoxicity of polydopamine- conjugated gold nanorods against prostate cancer cell lines.Molecules2021265129910.3390/molecules2605129933670890
    [Google Scholar]
  34. BuckwayB. FrazierN. GormleyA.J. RayA. GhandehariH. Gold nanorod-mediated hyperthermia enhances the efficacy of HPMA copolymer-90Y conjugates in treatment of prostate tumors.Nucl. Med. Biol.201441328228910.1016/j.nucmedbio.2013.12.00224461626
    [Google Scholar]
  35. AzerbaijanM.H. BahmaniE. JouybariM.H. HassaniazardaryaniA. GoleijP. AkramiM. IraniM. Electrospun gold nanorods/graphene oxide loaded-core-shell nanofibers for local delivery of paclitaxel against lung cancer during photo-chemotherapy method.Eur. J. Pharm. Sci.202116410591410.1016/j.ejps.2021.10591434146683
    [Google Scholar]
  36. PanwarN. YangC. YinF. YoonH.S. ChuanT.S. YongK.T. RNAi-based therapeutic nanostrategy: IL-8 gene silencing in pancreatic cancer cells using gold nanorods delivery vehicles.Nanotechnology2015263636510110.1088/0957‑4484/26/36/36510126291710
    [Google Scholar]
  37. AnL. WangY. TianQ. YangS. Small gold nanorods: Recent advances in synthesis, biological imaging, and cancer therapy.Materials20171012137210.3390/ma1012137229189739
    [Google Scholar]
  38. SkrabalakS.E. AuL. LuX. LiX. XiaY. Gold nanocages for cancer detection and treatment.Nanomedicine20072565766810.2217/17435889.2.5.65717976028
    [Google Scholar]
  39. QiuW. ChenR. ChenX. ZhangH. SongL. CuiW. ZhangJ. YeD. ZhangY. WangZ. Oridonin-loaded and GPC1-targeted gold nanoparticles for multimodal imaging and therapy in pancreatic cancer.Int. J. Nanomedicine2018136809682710.2147/IJN.S17799330425490
    [Google Scholar]
  40. WangS. SongY. CaoK. ZhangL. FangX. ChenF. FengS. YanF. Photothermal therapy mediated by gold nanocages composed of anti-PDL1 and galunisertib for improved synergistic immunotherapy in colorectal cancer.Acta Biomater.202113462163210.1016/j.actbio.2021.07.05134329782
    [Google Scholar]
  41. KubotaT. KurodaS. KanayaN. MorihiroT. AoyamaK. KakiuchiY. KikuchiS. NishizakiM. KagawaS. TazawaH. FujiwaraT. HER2-targeted gold nanoparticles potentially overcome resistance to trastuzumab in gastric cancer.Nanomedicine20181461919192910.1016/j.nano.2018.05.01929885899
    [Google Scholar]
  42. BaoS. HuangS. LiuY. HuY. WangW. JiM. LiH. ZhangN.X. SongC. DuanS. Gold nanocages with dual modality for image-guided therapeutics.Nanoscale20179217284729610.1039/C7NR01350G28524912
    [Google Scholar]
  43. LiH. LiH. WanA. Luminescent gold nanoclusters for in vivo tumor imaging.Analyst2020145234836310.1039/C9AN01598A31782418
    [Google Scholar]
  44. LiD. LiuQ. QiQ. ShiH. HsuE.C. ChenW. YuanW. WuY. LinS. ZengY. XiaoZ. XuL. ZhangY. StoyanovaT. JiaW. ChengZ. Gold nanoclusters for NIR-II fluorescence imaging of bones.Small20201643200385110.1002/smll.20200385133000882
    [Google Scholar]
  45. ZhouZ. ZhangC. QianQ. MaJ. HuangP. zhangX. PanL. GaoG. FuH. FuS. SongH. ZhiX. NiJ. CuiD. Folic acid-conjugated silica capped gold nanoclusters for targeted fluorescence/X-ray computed tomography imaging.J. Nanobiotechnology20131111710.1186/1477‑3155‑11‑1723718865
    [Google Scholar]
  46. (a ParkS. KimH. LimS.C. LimK. LeeE.S. OhK.T. ChoiH.G. YounY.S. Gold nanocluster-loaded hybrid albumin nanoparticles with fluorescence-based optical visualization and photothermal conversion for tumor detection/ablation.J. Control. Release201930471810.1016/j.jconrel.2019.04.03631028785
    [Google Scholar]
  47. (b YuanX. HeY. ZhouG. LiX. FengA. ZhengW. Target challenging-cancer drug delivery to gastric cancer tissues with a fucose graft epigallocatechin-3-gallate-gold particles nanocomposite approach.J. Photochem. Photobiol. B201818314715310.1016/j.jphotobiol.2018.04.02629705507
    [Google Scholar]
  48. ZhangC. ZhouZ. QianQ. GaoG. LiC. FengL. WangQ. CuiD. Glutathione-capped fluorescent gold nanoclusters for dual-modal fluorescence/X-ray computed tomography imaging.J. Mater. Chem. B Mater. Biol. Med.20131385045505310.1039/c3tb20784f32261095
    [Google Scholar]
  49. SinghH. DuJ. SinghP. MavlonovG.T. YiT.H. Development of superparamagnetic iron oxide nanoparticles via direct conjugation with ginsenosides and its in-vitro study.J. Photochem. Photobiol. B201818510011010.1016/j.jphotobiol.2018.05.03029885646
    [Google Scholar]
  50. SchröfelA. KratošováG. ŠafaříkI. ŠafaříkováM. RaškaI. ShorL.M. Applications of biosynthesized metallic nanoparticles – A review.Acta Biomater.201410104023404210.1016/j.actbio.2014.05.02224925045
    [Google Scholar]
  51. TaoY. LiM. RenJ. QuX. Metal nanoclusters: Novel probes for diagnostic and therapeutic applications.Chem. Soc. Rev.201544238636866310.1039/C5CS00607D26400655
    [Google Scholar]
  52. SinghP. KimY.J. SinghH. AhnS. Castro-AceitunoV. YangD.C. In situ preparation of water-soluble ginsenoside Rh2-entrapped bovine serum albumin nanoparticles: in vitro cytocompatibility studies.Int. J. Nanomedicine2017124073408410.2147/IJN.S12515428603419
    [Google Scholar]
  53. SinghP. SinghH. Castro-AceitunoV. AhnS. KimY.J. FarhM.E.A. YangD.C. Engineering of mesoporous silica nanoparticles for release of ginsenoside CK and Rh2 to enhance their anticancer and anti-inflammatory efficacy: in vitro studies.J. Nanopart. Res.201719725710.1007/s11051‑017‑3949‑9
    [Google Scholar]
  54. PissuwanD. ValenzuelaS.M. CortieM.B. Therapeutic possibilities of plasmonically heated gold nanoparticles.Trends Biotechnol.2006242626710.1016/j.tibtech.2005.12.00416380179
    [Google Scholar]
  55. SinghP. AhnS. KangJ.P. VeronikaS. HuoY. SinghH. ChokkaligamM. El-Agamy FarhM. AceitunoV.C. KimY.J. YangD-C. in vitro anti-inflammatory activity of spherical silver nanoparticles and monodisperse hexagonal gold nanoparticles by fruit extract of Prunus serrulata : A green synthetic approach.Artif. Cells Nanomed. Biotechnol.20184682022203210.1080/21691401.2017.140811729190154
    [Google Scholar]
  56. SinghH. DuJ. YiT.H. Kinneretia THG-SQI4 mediated biosynthesis of silver nanoparticles and its antimicrobial efficacy.Artif. Cells Nanomed. Biotechnol.201745360260810.3109/21691401.2016.116371828211298
    [Google Scholar]
  57. SinghH. DuJ. YiT.H. Biosynthesis of silver nanoparticles using Aeromonas sp. THG-FG1.2 and its antibacterial activity against pathogenic microbes.Artif. Cells Nanomed. Biotechnol.201745358459010.3109/21691401.2016.116371527027821
    [Google Scholar]
  58. SinghP. KimY.J. ZhangD. YangD.C. Biological synthesis of nanoparticles from plants and microorganisms.Trends Biotechnol.201634758859910.1016/j.tibtech.2016.02.00626944794
    [Google Scholar]
  59. SinghH. DuJ. YiT.H. Green and rapid synthesis of silver nanoparticles using Borago officinalis leaf extract: Anticancer and antibacterial activities.Artif. Cells Nanomed. Biotechnol.20174571310131610.1080/21691401.2016.122866327598388
    [Google Scholar]
  60. SinghP. KimY.J. SinghH. WangC. HwangK.H. FarhMel-A. YangD.C. Biosynthesis, characterization, and antimicrobial applications of silver nanoparticles.Int. J. Nanomedicine2015102567257725848272
    [Google Scholar]
  61. SinghP. KimY.J. YangD.C. A strategic approach for rapid synthesis of gold and silver nanoparticles by Panax ginseng leaves.Artif. Cells Nanomed. Biotechnol.20164481949195710.3109/21691401.2015.111541026698271
    [Google Scholar]
  62. SinghP. KimY.J. WangC. MathiyalaganR. El-Agamy FarhM. YangD.C. Biogenic silver and gold nanoparticles synthesized using red ginseng root extract, and their applications.Artif. Cells Nanomed. Biotechnol.20154431610.3109/21691401.2015.100851425706249
    [Google Scholar]
  63. SinghH. DuJ. SinghP. YiT.H. Ecofriendly synthesis of silver and gold nanoparticles by Euphrasia officinalis leaf extract and its biomedical applications.Artif. Cells Nanomed. Biotechnol.20184661163117010.1080/21691401.2017.136241728784039
    [Google Scholar]
  64. SinghP. SinghH. KimY.J. MathiyalaganR. WangC. YangD.C. Extracellular synthesis of silver and gold nanoparticles by Sporosarcina koreensis DC4 and their biological applications.Enzyme Microb. Technol.201686758310.1016/j.enzmictec.2016.02.00526992796
    [Google Scholar]
  65. SinghP. KimY.J. SinghH. MathiyalaganR. WangC. YangD.C. Biosynthesis of anisotropic silver nanoparticles by bhargavaea indica and their synergistic effect with antibiotics against pathogenic microorganisms.J. Nanomater.2015201511010.1155/2015/234741
    [Google Scholar]
  66. AldewachiH. ChalatiT. WoodroofeM.N. BricklebankN. SharrackB. GardinerP. Gold nanoparticle-based colorimetric biosensors.Nanoscale2018101183310.1039/C7NR06367A29211091
    [Google Scholar]
  67. EustisS. El-SayedM.A. Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes.Chem. Soc. Rev.200635320921710.1039/B514191E16505915
    [Google Scholar]
  68. KumarD. SainiN. JainN. SareenR. PanditV. Gold nanoparticles: An era in bionanotechnology.Expert Opin. Drug Deliv.201310339740910.1517/17425247.2013.74985423289421
    [Google Scholar]
  69. SanvicensN. MarcoM.P. Multifunctional nanoparticles – properties and prospects for their use in human medicine.Trends Biotechnol.200826842543310.1016/j.tibtech.2008.04.00518514941
    [Google Scholar]
  70. ZhangQ. YangM. ZhuY. MaoC. Metallic nanoclusters for cancer imaging and therapy.Curr. Med. Chem.201825121379139610.2174/092986732466617033112275728393695
    [Google Scholar]
  71. AggarwalP. HallJ.B. McLelandC.B. DobrovolskaiaM.A. McNeilS.E. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy.Adv. Drug Deliv. Rev.200961642843710.1016/j.addr.2009.03.00919376175
    [Google Scholar]
  72. DobrovolskaiaM.A. PatriA.K. ZhengJ. ClogstonJ.D. AyubN. AggarwalP. NeunB.W. HallJ.B. McNeilS.E. Interaction of colloidal gold nanoparticles with human blood: Effects on particle size and analysis of plasma protein binding profiles.Nanomedicine20095210611710.1016/j.nano.2008.08.00119071065
    [Google Scholar]
  73. ChenD. GaneshS. WangW. AmijiM. Plasma protein adsorption and biological identity of systemically administered nanoparticles.Nanomedicine201712172113213510.2217/nnm‑2017‑017828805542
    [Google Scholar]
  74. GöppertT.M. MüllerR.H. Adsorption kinetics of plasma proteins on solid lipid nanoparticles for drug targeting.Int. J. Pharm.20053021-217218610.1016/j.ijpharm.2005.06.02516098695
    [Google Scholar]
  75. OgawaraK. FurumotoK. NagayamaS. MinatoK. HigakiK. KaiT. KimuraT. Pre-coating with serum albumin reduces receptor-mediated hepatic disposition of polystyrene nanosphere: Implications for rational design of nanoparticles.J. Control. Release2004100345145510.1016/j.jconrel.2004.07.02815567509
    [Google Scholar]
  76. YangK. XuH. ChengL. SunC. WangJ. LiuZ. in vitro and in vivo near-infrared photothermal therapy of cancer using polypyrrole organic nanoparticles.Adv. Mater.201224415586559210.1002/adma.20120262522907876
    [Google Scholar]
  77. TroutmanT.S. BartonJ.K. RomanowskiM. Optical coherence tomography with plasmon resonant nanorods of gold.Opt. Lett.200732111438144010.1364/OL.32.00143817546147
    [Google Scholar]
  78. WangS LuG Applications of gold nanoparticles in cancer imaging and treatment.Noble and Precious Metals - Properties, Nanoscale Effects and Applications. InTech2018129130910.5772/intechopen.70901
    [Google Scholar]
  79. XiaX. XiaY. Gold nanocages as multifunctional materials for nanomedicine.Front. Phys.20149337838410.1007/s11467‑013‑0318‑8
    [Google Scholar]
  80. YaoH. LongX. CaoL. ZengM. ZhaoW. DuB. ZhouJ. Multifunctional ferritin nanocages for bimodal imaging and targeted delivery of doxorubicin into cancer cells.RSC Advances2016611110932210933310.1039/C6RA13845D
    [Google Scholar]
  81. O’NealD.P. HirschL.R. HalasN.J. PayneJ.D. WestJ.L. Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles.Cancer Lett.2004209217117610.1016/j.canlet.2004.02.00415159019
    [Google Scholar]
  82. KutikovA. UzzoR.G. The R.E.N.A.L. nephrometry score: A comprehensive standardized system for quantitating renal tumor size, location and depth.J. Urol.2009182384485310.1016/j.juro.2009.05.03519616235
    [Google Scholar]
  83. LuoD WangX BurdaC BasilionJP Recent development of gold nanoparticles as contrast agents for cancer diagnosis.Cancers 2021138182510.3390/cancers13081825
    [Google Scholar]
  84. YuY. YangT. SunT. New insights into the synthesis, toxicity and applications of gold nanoparticles in CT imaging and treatment of cancer.Nanomedicine202015111127114510.2217/nnm‑2019‑039532329396
    [Google Scholar]
  85. ZhangY. ZhangC. XuC. WangX. LiuC. WaterhouseG.I.N. WangY. YinH. Ultrasmall Au nanoclusters for biomedical and biosensing applications: A mini-review.Talanta201920043244210.1016/j.talanta.2019.03.06831036206
    [Google Scholar]
  86. KimmMA ShevtsovM WernerC SievertW ZhiyuanW SchoppeO Gold nanoparticle mediated multi-modal CT imaging of Hsp70 membrane-positive tumors.Cancers2020125133110.3390/cancers12051331
    [Google Scholar]
  87. ZhouB. XiongZ. WangP. PengC. ShenM. ShiX. Acetylated Polyethylenimine-entrapped gold nanoparticles enable negative computed tomography imaging of orthotopic hepatic carcinoma.Langmuir201834298701870710.1021/acs.langmuir.8b0166929958496
    [Google Scholar]
  88. BrunoF. ArrigoniF. MarianiS. SplendianiA. Di CesareE. MasciocchiC. BarileA. Advanced magnetic resonance imaging (MRI) of soft tissue tumors: Techniques and applications.Radiol. Med.2019124424325210.1007/s11547‑019‑01035‑730949892
    [Google Scholar]
  89. GuoY. ZhangZ. LiW. Nicolai Procissi Huan Han Omary LarsonA.C. KimD-H. Photothermal ablation of pancreatic cancer cells with hybrid iron-oxide core gold-shell nanoparticles.Int. J. Nanomedicine201383437344610.2147/IJN.S4758524039426
    [Google Scholar]
  90. GuoH. ZhangY. LiangW. TaiF. DongQ. ZhangR. YuB. WongW.Y. An inorganic magnetic fluorescent nanoprobe with favorable biocompatibility for dual-modality bioimaging and drug delivery.J. Inorg. Biochem.2019192728110.1016/j.jinorgbio.2018.12.00230612028
    [Google Scholar]
  91. (a KimC.S. Wilder-SmithP. AhnY.C. LiawL.H.L. ChenZ. KwonY.J. Enhanced detection of early-stage oral cancer in vivo by optical coherence tomography using multimodal delivery of gold nanoparticles.J. Biomed. Opt.200914303400810.1117/1.3130323 19566301
    [Google Scholar]
  92. bDavidi ES, Dreifuss T, Motiei M, et al. Cisplatin-conjugated gold nanoparticles as a theranostic agent for head and neck cancer. Head Neck 2018; 40(1): 70-8.10.1002/hed.24935 29130566
  93. SteinbergI. HulandD.M. VermeshO. FrostigH.E. TummersW.S. GambhirS.S. Photoacoustic clinical imaging.Photoacoustics201914779810.1016/j.pacs.2019.05.00131293884
    [Google Scholar]
  94. AttiaA.B.E. BalasundaramG. MoothancheryM. DinishU.S. BiR. NtziachristosV. OlivoM. A review of clinical photoacoustic imaging: Current and future trends.Photoacoustics20191610014410.1016/j.pacs.2019.10014431871888
    [Google Scholar]
  95. ZhaoT. DesjardinsA.E. OurselinS. VercauterenT. XiaW. Minimally invasive photoacoustic imaging: Current status and future perspectives.Photoacoustics20191610014610.1016/j.pacs.2019.10014631871889
    [Google Scholar]
  96. KumarD. SoniR.K. GhaiD.P. Pulsed photoacoustic and photothermal response of gold nanoparticles.Nanotechnology202031303570410.1088/1361‑6528/ab47ae31553954
    [Google Scholar]
  97. HajfathalianM. AmirshaghaghiA. NahaP.C. ChhourP. HsuJ.C. DouglasK. DongY. SehgalC.M. TsourkasA. NeretinaS. CormodeD.P. Wulff in a cage gold nanoparticles as contrast agents for computed tomography and photoacoustic imaging.Nanoscale20181039187491875710.1039/C8NR05203D30276391
    [Google Scholar]
  98. HanS. BouchardR. SokolovK.V. Molecular photoacoustic imaging with ultra-small gold nanoparticles.Biomed. Opt. Express20191073472348310.1364/BOE.10.00347231360601
    [Google Scholar]
  99. ZhongJ. YangS. WenL. XingD. Imaging-guided photoacoustic drug release and synergistic chemo-photoacoustic therapy with paclitaxel-containing nanoparticles.J. Control. Release2016226778710.1016/j.jconrel.2016.02.01026860283
    [Google Scholar]
  100. ZhiD. YangT. O’HaganJ. ZhangS. DonnellyR.F. Photothermal therapy.J. Control. Release2020325527110.1016/j.jconrel.2020.06.03232619742
    [Google Scholar]
  101. LiuY. BhattaraiP. DaiZ. ChenX. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer.Chem. Soc. Rev.20194872053210810.1039/C8CS00618K30259015
    [Google Scholar]
  102. RileyR.S. DayE.S. Gold nanoparticle-mediated photothermal therapy: Applications and opportunities for multimodal cancer treatment.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.201794e144910.1002/wnan.144928160445
    [Google Scholar]
  103. KwiatkowskiS. KnapB. PrzystupskiD. SaczkoJ. KędzierskaE. Knap-CzopK. KotlińskaJ. MichelO. KotowskiK. KulbackaJ. Photodynamic therapy – mechanisms, photosensitizers and combinations.Biomed. Pharmacother.20181061098110710.1016/j.biopha.2018.07.04930119176
    [Google Scholar]
  104. JiaY. WangX. HuD. WangP. LiuQ. ZhangX. JiangJ. LiuX. ShengZ. LiuB. ZhengH. Phototheranostics: Active targeting of orthotopic glioma using biomimetic proteolipid nanoparticles.ACS Nano201913138639810.1021/acsnano.8b0655630576599
    [Google Scholar]
  105. JiangX. DuB. HuangY. YuM. ZhengJ. Cancer photothermal therapy with ICG-conjugated gold nanoclusters.Bioconjug. Chem.20203151522152810.1021/acs.bioconjchem.0c0017232353229
    [Google Scholar]
  106. LiuY. ZhiX. YangM. ZhangJ. LinL. ZhaoX. HouW. ZhangC. ZhangQ. PanF. AlfrancaG. YangY. FuenteJ.M. NiJ. CuiD. Tumor-triggered drug release from calcium carbonate-encapsulated gold nanostars for near-infrared photodynamic/photothermal combination antitumor therapy.Theranostics2017761650166210.7150/thno.1760228529642
    [Google Scholar]
  107. (a CampuA. FocsanM. LerougeF. BorlanR. TieL. RuginaD. AstileanS. ICG-loaded gold nano-bipyramids with NIR activatable dual PTT-PDT therapeutic potential in melanoma cells.Colloids Surf. B Biointerfaces202019411121310.1016/j.colsurfb.2020.11121332622254
    [Google Scholar]
  108. (bPal K, Al-suraih F, Gonzalez-Rodriguez R, et al. Multifaceted peptide assisted one-pot synthesis of gold nanoparticles for plectin-1 targeted gemcitabine delivery in pancreatic cancer. Nanoscale 2017; 9(40): 15622-34. 10.1039/C7NR03172F 28991294
  109. (a LiW. YangJ. LuoL. JiangM. QinB. YinH. ZhuC. YuanX. ZhangJ. LuoZ. DuY. LiQ. LouY. QiuY. YouJ. Targeting photodynamic and photothermal therapy to the endoplasmic reticulum enhances immunogenic cancer cell death.Nat. Commun.2019101334910.1038/s41467‑019‑11269‑8 31350406
    [Google Scholar]
  110. (bCai W, Feng H, Yin L, et al. Bio responsive self-assembly of Au-miRNAs for targeted cancer theranostics. EBioMedicine 2020; 54: 102740.10.1016/j.ebiom.2020.102740 32276223
  111. (a LiW. ZhangH. GuoX. WangZ. KongF. LuoL. LiQ. ZhuC. YangJ. LouY. DuY. YouJ. Gold nanospheres-stabilized indocyanine green as a synchronous photodynamic-photothermal therapy platform that inhibits tumor growth and metastasis.ACS Appl. Mater. Interfaces2017943354336710.1021/acsami.6b13351 28068066
    [Google Scholar]
  112. (bLei Y, Tang L, Xie Y, et al. Gold nanoclusters-assisted delivery of NGF siRNA for effective treatment of pancreatic cancer. Nat Commun 2017; 8(1): 15130.10.1038/ncomms15130 28440296
  113. SheikhA. MdS. KesharwaniP. Aptamer grafted nanoparticle as targeted therapeutic tool for the treatment of breast cancer.Biomed. Pharmacother.202214611253010.1016/j.biopha.2021.11253034915416
    [Google Scholar]
  114. DongsarT.T. DongsarT.S. AbourehabM.A.S. GuptaN. KesharwaniP. Emerging application of magnetic nanoparticles for breast cancer therapy.Eur. Polym. J.202318711189810.1016/j.eurpolymj.2023.111898
    [Google Scholar]
  115. KesharwaniP. SheikhA. AbourehabM.A.S. SalveR. GajbhiyeV. A combinatorial delivery of survivin targeted siRNA using cancer selective nanoparticles for triple negative breast cancer therapy.J. Drug Deliv. Sci. Technol.20238010416410.1016/j.jddst.2023.104164
    [Google Scholar]
  116. PechyenC. PonsantiK. TangnorawichB. NgernyuangN. Biogenic synthesis of gold nanoparticles mediated by Spondias dulcis (Anacardiaceae) peel extract and its cytotoxic activity in human breast cancer cell.Toxicol. Rep.202291092109810.1016/j.toxrep.2022.04.03136518440
    [Google Scholar]
  117. MitchellJ.D. DalyD.C. A revision of Spondias L. (Anacardiaceae) in the Neotropics.PhytoKeys2015555519210.3897/phytokeys.55.848926312044
    [Google Scholar]
  118. SanthoshkumarJ. RajeshkumarS. Venkat KumarS. Phyto-assisted synthesis, characterization and applications of gold nanoparticles – A review.Biochem. Biophys. Rep.201711465710.1016/j.bbrep.2017.06.00428955767
    [Google Scholar]
  119. IslamS.M.A. AhmedK.T. ManikM.K. WahidM.A. KamalC.S.I. A comparative study of the antioxidant, antimicrobial, cytotoxic and thrombolytic potential of the fruits and leaves of Spondias dulcis.Asian Pac. J. Trop. Biomed.20133968269110.1016/S2221‑1691(13)60139‑223998007
    [Google Scholar]
  120. KamalR. ChadhaV.D. DhawanD.K. Physiological uptake and retention of radiolabeled resveratrol loaded gold nanoparticles (99mTc-Res-AuNP) in colon cancer tissue.Nanomedicine20181431059107110.1016/j.nano.2018.01.00829391211
    [Google Scholar]
  121. HosseinzadehH. AtyabiF. VarnamkhastiB.S. HosseinzadehR. OstadS.N. GhahremaniM.H. DinarvandR. SN38 conjugated hyaluronic acid gold nanoparticles as a novel system against metastatic colon cancer cells.Int. J. Pharm.20175261-233935210.1016/j.ijpharm.2017.04.06028455135
    [Google Scholar]
  122. BurkeA.R. SinghR.N. CarrollD.L. WoodJ.C.S. D’AgostinoR.B.Jr AjayanP.M. TortiF.M. TortiS.V. The resistance of breast cancer stem cells to conventional hyperthermia and their sensitivity to nanoparticle-mediated photothermal therapy.Biomaterials201233102961297010.1016/j.biomaterials.2011.12.05222245557
    [Google Scholar]
  123. KarpishehV. JoshiN. ZekiyA.O. BeyzaiB. Hojjat-FarsangiM. NamdarA. EdalatiM. Jadidi-NiaraghF. EP4 receptor as a novel promising therapeutic target in colon cancer.Pathol. Res. Pract.20202161215324710.1016/j.prp.2020.15324733190014
    [Google Scholar]
  124. YuW. FuY.C. WangW. Cellular and molecular effects of resveratrol in health and disease.J. Cell. Biochem.2012113375275910.1002/jcb.2343122065601
    [Google Scholar]
  125. FatimaM. IqubalM.K. IqubalA. KaurH. GilaniS.J. RahmanM.H. AhmadiA. RizwanullahM. Current insight into the therapeutic potential of phytocompounds and their nanoparticle-based systems for effective management of lung cancer.Anticancer. Agents Med. Chem.202222466868610.2174/187152062166621070812375034238197
    [Google Scholar]
  126. GorainB. ChoudhuryH. PandeyM. NairA.B. Iqbal Mohd AminM.C. MoluguluN. Dendrimer-based nanocarriers in lung cancer therapy.Nanotechnology-Based Target Drug Deliv Syst Lung CancerAcademic press2019161192
    [Google Scholar]
  127. GorainB. BhattamishraS.K. ChoudhuryH. NandiU. PandeyM. Overexpressed receptors and proteins in lung cancer.Nanotechnology-Based Target Drug Deliv Syst Lung CancerAcademic press2019397510.1016/B978‑0‑12‑815720‑6.00003‑4
    [Google Scholar]
  128. ThambirajS. ShruthiS. VijayalakshmiR. Ravi ShankaranD. Evaluation of cytotoxic activity of docetaxel loaded gold nanoparticles for lung cancer drug delivery.Cancer Treat. Res. Commun.20192110015710.1016/j.ctarc.2019.10015731310876
    [Google Scholar]
  129. WaldronN. ChowdhuryS. McCahillC. Prostate cancer.Medicine2023511485210.1016/j.mpmed.2022.10.013
    [Google Scholar]
  130. MusielakM. Boś-LiedkeA. PiotrowskiI. KozakM. SuchorskaW. The role of gold nanorods in the response of prostate cancer and normal prostate cells to ionizing radiation— in vitro model.Int. J. Mol. Sci.20202211610.3390/ijms2201001633374960
    [Google Scholar]
  131. FangJ. NakamuraH. MaedaH. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect.Adv. Drug Deliv. Rev.201163313615110.1016/j.addr.2010.04.00920441782
    [Google Scholar]
  132. KimS.E. LeeB.R. LeeH. JoS.D. KimH. WonY.Y. LeeJ. Near-infrared plasmonic assemblies of gold nanoparticles with multimodal function for targeted cancer theragnosis.Sci. Rep.2017711732710.1038/s41598‑017‑17714‑229229979
    [Google Scholar]
  133. PaciottiG.F. MyerL. WeinreichD. GoiaD. PavelN. McLaughlinR.E. TamarkinL. Colloidal gold: A novel nanoparticle vector for tumor directed drug delivery.Drug Deliv.200411316918310.1080/1071754049043389515204636
    [Google Scholar]
  134. ZhouC. HaoG. ThomasP. LiuJ. YuM. SunS. ÖzO.K. SunX. ZhengJ. Near-infrared emitting radioactive gold nanoparticles with molecular pharmacokinetics.Angew. Chem. Int. Ed.20125140101181012210.1002/anie.20120303122961978
    [Google Scholar]
  135. BorkerS PokharkarV Engineering of pectin-capped gold nanoparticles for delivery of doxorubicin to hepatocarcinoma cells: An insight into mechanism of cellular uptake.Artif Cells Nanomed Biotechnol201846Sup 282683210.1080/21691401.2018.1470525
    [Google Scholar]
  136. NgernyuangN. SeubwaiW. DaduangS. BoonsiriP. LimpaiboonT. DaduangJ. Targeted delivery of 5-fluorouracil to cholangiocarcinoma cells using folic acid as a targeting agent.Mater. Sci. Eng. C20166041141510.1016/j.msec.2015.11.06226706547
    [Google Scholar]
  137. GotovO. BattogtokhG. KoY.T. Docetaxel-loaded hyaluronic acid-cathepsin b-cleavable-peptide-gold nanoparticles for the treatment of cancer.Mol. Pharm.201815104668467610.1021/acs.molpharmaceut.8b0064030179491
    [Google Scholar]
  138. JabirM.S. TahaA.A. SahibU.I. TaqiZ.J. Al-ShammariA.M. SalmanA.S. Novel of nano delivery system for Linalool loaded on gold nanoparticles conjugated with CALNN peptide for application in drug uptake and induction of cell death on breast cancer cell line.Mater. Sci. Eng. C20199494996410.1016/j.msec.2018.10.01430423784
    [Google Scholar]
  139. FernandesA.R. JesusJ. MartinsP. FigueiredoS. RosaD. MartinsL.M.R.D.R.S. CorvoM.L. CarvalheiroM.C. CostaP.M. BaptistaP.V. Multifunctional gold-nanoparticles: A nanovectorization tool for the targeted delivery of novel chemotherapeutic agents.J. Control. Release2017245526110.1016/j.jconrel.2016.11.02127871990
    [Google Scholar]
  140. PedrosaP. CorvoM.L. Ferreira-SilvaM. MartinsP. CarvalheiroM.C. CostaP.M. MartinsC. MartinsL.M.D.R.S. BaptistaP.V. FernandesA.R. Targeting cancer resistance via multifunctional gold nanoparticles.Int. J. Mol. Sci.20192021551010.3390/ijms2021551031694227
    [Google Scholar]
  141. Durán-MezaA.L. Escamilla-RuizM.I. Segovia-GonzálezX.F. Villagrana-EscareñoM.V. Vega-AcostaJ.R. Ruiz-GarciaJ. Encapsidation of different plasmonic gold nanoparticles by the CCMV CP.Molecules20202511262810.3390/molecules2511262832516956
    [Google Scholar]
  142. LiuJ. PengQ. Protein-gold nanoparticle interactions and their possible impact on biomedical applications.Acta Biomater.201755132710.1016/j.actbio.2017.03.05528377307
    [Google Scholar]
  143. SurendranS.P. MoonM.J. ParkR. JeongY.Y. Bioactive nanoparticles for cancer immunotherapy.Int. J. Mol. Sci.20181912387710.3390/ijms1912387730518139
    [Google Scholar]
  144. BetzerO. PeretsN. AngelA. MotieiM. SadanT. YadidG. OffenD. PopovtzerR. in vivo neuroimaging of exosomes using gold nanoparticles.ACS Nano20171111108831089310.1021/acsnano.7b0449528960957
    [Google Scholar]
  145. PeretsN. BetzerO. ShapiraR. BrensteinS. AngelA. SadanT. AsheryU. PopovtzerR. OffenD. Golden exosomes selectively target brain pathologies in neurodegenerative and neurodevelopmental disorders.Nano Lett.20191963422343110.1021/acs.nanolett.8b0414830761901
    [Google Scholar]
  146. ZhangX. LiuD. GaoY. LinC. AnQ. FengY. LiuY. LiuD. LuoH. WangD. The biology and function of extracellular vesicles in cancer development.Front. Cell Dev. Biol.2021977744110.3389/fcell.2021.77744134805181
    [Google Scholar]
  147. WuS. LiT. LiuW. HuangY. Ferroptosis and cancer: Complex relationship and potential application of exosomes.Front. Cell Dev. Biol.2021973375110.3389/fcell.2021.73375134568341
    [Google Scholar]
  148. Roma-RodriguesC. FernandesA.R. BaptistaP.V. Counteracting the effect of leukemia exosomes by antiangiogenic gold nanoparticles.Int. J. Nanomedicine2019146843685410.2147/IJN.S21571131692567
    [Google Scholar]
  149. RackovG. Garcia-RomeroN. Esteban-RubioS. Carrión-NavarroJ. Belda-IniestaC. Ayuso-SacidoA. Vesicle-mediated control of cell function: The role of extracellular matrix and microenvironment.Front. Physiol.2018965110.3389/fphys.2018.0065129922170
    [Google Scholar]
  150. Roma-RodriguesC. FernandesA.R. BaptistaP.V. Exosome in tumour microenvironment: Overview of the crosstalk between normal and cancer cells.BioMed Res. Int.2014201411010.1155/2014/17948624963475
    [Google Scholar]
  151. LaraP. Palma-FlorezS. Salas-HuenuleoE. PolakovicovaI. GuerreroS. Lobos-GonzalezL. CamposA. MuñozL. Jorquera-CorderoC. Varas-GodoyM. CancinoJ. AriasE. VillegasJ. CruzL.J. AlbericioF. ArayaE. CorvalanA.H. QuestA.F.G. KoganM.J. Gold nanoparticle based double-labeling of melanoma extracellular vesicles to determine the specificity of uptake by cells and preferential accumulation in small metastatic lung tumors.J. Nanobiotechnology20201812010.1186/s12951‑020‑0573‑031973696
    [Google Scholar]
  152. ZhangD. QinX. WuT. QiaoQ. SongQ. ZhangZ. Extracellular vesicles based self-grown gold nanopopcorn for combinatorial chemo-photothermal therapy.Biomaterials201919722022810.1016/j.biomaterials.2019.01.02430669014
    [Google Scholar]
  153. PanS. PeiL. ZhangA. ZhangY. ZhangC. HuangM. HuangZ. LiuB. WangL. MaL. ZhangQ. CuiD. Passion fruit-like exosome-PMA/Au-BSA@Ce6 nanovehicles for real-time fluorescence imaging and enhanced targeted photodynamic therapy with deep penetration and superior retention behavior in tumor.Biomaterials202023011960610.1016/j.biomaterials.2019.11960631806405
    [Google Scholar]
  154. XuP. WenC. GaoC. LiuH. LiY. GuoX. ShenX.C. LiangH. Near-infrared-II-activatable self-assembled manganese porphyrin-gold heterostructures for photoacoustic imaging-guided sonodynamic-augmented photothermal/photodynamic therapy.ACS Nano202418171372710.1021/acsnano.3c0901138117769
    [Google Scholar]
  155. RehmanF.U. DuT. ShaikhS. JiangX. ChenY. LiX. YiH. HuiJ. ChenB. SelkeM. WangX. Nano in nano: Biosynthesized gold and iron nanoclusters cargo neoplastic exosomes for cancer status biomarking.Nanomedicine20181482619263110.1016/j.nano.2018.07.01430130583
    [Google Scholar]
  156. CohenO. BetzerO. Elmaliach-PniniN. MotieiM. SadanT. Cohen-BerkmanM. DaganO. PopovtzerA. YosepovichA. BarhomH. MichaeliS. PopovtzerR. ‘Golden’ exosomes as delivery vehicles to target tumors and overcome intratumoral barriers: in vivo tracking in a model for head and neck cancer.Biomater. Sci.2021962103211410.1039/D0BM01735C33475633
    [Google Scholar]
  157. JoyceD.P. KerinM.J. DwyerR.M. Exosome-encapsulated microRNAs as circulating biomarkers for breast cancer.Int. J. Cancer201613971443144810.1002/ijc.3017927170104
    [Google Scholar]
  158. ZhanX. YangS. HuangG. YangL. ZhangY. TianH. XieF. Lamy de la ChapelleM. YangX. FuW. Streptavidin-functionalized terahertz metamaterials for attomolar exosomal microRNA assay in pancreatic cancer based on duplex-specific nuclease-triggered rolling circle amplification.Biosens. Bioelectron.202118811331410.1016/j.bios.2021.11331434030095
    [Google Scholar]
  159. JoshiG.K. Deitz-McElyeaS. LiyanageT. LawrenceK. MaliS. SardarR. KorcM. label-free nanoplasmonic-based short noncoding RNA sensing at attomolar concentrations allows for quantitative and highly specific assay of MicroRNA-10b in biological fluids and circulating exosomes.ACS Nano2015911110751108910.1021/acsnano.5b0452726444644
    [Google Scholar]
  160. TomićS. ĐokićJ. VasilijićS. OgrincN. RudolfR. PeliconP. VučevićD. MilosavljevićP. JankovićS. AnželI. RajkovićJ. RupnikM.S. FriedrichB. ČolićM. Size-dependent effects of gold nanoparticles uptake on maturation and antitumor functions of human dendritic cells in vitro. PLoS One201495e9658410.1371/journal.pone.009658424802102
    [Google Scholar]
  161. QiuT.A. BozichJ.S. LohseS.E. VartanianA.M. JacobL.M. MeyerB.M. GunsolusI.L. NiemuthN.J. MurphyC.J. HaynesC.L. KlaperR.D. Gene expression as an indicator of the molecular response and toxicity in the bacterium Shewanella oneidensis and the water flea Daphnia magna exposed to functionalized gold nanoparticles.Environ. Sci. Nano20152661562910.1039/C5EN00037H
    [Google Scholar]
  162. DickersonE.B. DreadenE.C. HuangX. El-SayedI.H. ChuH. PushpankethS. McDonaldJ.F. El-SayedM.A. Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice.Cancer Lett.20082691576610.1016/j.canlet.2008.04.02618541363
    [Google Scholar]
  163. BoboD. RobinsonK.J. IslamJ. ThurechtK.J. CorrieS.R. Nanoparticle-based medicines: A review of FDA-approved materials and clinical trials to date.Pharm. Res.201633102373238710.1007/s11095‑016‑1958‑527299311
    [Google Scholar]
  164. HühnD. KantnerK. GeidelC. BrandholtS. De CockI. SoenenS.J. Rivera GilP. MontenegroJ.M. BraeckmansK. MüllenK. NienhausG.U. KlapperM. ParakW.J. Polymer-coated nanoparticles interacting with proteins and cells: Focusing on the sign of the net charge.ACS Nano2013743253326310.1021/nn305929523566380
    [Google Scholar]
  165. DengJ. YaoM. GaoC. Cytotoxicity of gold nanoparticles with different structures and surface-anchored chiral polymers.Acta Biomater.20175361061810.1016/j.actbio.2017.01.08228213095
    [Google Scholar]
  166. LibuttiS.K. PaciottiG.F. ByrnesA.A. AlexanderH.R.Jr GannonW.E. WalkerM. SeidelG.D. YuldashevaN. TamarkinL. Phase I and pharmacokinetic studies of CYT-6091, a novel PEGylated colloidal gold-rhTNF nanomedicine.Clin. Cancer Res.201016246139614910.1158/1078‑0432.CCR‑10‑097820876255
    [Google Scholar]
  167. AliM.R.K. RahmanM.A. WuY. HanT. PengX. MackeyM.A. WangD. ShinH.J. ChenZ.G. XiaoH. WuR. TangY. ShinD.M. El-SayedM.A. Efficacy, long-term toxicity, and mechanistic studies of gold nanorods photothermal therapy of cancer in xenograft mice.Proc. Natl. Acad. Sci. USA201711415E3110E311810.1073/pnas.161930211428356516
    [Google Scholar]
  168. AnselmoA.C. MitragotriS. Nanoparticles in the clinic.Bioeng. Transl. Med.201611102910.1002/btm2.1000329313004
    [Google Scholar]
  169. KharlamovA.N. TyurninaA.E. VeselovaV.S. KovtunO.P. ShurV.Y. GabinskyJ.L. Silica–gold nanoparticles for atheroprotective management of plaques: Results of the NANOM-FIM trial.Nanoscale20157178003801510.1039/C5NR01050K25864858
    [Google Scholar]
  170. XuZ. BrozaY.Y. IonsecuR. TischU. DingL. LiuH. SongQ. PanY. XiongF. GuK. SunG. ChenZ. LejaM. HaickH. A nanomaterial-based breath test for distinguishing gastric cancer from benign gastric conditions.Br. J. Cancer2013108494195010.1038/bjc.2013.4423462808
    [Google Scholar]
  171. LoukanovA. ArahangelovaV. EminS. FilipovC. Engineering of functional nanosnowflakes from gold nanocarriers capped with amino-modified DNA oligonucleotides.Microsc. Res. Tech.20238691169117610.1002/jemt.2439037477062
    [Google Scholar]
  172. GuptaR. XieH. Nanoparticles in daily life: Applications, toxicity, and regulations.J. Environ. Pathol. Toxicol. Oncol.201837320923010.1615/JEnvironPatholToxicolOncol.201802600930317972
    [Google Scholar]
  173. NiżnikŁ. NogaM. KobylarzD. FrydrychA. KrośniakA. Kapka-SkrzypczakL. JurowskiK. Gold nanoparticles (AuNPs)-toxicity, safety and green synthesis: A critical review.Int. J. Mol. Sci.2024257405710.3390/ijms2507405738612865
    [Google Scholar]
  174. YilmazG. DemirB. TimurS. BecerC.R. Poly(methacrylic acid) coated gold nanoparticles: Functional platforms for theranostic applications.Biomacromolecules20161792901291110.1021/acs.biomac.6b0070627447298
    [Google Scholar]
  175. HeoD.N. YangD.H. MoonH.J. LeeJ.B. BaeM.S. LeeS.C. LeeW.J. SunI.C. KwonI.K. Gold nanoparticles surface-functionalized with paclitaxel drug and biotin receptor as theranostic agents for cancer therapy.Biomaterials201233385686610.1016/j.biomaterials.2011.09.06422036101
    [Google Scholar]
  176. KimD. JeongY.Y. JonS. A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer.ACS Nano2010473689369610.1021/nn901877h20550178
    [Google Scholar]
  177. YouJ. ZhangG. LiC. Exceptionally high payload of doxorubicin in hollow gold nanospheres for near-infrared light-triggered drug release.ACS Nano2010421033104110.1021/nn901181c20121065
    [Google Scholar]
  178. MelanconM.P. ZhouM. LiC. Cancer theranostics with near-infrared light-activatable multimodal nanoparticles.Acc. Chem. Res.2011441094795610.1021/ar200022e21848277
    [Google Scholar]
  179. MelanconM.P. ElliottA. JiX. ShettyA. YangZ. TianM. TaylorB. StaffordR.J. LiC. Theranostics with multifunctional magnetic gold nanoshells: Photothermal therapy and t2* magnetic resonance imaging.Invest. Radiol.201146213214010.1097/RLI.0b013e3181f8e7d821150791
    [Google Scholar]
  180. XiaoY. HongH. MatsonV.Z. JavadiA. XuW. YangY. ZhangY. EngleJ.W. NicklesR.J. CaiW. SteeberD.A. GongS. Gold nanorods conjugated with doxorubicin and cRGD for combined anticancer drug delivery and PET imaging.Theranostics20122875776810.7150/thno.475622916075
    [Google Scholar]
  181. ChoiJ. YangJ. BangD. ParkJ. SuhJ.S. HuhY.M. HaamS. Targetable gold nanorods for epithelial cancer therapy guided by near-IR absorption imaging.Small20128574675310.1002/smll.20110178922271594
    [Google Scholar]
  182. WangD.W. ZhuX.M. LeeS.F. ChanH.M. LiH.W. KongS.K. YuJ.C. ChengC.H.K. WangY.X.J. LeungK.C.F. Folate-conjugated Fe3O4@SiO2@gold nanorods@mesoporous SiO2 hybrid nanomaterial: A theranostic agent for magnetic resonance imaging and photothermal therapy.J. Mater. Chem. B Mater. Biol. Med.20131232934294210.1039/c3tb20090f32260860
    [Google Scholar]
  183. ZhangZ. WangL. WangJ. JiangX. LiX. HuZ. JiY. WuX. ChenC. Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment.Adv. Mater.201224111418142310.1002/adma.20110471422318874
    [Google Scholar]
  184. YiD.K. SunI.C. RyuJ.H. KooH. ParkC.W. YounI.C. ChoiK. KwonI.C. KimK. AhnC.H. Matrix metalloproteinase sensitive gold nanorod for simultaneous bioimaging and photothermal therapy of cancer.Bioconjug. Chem.201021122173217710.1021/bc100308p21062090
    [Google Scholar]
  185. HuM. WenC. LiuJ. CaiP. MengN. QinX. XuP. LiZ. LinX.C. Mechanism of cytotoxic action of gold nanorods photothermal therapy for A549 cell.ACS Appl. Bio Mater.2023651886189510.1021/acsabm.3c0011137079717
    [Google Scholar]
  186. LoukanovA. KuribaraA. FilipovC. NikolovaS. Theranostic nanomachines for cancer treatment.Pharmacia202269228529310.3897/pharmacia.69.e80595
    [Google Scholar]
  187. LoukanovA. NikolovaS. FilipovC. NakabayashiS. Nanomaterials for cancer medication: From individual nanoparticles toward nanomachines and nanorobots.Pharmacia201966314715610.3897/pharmacia.66.e37739
    [Google Scholar]
  188. YuJH JeongMS CruzEO AlamIS TumbaleSK ZlitniA Highly excretable gold supraclusters for translatable in vivo raman imaging of tumors.ACS nano 20231732554256710.1021/acsnano.2c10378
    [Google Scholar]
  189. SargaziS. LaraibU. ErS. RahdarA. HassanisaadiM. ZafarM.N. Díez-PascualA.M. BilalM. Application of green gold nanoparticles in cancer therapy and diagnosis.Nanomaterials2022127110210.3390/nano1207110235407220
    [Google Scholar]
/content/journals/cnanom/10.2174/0124681873309210240525182209
Loading
/content/journals/cnanom/10.2174/0124681873309210240525182209
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test