Skip to content
2000
Volume 15, Issue 4
  • ISSN: 2468-1873
  • E-ISSN: 2468-1881

Abstract

Introduction

In the recent epochs of advancement in the field of oncology, polymersomes-based drug delivery systems have witnessed a significant breakthrough. Nano-sized carriers formed from amphiphilic block-copolymers, have distinctive compositions and structures, enabling them to encapsulate a diverse range of compounds.

Objective

This comprehensive review aims to highlight the significant advancements reflecting progress made in the past few decades and their potential in cancer treatments, offering a promising future for improved patient outcomes and as a tool for theranostics.

Methods

Different approaches for synthesizing nanocarriers with distinct responsive characteristics have been mentioned. Redox-responsive polymersomes are designed, and their self-assembly behavior is studied. pH-responsive are created using specific copolymers, while enzyme-responsive ones are engineered to degrade in the presence of lysosomal enzymes using various approaches like thin-film hydration, nanoprecipitation,

Results

Polymersomes have exhibited remarkable breakthroughs in cancer theranostics and addressed various challenges associated with drug targeting, diminishing the toxicity, and related issues, exhibiting advantages such as enhanced stability, prolonged circulation time, and the ability to encapsulate both hydrophilic and hydrophobic substances. Over the past few decades, they have been proven as a breakthrough approach for cancer therapy.

Conclusion

Polymersomes present a promising platform for advancing cancer therapeutics and diagnostics, offering a multifunctional approach that combines targeted drug delivery with imaging capabilities. Their versatility makes them valuable tools for researchers and practitioners in the field of medicine.

Loading

Article metrics loading...

/content/journals/cnanom/10.2174/0124681873304030240417070617
2024-04-26
2025-10-11
Loading full text...

Full text loading...

References

  1. IqbalS. BlennerM. Alexander-BryantA. LarsenJ. Polymersomes for therapeutic delivery of protein and nucleic acid macromolecules: From design to therapeutic applications.Biomacromolecules20202141327135010.1021/acs.biomac.9b0175432078290
    [Google Scholar]
  2. ShchaslyvyiA.Y. AntonenkoS.V. TesliukM.G. TelegeevG.D. Current state of human gene therapy: Approved products and vectors.Pharmaceuticals (Basel)20231610141610.3390/ph1610141637895887
    [Google Scholar]
  3. ZhuY. YangB. ChenS. DuJ. Polymer vesicles: Mechanism, preparation, application, and responsive behavior.Prog. Polym. Sci.20176412210.1016/j.progpolymsci.2015.05.001
    [Google Scholar]
  4. HuX. ZhangY. XieZ. JingX. BellottiA. GuZ. Stimuli-responsive polymersomes for biomedical applications.Biomacromolecules201718364967310.1021/acs.biomac.6b0170428212005
    [Google Scholar]
  5. LoC.H. ZengJ. Application of polymersomes in membrane protein study and drug discovery: Progress, strategies, and perspectives.Bioeng. Transl. Med.202381e1035010.1002/btm2.1035036684106
    [Google Scholar]
  6. KuperkarK. PatelD. AtanaseL.I. BahadurP. Amphiphilic block copolymers: Their structures, and self-assembly to polymeric micelles and polymersomes as drug delivery vehicles.Polymers (Basel)20221421470210.3390/polym1421470236365696
    [Google Scholar]
  7. PallaviP. HariniK. GowthamP. GirigoswamiK. GirigoswamiA. Fabrication of polymersomes: A macromolecular architecture in nanotherapeutics.Chemistry2022431028104310.3390/chemistry4030070
    [Google Scholar]
  8. MarraG. van LeendersG.J.L.H. ZattoniF. KeschC. RajwaP. CornfordP. van der KwastT. van den BerghR.C.N. BriersE. Van den BroeckT. De MeerleerG. De SantisM. EberliD. FarolfiA. GillessenS. GrivasN. GrummetJ.P. HenryA.M. LardasM. LieuwM. Linares EspinósE. MasonM.D. O’HanlonS. van OortI.M. Oprea-LagerD.E. PloussardG. RouvièreO. SchootsI.G. StranneJ. TilkiD. WiegelT. WillemseP.P.M. MottetN. GandagliaG. Impact of epithelial histological types, subtypes, and growth patterns on oncological outcomes for patients with nonmetastatic prostate cancer treated with curative intent: A systematic review.Eur. Urol.2023841658510.1016/j.eururo.2023.03.01437117107
    [Google Scholar]
  9. ZubairT. BandyopadhyayD. Small molecule EGFR inhibitors as anti-cancer agents: Discovery, mechanisms of action, and opportunities.Int. J. Mol. Sci.2023243265110.3390/ijms2403265136768973
    [Google Scholar]
  10. XiaY. WeiJ. ZhaoS. GuoB. MengF. KlumpermanB. ZhongZ. Systemic administration of polymersomal oncolytic peptide LTX-315 combining with CpG adjuvant and anti-PD-1 antibody boosts immunotherapy of melanoma.J. Control. Release202133626227310.1016/j.jconrel.2021.06.03234174350
    [Google Scholar]
  11. ZartnerL. MuthwillM.S. DinuI.A. SchoenenbergerC.A. PalivanC.G. The rise of bio-inspired polymer compartments responding to pathology-related signals.J. Mater. Chem. B Mater. Biol. Med.20208296252627010.1039/D0TB00475H32452509
    [Google Scholar]
  12. ZhangS. GeryakR. GeldmeierJ. KimS. TsukrukV.V. Synthesis, assembly, and applications of hybrid nanostructures for biosensing.Chem. Rev.201711720129421303810.1021/acs.chemrev.7b0008828901750
    [Google Scholar]
  13. LeeJ.S. FeijenJ. Polymersomes for drug delivery: Design, formation and characterization.J. Control. Release2012161247348310.1016/j.jconrel.2011.10.00522020381
    [Google Scholar]
  14. TannerP. BaumannP. EneaR. OnacaO. PalivanC. MeierW. Polymeric vesicles: From drug carriers to nanoreactors and artificial organelles.Acc. Chem. Res.201144101039104910.1021/ar200036k21608994
    [Google Scholar]
  15. YoussefS.F. ElnaggarY.S.R. AbdallahO.Y. Elaboration of polymersomes versus conventional liposomes for improving oral bioavailability of the anticancer flutamide.Nanomedicine (Lond.)201813233025303610.2217/nnm‑2018‑023830507344
    [Google Scholar]
  16. AibaniN. KhanT.N. CallanB. Liposome mimicking polymersomes; A comparative study of the merits of polymersomes in terms of formulation and stability.Int. J. Pharm. X2020210004010.1016/j.ijpx.2019.10004031956860
    [Google Scholar]
  17. CaoS. XiaY. ShaoJ. GuoB. DongY. PijpersI.A.B. ZhongZ. MengF. AbdelmohsenL.K.E.A. WilliamsD.S. van HestJ.C.M. Biodegradable polymersomes with structure inherent fluorescence and targeting capacity for enhanced photo-dynamic therapy.Angew. Chem. Int. Ed.20216032176291763710.1002/anie.20210510334036695
    [Google Scholar]
  18. BeygiM. OroojalianF. HosseiniS.S. MokhtarzadehA. KesharwaniP. SahebkarA. Recent progress in functionalized and targeted polymersomes and chimeric polymeric nanotheranostic platforms for cancer therapy.Prog. Mater. Sci.202314010120910.1016/j.pmatsci.2023.101209
    [Google Scholar]
  19. JoglekarM. TrewynB.G. Polymer-based stimuli-responsive nanosystems for biomedical applications.Biotechnol. J.20138893194510.1002/biot.20130007323843342
    [Google Scholar]
  20. ZhouD. FeiZ. JinL. ZhouP. LiC. LiuX. ZhaoC. Dual-responsive polymersomes as anticancer drug carriers for the co-delivery of doxorubicin and paclitaxel.J. Mater. Chem. B Mater. Biol. Med.20219380180810.1039/D0TB02462G33336680
    [Google Scholar]
  21. AnajafiT. ScottM.D. YouS. YangX. ChoiY. QianS.Y. MallikS. Acridine orange conjugated polymersomes for simultaneous nuclear delivery of gemcitabine and doxorubicin to pancreatic cancer cells.Bioconjug. Chem.201627376277110.1021/acs.bioconjchem.5b0069426848507
    [Google Scholar]
  22. LiR PengF CaiJ YangD ZhangP Redox dual-stimuli responsive drug delivery systems for improving tumor-targeting ability and reducing adverse side effects.Asian J Pharm Sci.202015331132510.1016/j.ajps.2019.06.003
    [Google Scholar]
  23. NehateC. NayalA. KoulV. Redox responsive polymersomes for enhanced doxorubicin delivery.ACS Biomater. Sci. Eng.201951708010.1021/acsbiomaterials.8b0023833405869
    [Google Scholar]
  24. FerreroC. CasasM. CaraballoI. Redox-responsive polymersomes as smart doxorubicin delivery systems.Pharmaceutics2022148172410.3390/pharmaceutics1408172436015350
    [Google Scholar]
  25. GaoW. ChanJ.M. FarokhzadO.C. pH-responsive nanoparticles for drug delivery.Mol. Pharm.2010761913192010.1021/mp100253e20836539
    [Google Scholar]
  26. de SouzaV.V. CarreteroG.P.B. VitaleP.A.M. TodeschiniÍ. KotaniP.O. SaraivaG.K.V. GuzzoC.R. ChaimovichH. FlorenzanoF.H. CuccoviaI.M. Stimuli-responsive polymersomes of poly [2-(dimethylamino) ethyl methacrylate]-b-polystyrene.Polym. Bull.202279278580510.1007/s00289‑020‑03533‑5
    [Google Scholar]
  27. LiJ. DirisalaA. GeZ. WangY. YinW. KeW. TohK. XieJ. MatsumotoY. AnrakuY. OsadaK. KataokaK. Therapeutic vesicular nanoreactors with tumor-specific activation and self-destruction for synergistic tumor ablation.Angew. Chem. Int. Ed.20175645140251403010.1002/anie.20170696428940903
    [Google Scholar]
  28. ShaoB. HuangX. XuF. PanJ. WangY. ZhouS. A pH-responsive polymersome depleting regulatory T cells and blocking A2A receptor for cancer immunotherapy.Nano Res.20221532324233410.1007/s12274‑021‑3815‑z
    [Google Scholar]
  29. LeongJ. TeoJ.Y. AakaluV.K. YangY.Y. KongH. Engineering polymersomes for diagnostics and therapy.Adv. Healthc. Mater.201878170127610.1002/adhm.20170127629334183
    [Google Scholar]
  30. LeeJ.S. GroothuisT. CusanC. MinkD. FeijenJ. Lysosomally cleavable peptide-containing polymersomes modified with anti-EGFR antibody for systemic cancer chemotherapy.Biomaterials201132349144915310.1016/j.biomaterials.2011.08.03621872328
    [Google Scholar]
  31. PramodP.S. TakamuraK. ChaphekarS. BalasubramanianN. JayakannanM. Dextran vesicular carriers for dual encapsulation of hydrophilic and hydrophobic molecules and delivery into cells.Biomacromolecules201213113627364010.1021/bm301583s23082727
    [Google Scholar]
  32. LiJ. GeZ. TohK. LiuX. DirisalaA. KeW. WenP. ZhouH. WangZ. XiaoS. Van GuyseJ.F.R. TockaryT.A. XieJ. Gonzalez-CarterD. KinohH. UchidaS. AnrakuY. KataokaK. Enzymatically transformable polymersome-based nanotherapeutics to eliminate minimal relapsable cancer.Adv. Mater.20213349210525410.1002/adma.20210525434622509
    [Google Scholar]
  33. Hernández BecerraE. QuinchiaJ. CastroC. OrozcoJ. Light-triggered polymersome-based anticancer therapeutics delivery.Nanomaterials (Basel)202212583610.3390/nano1205083635269324
    [Google Scholar]
  34. ZhuY. CaoS. HuoM. van HestJ.C.M. CheH. Recent advances in permeable polymersomes: Fabrication, responsiveness, and applications.Chem. Sci. (Camb.)202314277411743710.1039/D3SC01707A37449076
    [Google Scholar]
  35. Rifaie-GrahamO. UlrichS. GalensowskeN.F.B. BalogS. ChamiM. RentschD. HemmerJ.R. Read de AlanizJ. BoeselL.F. BrunsN. Wavelength-selective light-responsive DASA-functionalized polymersome nanoreactors.J. Am. Chem. Soc.2018140258027803610.1021/jacs.8b0451129856216
    [Google Scholar]
  36. BarsolaB. KumariP. Green synthesis of nano-propolis and nanoparticles (Se and Ag) from ethanolic extract of propolis, their biochemical characterization: A review.Green Proc. Synth.202211165967310.1515/gps‑2022‑0059
    [Google Scholar]
  37. DischerD.E. OrtizV. SrinivasG. KleinM.L. KimY. ChristianD. CaiS. PhotosP. AhmedF. Emerging applications of polymersomes in delivery: From molecular dynamics to shrinkage of tumors.Prog. Polym. Sci.2007328-983885710.1016/j.progpolymsci.2007.05.01124692840
    [Google Scholar]
  38. DischerD.E. AhmedF. Polymersomes.Annu. Rev. Biomed. Eng.20068132334110.1146/annurev.bioeng.8.061505.09583816834559
    [Google Scholar]
  39. ChandlerD. Interfaces and the driving force of hydrophobic assembly.Nature2005437705964064710.1038/nature0416216193038
    [Google Scholar]
  40. CarusoF. Nanoscale particle modification via sequential electrostatic assembly.Colloids and Colloid Assemblies: Synthesis, Modification, Organization and Utilization of Colloid ParticlesHoboken, New JerseyWiley200410.1002/3527602100.ch8
    [Google Scholar]
  41. Le MeinsJ.F. SandreO. LecommandouxS. Recent trends in the tuning of polymersomes’ membrane properties.Eur. Phys. J. E20113421410.1140/epje/i2011‑11014‑y21337017
    [Google Scholar]
  42. HeX. SchmidF. Dynamics of spontaneous vesicle formation in dilute solutions of amphiphilic diblock copolymers.Macromolecules20063972654266210.1021/ma052536g
    [Google Scholar]
  43. BlanazsA. MadsenJ. BattagliaG. RyanA.J. ArmesS.P. Mechanistic insights for block copolymer morphologies: How do worms form vesicles?J. Am. Chem. Soc.201113341165811658710.1021/ja206301a21846152
    [Google Scholar]
  44. ZhangX. ZhangP. Polymersomes in nanomedicine-A review.Curr. Nanosci.201713212412910.2174/1573413712666161018144519
    [Google Scholar]
  45. KrishnamoorthyB. KaranamV. ChellanV.R. SiramK. NatarajanT. GregoryM. Polymersomes as an effective drug delivery system for glioma – a review.J. Drug Target.201422646947710.3109/1061186X.2014.91671224830300
    [Google Scholar]
  46. HickeyR.J. KoskiJ. MengX. RigglemanR.A. ZhangP. ParkS.J. Size-controlled self-assembly of superparamagnetic polymersomes.ACS Nano20148149550210.1021/nn405012h24369711
    [Google Scholar]
  47. ZhangJ. JiangJ. LinS. CornelE.J. LiC. DuJ. Polymersomes: From Macromolecular Self-Assembly to Particle Assembly †.Chin. J. Chem.202240151842185510.1002/cjoc.202200182
    [Google Scholar]
  48. MatooriS. LerouxJ.C. Twenty-five years of polymersomes: Lost in translation?Mater. Horiz.2020751297130910.1039/C9MH01669D
    [Google Scholar]
  49. WongC.K. LaiR.Y. ThordarsonP. Polymersomes: Fundamentals and shape transformation methods.Supramolecular Nanotechnology: Advanced Design of Self-Assembled Functional Materials.Hoboken, New JerseyWiley20231027105410.1002/9783527834044.ch38
    [Google Scholar]
  50. GuanL. RizzelloL. BattagliaG. Polymersomes and their applications in cancer delivery and therapy.Nanomedicine (Lond.)201510172757278010.2217/nnm.15.11026328898
    [Google Scholar]
  51. HuY QiuL. Polymersomes: Preparation and characterization.Methods Mol Biol.2019200024726510.1007/978‑1‑4939‑9516‑5_17
    [Google Scholar]
  52. KunzlerC. Handschuh-WangS. RoesenerM. SchönherrH. Giant Biodegradable Poly(ethylene glycol)- block -Poly(ε-caprolactone) polymersomes by electroformation.Macromol. Biosci.2020206200001410.1002/mabi.20200001432363777
    [Google Scholar]
  53. CaoS. WuH. PijpersI.A.B. ShaoJ. AbdelmohsenL.K.E.A. WilliamsD.S. van HestJ.C.M. Cucurbit-like polymersomes with aggregation-induced emission properties show enzyme-mediated motility.ACS Nano20211511182701827810.1021/acsnano.1c0734334668368
    [Google Scholar]
  54. WehrR. GaitzschJ. DaubianD. FodorC. MeierW. Deepening the insight into poly(butylene oxide)- block -poly(glycidol) synthesis and self-assemblies: Micelles, worms and vesicles.RSC Adv.20201038227012271110.1039/D0RA04274A35514604
    [Google Scholar]
  55. AlmadhiS. ForthJ. Rodriguez-ArcoL. Duro-CastanoA. WilliamsI. Ruiz-PérezL. BattagliaG. Bottom-Up Preparation of Phase-Separated Polymersomes.Macromol. Biosci.2023238230006810.1002/mabi.20230006837315231
    [Google Scholar]
  56. KothaR. KaraD.D. RoychowdhuryR. TanviK. RathnanandM. Polymersomes based versatile nanoplatforms for controlled drug delivery and imaging.Adv. Pharm. Bull.202313221823210.34172/apb.2023.02837342386
    [Google Scholar]
  57. SuiX. KujalaP. JanssenG.J. de JongE. ZuhornI.S. van HestJ.C.M. Robust formation of biodegradable polymersomes by direct hydration.Polym. Chem.20156569169610.1039/C4PY01288G
    [Google Scholar]
  58. ZhangQ. ZengR. ZhangY. ChenY. ZhangL. TanJ. Two polymersome evolution pathways in one polymerization-induced self-assembly (PISA) system.Macromolecules202053208982899110.1021/acs.macromol.0c01624
    [Google Scholar]
  59. SinghK. BihareeA. VyasA. TharejaS. JainA.K. Recent advancement of polymersomes as drug delivery carrier.Curr. Pharm. Des.202228201621163110.2174/138161282866622041210355235418282
    [Google Scholar]
  60. FieldenS.D.P. DerryM.J. MillerA.J. TophamP.D. O’ReillyR.K. Triggered Polymersome Fusion.J. Am. Chem. Soc.2023145105824583310.1021/jacs.2c1304936877655
    [Google Scholar]
  61. TorabianF. Akhavan RezayatA. Ghasemi NourM. GhorbanzadehA. NajafiS. SahebkarA. SabouriZ. DarroudiM. Administration of silver nanoparticles in diabetes mellitus: A systematic review and meta-analysis on animal studies.Biol. Trace Elem. Res.202220041699170910.1007/s12011‑021‑02776‑134114175
    [Google Scholar]
  62. MichalczykM. HumeniukE. AdamczukG. Korga-PlewkoA. Hyaluronic acid as a modern approach in anticancer therapy-review.Int. J. Mol. Sci.202224110310.3390/ijms2401010336613567
    [Google Scholar]
  63. ShahriariM. TaghdisiS.M. AbnousK. RamezaniM. AlibolandiM. Synthesis of hyaluronic acid-based polymersomes for doxorubicin delivery to metastatic breast cancer.Int. J. Pharm.201957211883510.1016/j.ijpharm.2019.11883531726198
    [Google Scholar]
  64. TangQ. HuP. PengH. ZhangN. ZhengQ. HeY. Near-infrared laser-triggered, self-immolative smart polymersomes for in vivo cancer therapy.Int. J. Nanomedicine20201513714910.2147/IJN.S22450232021170
    [Google Scholar]
  65. TaghaviS. AbnousK. BabaeiM. TaghdisiS.M. RamezaniM. AlibolandiM. Synthesis of chimeric polymersomes based on PLA-b-PHPMA and PCL-b-PHPMA for nucleoline guided delivery of SN38.Nanomedicine20202810222710.1016/j.nano.2020.10222732485319
    [Google Scholar]
  66. LuF. PangZ. ZhaoJ. JinK. LiH. PangQ. ZhangL. PangZ. Angiopep-2-conjugated poly(ethylene glycol)-co-poly(ϵ-caprolactone) polymersomes for dual-targeting drug delivery to glioma in rats.Int. J. Nanomedicine2017122117212710.2147/IJN.S12342228356732
    [Google Scholar]
  67. JiangY. ZhangJ. MengF. ZhongZ. Apolipoprotein E peptide-directed chimeric polymersomes mediate an ultrahigh-efficiency targeted protein therapy for glioblastoma.ACS Nano20181211110701107910.1021/acsnano.8b0526530395440
    [Google Scholar]
  68. HeC. ZhangZ. DingY. XueK. WangX. YangR. AnY. LiuD. HuC. TangQ. LRP1-mediated pH-sensitive polymersomes facilitate combination therapy of glioblastoma in vitro and in vivo .J. Nanobiotechnology20211912910.1186/s12951‑020‑00751‑x33482822
    [Google Scholar]
  69. ZouY. SunY. GuoB. WeiY. XiaY. HuangfuZ. MengF. van HestJ.C.M. YuanJ. ZhongZ. α3β1 integrin-targeting polymersomal docetaxel as an advanced nanotherapeutic for nonsmall cell lung cancer treatment.ACS Appl. Mater. Interfaces20201213149051491310.1021/acsami.0c0106932148016
    [Google Scholar]
  70. AlibolandiM. RamezaniM. AbnousK. HadizadehF. AS1411 aptamer-decorated biodegradable polyethylene glycol–poly (lactic-co-glycolic acid) nanopolymersomes for the targeted delivery of gemcitabine to non–small cell lung cancer in vitro .J. Pharm. Sci.201610551741175010.1016/j.xphs.2016.02.02127039356
    [Google Scholar]
  71. ZavvarT. BabaeiM. AbnousK. TaghdisiS.M. NekooeiS. RamezaniM. AlibolandiM. Synthesis of multimodal polymersomes for targeted drug delivery and MR/fluorescence imaging in metastatic breast cancer model.Int. J. Pharm.202057811909110.1016/j.ijpharm.2020.11909132007591
    [Google Scholar]
  72. Diaz BessoneM.I. Simón-GraciaL. ScodellerP. RamirezM.A. Lago HuvelleM.A. Soler-IlliaG.J.A.A. SimianM. iRGD-guided tamoxifen polymersomes inhibit estrogen receptor transcriptional activity and decrease the number of breast cancer cells with self-renewing capacity.J. Nanobiotechnology201917112010.1186/s12951‑019‑0553‑431812165
    [Google Scholar]
  73. ZhangY. YueS. HaagR. SunH. ZhongZ. An intelligent cell-selective polymersome-DM1 nanotoxin toward triple negative breast cancer.J. Control. Release202134033134110.1016/j.jconrel.2021.11.01434774889
    [Google Scholar]
  74. YangY. KozlovskayaV. ZhangZ. XingC. ZahariasS. DolmatM. QianS. ZhangJ. WarramJ.M. YangE.S. KharlampievaE. Poly( N -vinylpyrrolidone)- block -Poly(dimethylsiloxane)- block -Poly( N -vinylpyrrolidone) triblock copolymer polymersomes for delivery of PARP1 siRNA to breast cancers.ACS Appl. Bio Mater.2022541670168210.1021/acsabm.2c0006335294185
    [Google Scholar]
  75. ConfeldM.I. MamnoonB. FengL. Jensen-SmithH. RayP. FrobergJ. KimJ. HollingsworthM.A. QuadirM. ChoiY. MallikS. Targeting the tumor core: Hypoxia-responsive nanoparticles for the delivery of chemotherapy to pancreatic tumors.Mol. Pharm.20201782849286310.1021/acs.molpharmaceut.0c0024732521162
    [Google Scholar]
  76. RayP. ConfeldM. BorowiczP. WangT. MallikS. QuadirM. PEG-b-poly (carbonate)-derived nanocarrier platform with pH-responsive properties for pancreatic cancer combination therapy.Colloids Surf. B Biointerfaces201917412613510.1016/j.colsurfb.2018.10.06930447521
    [Google Scholar]
  77. Khakinezhad TehraniF. RanjiN. KouhkanF. HosseinzadehS. Apoptosis induction and proliferation inhibition by silibinin encapsulated in nanoparticles in MIA PaCa-2 cancer cells and deregulation of some miRNAs.Iran. J. Basic Med. Sci.202023446948210.22038/2Fijbms.2020.39427.934932489562
    [Google Scholar]
  78. RamezaniP. AbnousK. TaghdisiS.M. ZahiriM. RamezaniM. AlibolandiM. Targeted MMP-2 responsive chimeric polymersomes for therapy against colorectal cancer.Colloids Surf. B Biointerfaces202019311113510.1016/j.colsurfb.2020.11113532447200
    [Google Scholar]
  79. PakizehkarS. RanjiN. SohiA.N. SadeghizadehM. Polymersome-assisted delivery of curcumin: A suitable approach to decrease cancer stemness markers and regulate miRNAs expression in HT29 colorectal cancer cells.Polym. Adv. Technol.202031116017710.1002/pat.4759
    [Google Scholar]
  80. WangZ. ZhaoS. GuW. DongY. MengF. YuanJ. ZhongZ. α3 integrin-binding peptide-functionalized polymersomes loaded with volasertib for dually-targeted molecular therapy for ovarian cancer.Acta Biomater.202112434835710.1016/j.actbio.2021.02.00733561562
    [Google Scholar]
  81. WangZ. ZhaoS. shiJ. MengF. YuanJ. ZhongZ. Folate-mediated targeted PLK1 inhibition therapy for ovarian cancer: A comparative study of molecular inhibitors and siRNA therapeutics.Acta Biomater.202213844345210.1016/j.actbio.2021.10.04334757229
    [Google Scholar]
  82. FangY. YangW. ChengL. MengF. ZhangJ. ZhongZ. EGFR-targeted multifunctional polymersomal doxorubicin induces selective and potent suppression of orthotopic human liver cancer in vivo .Acta Biomater.20176432333310.1016/j.actbio.2017.10.01329030307
    [Google Scholar]
  83. WangD. LuoF. HeF. LuF. TaoX. SongK. ZhaoJ. ChenL. Preparation and anti-tumor activity of PEG-PCL polymersomes loaded with curcumol derivative in HepG2 cell line.J. Drug Deliv. Sci. Technol.20216610278210.1016/j.jddst.2021.102782
    [Google Scholar]
  84. GuW. LiuT. FanD. ZhangJ. XiaY. MengF. XuY. CornelissenJ.J.L.M. LiuZ. ZhongZ. A6 peptide-tagged, ultra-small and reduction-sensitive polymersomal vincristine sulfate as a smart and specific treatment for CD44+ acute myeloid leukemia.J. Control. Release202132970671610.1016/j.jconrel.2020.10.00533031878
    [Google Scholar]
  85. XiaY. AnJ. LiJ. GuW. ZhangY. ZhaoS. ZhaoC. XuY. LiB. ZhongZ. MengF. Transferrin-guided intelligent nanovesicles augment the targetability and potency of clinical PLK1 inhibitor to acute myeloid leukemia.Bioact. Mater.20232149951010.1016/j.bioactmat.2022.08.03236185744
    [Google Scholar]
  86. PanX.Q. GongY.C. LiZ.L. LiY.P. XiongX.Y. Folate-conjugated pluronic/polylactic acid polymersomes for oral delivery of paclitaxel.Int. J. Biol. Macromol.201913937738610.1016/j.ijbiomac.2019.07.22431377294
    [Google Scholar]
  87. CheH. van HestJ.C.M. Stimuli-responsive polymersomes and nanoreactors.J. Mater. Chem. B Mater. Biol. Med.20164274632464710.1039/C6TB01163B32263234
    [Google Scholar]
  88. WeiP. SunM. YangB. XiaoJ. DuJ. Ultrasound-responsive polymersomes capable of endosomal escape for efficient cancer therapy.J. Control. Release2020322819410.1016/j.jconrel.2020.03.01332173328
    [Google Scholar]
  89. SabouriZ. ShakourN. SabouriM. Tabrizi Hafez MoghaddasS.S. DarroudiM. Biochemical, structural characterization and assessing the biological effects of cinnamon nanoparticles.Biotechnol. Bioprocess Eng.; BBE202429116517510.1007/s12257‑024‑00004‑w
    [Google Scholar]
  90. KarandishF. FrobergJ. BorowiczP. WilkinsonJ.C. ChoiY. MallikS. Peptide-targeted, stimuli-responsive polymersomes for delivering a cancer stemness inhibitor to cancer stem cell microtumors.Colloids Surf. B Biointerfaces201816322523510.1016/j.colsurfb.2017.12.03629304437
    [Google Scholar]
  91. ZuoH. iRGD: A promising peptide for cancer imaging and a potential therapeutic agent for various cancers.J. Oncol.2019201911510.1155/2019/936784531346334
    [Google Scholar]
  92. KarandishF. MamnoonB. FengL. HaldarM.K. XiaL. GangeK.N. YouS. ChoiY. SarkarK. MallikS. Nucleus-targeted, echogenic polymersomes for delivering a cancer stemness inhibitor to pancreatic cancer cells.Biomacromolecules201819104122413210.1021/acs.biomac.8b0113330169024
    [Google Scholar]
  93. GuW. AnJ. MengH. YuN. ZhongY. MengF. XuY. CornelissenJ.J.L.M. ZhongZ. CD44-specific A6 short peptide boosts targetability and anticancer efficacy of polymersomal epirubicin to orthotopic human multiple myeloma.Adv. Mater.20193146190474210.1002/adma.20190474231560141
    [Google Scholar]
  94. AmiriH. HashemyS.I. SabouriZ. JavidH. DarroudiM. Green synthesized selenium nanoparticles for ovarian cancer cell apoptosis.Res. Chem. Intermed.20214762539255610.1007/s11164‑021‑04424‑8
    [Google Scholar]
  95. SegaE.I. LowP.S. Tumor detection using folate receptor-targeted imaging agents.Cancer Metastasis Rev.200827465566410.1007/s10555‑008‑9155‑618523731
    [Google Scholar]
  96. ZwickeG.L. Ali MansooriG. JefferyC.J. Utilizing the folate receptor for active targeting of cancer nanotherapeutics.Nano Rev.2012311849610.3402/nano.v3i0.1849623240070
    [Google Scholar]
  97. LaleS.V. KumarA. PrasadS. BhartiA.C. KoulV. Folic acid and trastuzumab functionalized redox responsive polymersomes for intracellular doxorubicin delivery in breast cancer.Biomacromolecules20151661736175210.1021/acs.biomac.5b0024425918899
    [Google Scholar]
  98. ChenY.C. ChiangC.F. ChenL.F. LiangP.C. HsiehW.Y. LinW.L. Polymersomes conjugated with des-octanoyl ghrelin and folate as a BBB-penetrating cancer cell-targeting delivery system.Biomaterials201435134066408110.1016/j.biomaterials.2014.01.04224513319
    [Google Scholar]
  99. AlibolandiM. AbnousK. HadizadehF. TaghdisiS.M. AlabdollahF. MohammadiM. NassirliH. RamezaniM. Dextran-poly lactide- co -glycolide polymersomes decorated with folate-antennae for targeted delivery of docetaxel to breast adenocarcinima in vitro and in vivo .J. Control. Release2016241455610.1016/j.jconrel.2016.09.01227639681
    [Google Scholar]
  100. GeorgievaJV BrinkhuisRP StojanovK WeijersCA ZuilhofH RutjesFP HoekstraD van HestJC ZuhornIS Peptide-mediated blood-brain barrier transport of polymersomes.Angew Chem Int Ed Engl.2012513383394210.1002/anie.201202001
    [Google Scholar]
  101. MeiL. ZhangQ. YangY. HeQ. GaoH. Angiopep-2 and activatable cell penetrating peptide dual modified nanoparticles for enhanced tumor targeting and penetrating.Int. J. Pharm.20144741-29510210.1016/j.ijpharm.2014.08.02025138251
    [Google Scholar]
  102. ShiY. JiangY. CaoJ. YangW. ZhangJ. MengF. ZhongZ. Boosting RNAi therapy for orthotopic glioblastoma with nontoxic brain-targeting chimaeric polymersomes.J. Control. Release201829216317110.1016/j.jconrel.2018.10.03430408555
    [Google Scholar]
  103. FigueiredoP. BalasubramanianV. ShahbaziM.A. CorreiaA. WuD. PalivanC.G. HirvonenJ.T. SantosH.A. Angiopep2-functionalized polymersomes for targeted doxorubicin delivery to glioblastoma cells.Int. J. Pharm.2016511279480310.1016/j.ijpharm.2016.07.06627484836
    [Google Scholar]
  104. KangS. LeeS. ParkS. iRGD peptide as a tumor-penetrating enhancer for tumor-targeted drug delivery.Polymers (Basel)2020129190610.3390/polym1209190632847045
    [Google Scholar]
  105. HuC. YangX. LiuR. RuanS. ZhouY. XiaoW. YuW. YangC. GaoH. Coadministration of iRGD with multistage responsive nanoparticles enhanced tumor targeting and penetration abilities for breast cancer therapy.ACS Appl. Mater. Interfaces20181026225712257910.1021/acsami.8b0484729878758
    [Google Scholar]
  106. Simón-GraciaL. HuntH. ScodellerP. GaitzschJ. KotamrajuV.R. SugaharaK.N. TammikO. RuoslahtiE. BattagliaG. TeesaluT. iRGD peptide conjugation potentiates intraperitoneal tumor delivery of paclitaxel with polymersomes.Biomaterials201610424725710.1016/j.biomaterials.2016.07.02327472162
    [Google Scholar]
  107. LauD. GuoL. LiuR. MarikJ. LamK. Peptide ligands targeting integrin α3β1 in non-small cell lung cancer.Lung Cancer200652329129710.1016/j.lungcan.2006.03.00316635537
    [Google Scholar]
  108. FarokhzadO.C. KarpJ.M. LangerR. Nanoparticle–aptamer bioconjugates for cancer targeting.Expert Opin. Drug Deliv.20063331132410.1517/17425247.3.3.31116640493
    [Google Scholar]
  109. AlibolandiM. RamezaniM. SadeghiF. AbnousK. HadizadehF. Epithelial cell adhesion molecule aptamer conjugated PEG–PLGA nanopolymersomes for targeted delivery of doxorubicin to human breast adenocarcinoma cell line in vitro .Int. J. Pharm.2015479124125110.1016/j.ijpharm.2014.12.03525529433
    [Google Scholar]
  110. BabaeiM. AbnousK. NekooeiS. Mohammad TaghdisiS. Amel FarzadS. RamezaniM. AlibolandiM. Synthesis of manganese-incorporated polycaplactone-poly (glyceryl methacrylate) theranostic smart hybrid polymersomes for efficient colon adenocarcinoma treatment.Int. J. Pharm.202262312196310.1016/j.ijpharm.2022.12196335764261
    [Google Scholar]
  111. MarquesA.C. CostaP.J. VelhoS. AmaralM.H. Functionalizing nanoparticles with cancer-targeting antibodies: A comparison of strategies.J. Control. Release202032018020010.1016/j.jconrel.2020.01.03531978444
    [Google Scholar]
  112. NallaniM. Andreasson-OchsnerM. TanC.W.D. SinnerE.K. WisantosoY. Geifman-ShochatS. HunzikerW. Proteopolymersomes: in vitro production of a membrane protein in polymersome membranes.Biointerphases20116415315710.1116/1.364438422239807
    [Google Scholar]
  113. ChuI-M. TsengS-H. ChouM-Y. Cetuximab-conjugated iron oxide nanoparticles for cancer imaging and therapy.Int. J. Nanomedicine2015103663368510.2147/IJN.S8013426056447
    [Google Scholar]
  114. KreutzfeldtJ. RozeboomB. DeyN. DeP. The trastuzumab era: Current and upcoming targeted HER2+ breast cancer therapies.Am. J. Cancer Res.20201041045106732368385
    [Google Scholar]
  115. PourtauL. OliveiraH. ThevenotJ. WanY. BrissonA.R. SandreO. MirauxS. ThiaudiereE. LecommandouxS. Antibody-functionalized magnetic polymersomes: in vivo targeting and imaging of bone metastases using high resolution MRI.Adv. Healthc. Mater.20132111420142410.1002/adhm.20130006123606565
    [Google Scholar]
  116. PangZ. LuW. GaoH. HuK. ChenJ. ZhangC. GaoX. JiangX. ZhuC. Preparation and brain delivery property of biodegradable polymersomes conjugated with OX26.J. Control. Release2008128212012710.1016/j.jconrel.2008.03.00718436327
    [Google Scholar]
  117. HeY. GuoS. ZhangY. LiuY. JuH. Near-infrared photo-controlled permeability of a biomimetic polymersome with sustained drug release and efficient tumor therapy.ACS Appl. Mater. Interfaces20211313149511496310.1021/acsami.1c0084233764734
    [Google Scholar]
  118. WeiY. GuX. ChengL. MengF. StormG. ZhongZ. Low-toxicity transferrin-guided polymersomal doxorubicin for potent chemotherapy of orthotopic hepatocellular carcinoma in vivo .Acta Biomater.20199219620410.1016/j.actbio.2019.05.03431102765
    [Google Scholar]
  119. GaoH. PangZ. FanL. HuK. WuB. JiangX. Effect of lactoferrin- and transferrin-conjugated polymersomes in brain targeting: in vitro and in vivo evaluations.Acta Pharmacol. Sin.201031223724310.1038/aps.2009.19920139907
    [Google Scholar]
  120. JiangX. PangZ. MeiH. GaoH. ChenJ. ShenS. ZhangB. RenJ. GuoL. QianY. Intracellular delivery mechanism and brain delivery kinetics of biodegradable cationic bovine serum albumin-conjugated polymersomes.Int. J. Nanomedicine201273421343210.2147/IJN.S3251422848168
    [Google Scholar]
  121. NahireR. HaldarM.K. PaulS. AmbreA.H. MeghnaniV. LayekB. KattiK.S. GangeK.N. SinghJ. SarkarK. MallikS. Multifunctional polymersomes for cytosolic delivery of gemcitabine and doxorubicin to cancer cells.Biomaterials201435246482649710.1016/j.biomaterials.2014.04.02624797878
    [Google Scholar]
  122. MahmoudiM. SantS. WangB. LaurentS. SenT. Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy.Adv. Drug Deliv. Rev.2011631-2244610.1016/j.addr.2010.05.00620685224
    [Google Scholar]
  123. FukushimaK. Poly(trimethylene carbonate)-based polymers engineered for biodegradable functional biomaterials.Biomater. Sci.20164192410.1039/C5BM00123D26323327
    [Google Scholar]
  124. ChengZ. TsourkasA. Paramagnetic porous polymersomes.Langmuir200824158169817310.1021/la801027q18570445
    [Google Scholar]
  125. ChengZ. ThorekD.L.J. TsourkasA. Porous polymersomes with encapsulated Gd-labeled dendrimers as highly efficient MRI contrast agents.Adv. Funct. Mater.200919233753375910.1002/adfm.20090125323293575
    [Google Scholar]
  126. UlbrichK. HoláK. ŠubrV. BakandritsosA. TučekJ. ZbořilR. Targeted drug delivery with polymers and magnetic nanoparticles: Covalent and noncovalent approaches, release control, and clinical studies.Chem. Rev.201611695338543110.1021/acs.chemrev.5b0058927109701
    [Google Scholar]
  127. BleulR. ThiermannR. MartenG.U. HouseM.J. PierreT.G.S. HäfeliU.O. MaskosM. Continuously manufactured magnetic polymersomes – a versatile tool (not only) for targeted cancer therapy.Nanoscale2013523113851139310.1039/c3nr02190d23820598
    [Google Scholar]
  128. HossainM.S. MohamedF. ShafriM.A. Poly (trimethylene carbonate-co-caprolactone): An emerging drug delivery nanosystem in pharmaceutics.Biomaterials and Biomechanics in Bioengineering.202051658610.12989/bme.2020.5.1.065
    [Google Scholar]
  129. ChristianN.A. MiloneM.C. RankaS.S. LiG. FrailP.R. DavisK.P. BatesF.S. TherienM.J. GhoroghchianP.P. JuneC.H. HammerD.A. Tat-functionalized near-infrared emissive polymersomes for dendritic cell labeling.Bioconjug. Chem.2007181314010.1021/bc060126717226955
    [Google Scholar]
  130. AlibolandiM. AbnousK. SadeghiF. HosseinkhaniH. RamezaniM. HadizadehF. Folate receptor-targeted multimodal polymersomes for delivery of quantum dots and doxorubicin to breast adenocarcinoma: in vitro and in vivo evaluation.Int. J. Pharm.20165001-216217810.1016/j.ijpharm.2016.01.04026802496
    [Google Scholar]
  131. CaoJ. WeiY. ZhangY. WangG. JiX. ZhongZ. Iodine-rich polymersomes enable versatile SPECT/CT imaging and potent radioisotope therapy for tumor in vivo .ACS Appl. Mater. Interfaces20191121189531895910.1021/acsami.9b0429431062589
    [Google Scholar]
  132. KawelahM.R. HanS. Atila DincerC. JeonJ. BrisolaJ. HussainA.F. JeevarathinamA.S. BouchardR. MarrasA.E. TruskettT.M. SokolovK.V. JohnstonK.P. Antibody-Conjugated Polymersomes with Encapsulated Indocyanine Green J-Aggregates and High Near-Infrared Absorption for Molecular Photoacoustic Cancer Imaging.ACS Appl. Mater. Interfaces20241655598561210.1021/acsami.3c1658438270979
    [Google Scholar]
  133. TeesaluT. Compositions that target tumor-associated macrophages and methods of use therefor.WO Patent 2019067984A22023
  134. Jean-ChristopheL. TRANSMEMBRANE pH-GRADIENT POLYMERSOMES.US Ptent 20230303778A12023
  135. HyuncheolK. Sono sensitive Polymersome and Fabrication Method Therefor.WO Ptent 2023027460A12023
  136. MatthewT. Targeted, intracellular delivery of therapeutic peptides using supramolecular nanomaterials.WO Ptent 2022047401A12023
  137. GiuseppeB. Polymersomes functionalised with multiple ligands.WO Ptent 2020144467A12022
/content/journals/cnanom/10.2174/0124681873304030240417070617
Loading
/content/journals/cnanom/10.2174/0124681873304030240417070617
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test