Skip to content
2000
Volume 15, Issue 3
  • ISSN: 2468-1873
  • E-ISSN: 2468-1881
Preview this article:

There is no abstract available.

Loading

Article metrics loading...

/content/journals/cnanom/10.2174/0124681873302257240302054756
2024-03-04
2025-10-27
Loading full text...

Full text loading...

/deliver/fulltext/cnanom/15/3/CNANOM-15-3-01.html?itemId=/content/journals/cnanom/10.2174/0124681873302257240302054756&mimeType=html&fmt=ahah

References

  1. PríclS. The spicy science of dendrimers in the realm of cancer nanomedicine: A report from the COST action CA17140 nano2clinic.Pharmaceutics2023157201310.3390/pharmaceutics15072013 37514199
    [Google Scholar]
  2. XuM. HanX. XiongH. Cancer nanomedicine: Emerging strategies and therapeutic potentials.Molecules20232813514510.3390/molecules28135145 37446806
    [Google Scholar]
  3. AnselmoA.C. GokarnY. MitragotriS. Non-invasive delivery strategies for biologics.Nat. Rev. Drug Discov.2019181194010.1038/nrd.2018.183 30498202
    [Google Scholar]
  4. DirisalaA. LiJ. Gonzalez-CarterD. WangZ. Editorial: Delivery systems in biologics-based therapeutics.Front. Bioeng. Biotechnol.202311127421010.3389/fbioe.2023.1274210 37662436
    [Google Scholar]
  5. XuX. LiuA. LiuS. Application of molecular dynamics simulation in self-assembled cancer nanomedicine.Biomater. Res.20232713910.1186/s40824‑023‑00386‑7 37143168
    [Google Scholar]
  6. QuX. ZhouD. LuJ. QinD. ZhouJ. LiuH.J. Cancer nanomedicine in preoperative therapeutics: Nanotechnology-enabled neoadjuvant chemotherapy, radiotherapy, immunotherapy, and phototherapy.Bioact. Mater.20232413615210.1016/j.bioactmat.2022.12.010 36606253
    [Google Scholar]
  7. YanM. WuS. WangY. Recent progress of supramolecular chemotherapy based on host–guest interactions.Adv. Mater.2023230424910.1002/adma.202304249 37478832
    [Google Scholar]
  8. ChenS. HuangX. XueY. Nanotechnology-based mRNA vaccines.Nat. Rev. Meth Pri2023316310.1038/s43586‑023‑00246‑7
    [Google Scholar]
  9. ZhangX. GeH. MaY. Engineered anti-cancer nanomedicine for synergistic ferroptosis-immunotherapy.Chem. Eng. J.202345514068810.1016/j.cej.2022.140688
    [Google Scholar]
  10. KumarV.B. OzguneyB. VlachouA. ChenY. GazitE. TamamisP. Peptide self-assembled nanocarriers for cancer drug delivery.J. Phys. Chem. B202312791857187110.1021/acs.jpcb.2c06751 36812392
    [Google Scholar]
  11. WangL. YuanJ. HaoJ. Transient self-assembly driven by chemical fuels.Chem Phys Mater202331123
    [Google Scholar]
  12. ZhangL. YaoL. ZhaoF. Protein and peptide‐based nanotechnology for enhancing stability, bioactivity, and delivery of anthocyanins.Adv. Healthc. Mater.20231225230047310.1002/adhm.202300473 37537383
    [Google Scholar]
  13. LiuY. WuY. LuoZ. LiM. Designing supramolecular self-assembly nanomaterials as stimuli-responsive drug delivery platforms for cancer therapy.iScience202326310627910.1016/j.isci.2023.106279 36936787
    [Google Scholar]
  14. KumariP. SharmaP. SrivastavaY. SharmaN.K. Recent Progress in Hypoxia-Targeting: Peptide-Based Nanomaterials.Smart Nanomater Target Pathol Hypoxia20235980
    [Google Scholar]
  15. LiX. GaoY. LiH. MajoralJ.P. ShiX. PichA. Smart and bioinspired systems for overcoming biological barriers and enhancing disease theranostics.Prog. Mater. Sci.202314010117010.1016/j.pmatsci.2023.101170
    [Google Scholar]
  16. ShenX. DirisalaA. ToyodaM. pH-responsive polyzwitterion covered nanocarriers for DNA delivery.J. Control. Release202336092893910.1016/j.jconrel.2023.07.038 37495117
    [Google Scholar]
  17. van StrienJ. Escalona-RayoO. JiskootW. SlütterB. KrosA. Elastin-like polypeptide-based micelles as a promising platform in nanomedicine.J. Control. Release202335371372610.1016/j.jconrel.2022.12.033 36526018
    [Google Scholar]
  18. DirisalaA. UchidaS. TockaryT.A. Precise tuning of disulphide crosslinking in mRNA polyplex micelles for optimising extracellular and intracellular nuclease tolerability.J. Drug Target.2019275-667068010.1080/1061186X.2018.1550646 30499743
    [Google Scholar]
  19. UchidaS. KataokaK. Design concepts of polyplex micelles for in vivo therapeutic delivery of plasmid DNA and messenger RNA.J. Biomed. Mater. Res. A2019107597899010.1002/jbm.a.36614 30665262
    [Google Scholar]
  20. MustafaiA. ZubairM. HussainA. UllahA. Recent progress in proteins-based micelles as drug delivery carriers.Polymers202315483610.3390/polym15040836 36850121
    [Google Scholar]
  21. ChouS. GuoH. ZinglF.G. Synthetic peptides that form nanostructured micelles have potent antibiotic and antibiofilm activity against polymicrobial infections.Proc. Natl. Acad. Sci.20231204e221967912010.1073/pnas.2219679120 36649429
    [Google Scholar]
  22. LiS. LiF. WanD. ChenZ. PanJ. LiangX.J. A micelle-based stage-by-stage impelled system for efficient doxorubicin delivery.Bioact. Mater.20232578379510.1016/j.bioactmat.2022.07.001 37056277
    [Google Scholar]
/content/journals/cnanom/10.2174/0124681873302257240302054756
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test