Skip to content
2000
Volume 15, Issue 4
  • ISSN: 2468-1873
  • E-ISSN: 2468-1881

Abstract

Graphene is a remarkable substance that has revolutionized numerous disciplines, including electronics, materials science, condensed physics, quantum physics, energy systems, and many more. Its physical and chemical properties have been the subject of a great deal of research since its 2004 discovery. Because of its unique properties, it has swiftly become a contender worth investigating for biomedical uses by nano-bio researchers. Studies on graphene and related materials have attracted a great deal of interest from the biomedical community in the last decade, with a focus on their potential applications in cancer treatment, smart drug delivery, and gene therapy. Graphene oxide (GO) has many desirable properties, including a high adsorption capacity, a big surface area, biocompatibility, and colloidal stability.

To get around the problems with traditional treatment methods, researchers have been working on new drug delivery systems that include biocompatible polymers as nanocomposite carriers, a three-dimensional (3D) hydrogel network, and controlled medication release.

In this review, we compiled the latest findings from graphene's biomedical uses, took a look at the latest innovations in graphene-based hydrogels for medication delivery, and offered some exciting predictions for the future of this material's function in this field.

Loading

Article metrics loading...

/content/journals/cnanom/10.2174/0124681873241638240409131332
2024-04-27
2025-10-11
Loading full text...

Full text loading...

References

  1. ManthaS. PillaiS. KhayambashiP. UpadhyayA. ZhangY. TaoO. PhamH.M. TranS.D. Smart hydrogels in tissue engineering and regenerative medicine.Materials 20191220332310.3390/ma1220332331614735
    [Google Scholar]
  2. ItoT. YeoY. HighleyC. BellasE. KohaneD. Dextran-based in situ cross-linked injectable hydrogels to prevent peritoneal adhesions.Biomaterials200728233418342610.1016/j.biomaterials.2007.04.01717470376
    [Google Scholar]
  3. GanjiF. Hydrogels in controlled drug delivery systems.Mat. Sci.2009716
    [Google Scholar]
  4. JacobS. NairA.B. ShahJ. SreeharshaN. GuptaS. ShinuP. Emerging role of hydrogels in drug delivery systems, tissue engineering and wound management.Pharmaceutics202113335710.3390/pharmaceutics1303035733800402
    [Google Scholar]
  5. HeC. ShiZ.Q. MaL. ChengC. NieC.X. ZhouM. ZhaoC.S. Graphene oxide based heparin-mimicking and hemocompatible polymeric hydrogels for versatile biomedical applications.J. Mater. Chem. B Mater. Biol. Med.20153459260210.1039/C4TB01806K32262341
    [Google Scholar]
  6. CuiR. WuQ. WangJ. ZhengX. OuR. XuY. QuS. LiD. Hydrogel-by-design: smart delivery system for cancer immunotherapy.Front. Bioeng. Biotechnol.2021972349010.3389/fbioe.2021.72349034368109
    [Google Scholar]
  7. ChauhanD.S. QuraishiM.A. AnsariK.R. SalehT.A. Graphene and graphene oxide as new class of materials for corrosion control and protection: Present status and future scenario.Prog. Org. Coat.202014710574110.1016/j.porgcoat.2020.105741
    [Google Scholar]
  8. AliyevE. FilizV. KhanM.M. LeeY.J. AbetzC. AbetzV. Structural characterization of graphene oxide: Surface functional groups and fractionated oxidative debris.Nanomaterials 201998118010.3390/nano908118031426617
    [Google Scholar]
  9. IranshahiS. MosivandS. Cobalt/graphene oxide nanocomposites: Electro-synthesis, structural, magnetic, and electrical properties.Ceram. Int.2022489122401225410.1016/j.ceramint.2022.01.086
    [Google Scholar]
  10. WelderfaelT. YadavO.P. TaddesseA.M. KaushalJ. Synthesis, characterization and photocatalytic activities of Ag-N-codoped ZnO nanoparticles for degradation of methyl red.Bull. Chem. Soc. Ethiop.201327222123210.4314/bcse.v27i2.7
    [Google Scholar]
  11. Van BelleghemS. TorresL.Jr SantoroM. MahadikB. WolfandA. KofinasP. FisherJ.P. Hybrid 3D printing of synthetic and cell-laden bioinks for shape retaining soft tissue grafts.Adv. Funct. Mater.2020303190714510.1002/adfm.20190714533041744
    [Google Scholar]
  12. DhimanS. SinghT.G. RehniA.K. Transdermal patches: A recent approach to new drug delivery system.Int. J. Pharm. Pharm. Sci.2011352634
    [Google Scholar]
  13. DiS. QianY. WangL. LiZ. Biofunctionalization of graphene and its two-dimensional analogues and synthesis of biomimetic materials: A review.J. Mater. Sci.20225753085311310.1007/s10853‑021‑06787‑0
    [Google Scholar]
  14. CatoiraM.C. FusaroL. Di FrancescoD. RamellaM. BoccafoschiF. Overview of natural hydrogels for regenerative medicine applications.J. Mater. Sci. Mater. Med.2019301011510.1007/s10856‑019‑6318‑731599365
    [Google Scholar]
  15. SoodN. BhardwajA. MehtaS. MehtaA. Stimuli-responsive hydrogels in drug delivery and tissue engineering.Drug Deliv.201623374877010.3109/10717544.2014.94009125045782
    [Google Scholar]
  16. DervinS. DionysiouD.D. PillaiS.C. 2D nanostructures for water purification: graphene and beyond.Nanoscale2016833151151513110.1039/C6NR04508A27506268
    [Google Scholar]
  17. Abu-ThabitN.Y. MakhloufA.S.H. Historical development of drug delivery systems: From conventional macroscale to controlled, targeted, and responsive nanoscale systems.Stimuli responsive polymeric nanocarriers for drug delivery applications.Elsevier2018134110.1016/B978‑0‑08‑101997‑9.00001‑1
    [Google Scholar]
  18. ShoukatH. BukshK. NoreenS. PervaizF. MaqboolI. Hydrogels as potential drug-delivery systems: network design and applications.Ther. Deliv.202112537539610.4155/tde‑2020‑011433792360
    [Google Scholar]
  19. GylesD.A. CastroL.D. SilvaJ.O.C.Jr Ribeiro-CostaR.M. A review of the designs and prominent biomedical advances of natural and synthetic hydrogel formulations.Eur. Polym. J.20178837339210.1016/j.eurpolymj.2017.01.027
    [Google Scholar]
  20. GulK. GanR.Y. SunC.X. JiaoG. WuD.T. LiH.B. KenaanA. CorkeH. FangY.P. Recent advances in the structure, synthesis, and applications of natural polymeric hydrogels.Crit. Rev. Food Sci. Nutr.202262143817383210.1080/10408398.2020.187003433406881
    [Google Scholar]
  21. VargheseS.A. Natural polymers and the hydrogels prepared from them.Hydrogels based on natural polymers.Elsevier2020174710.1016/B978‑0‑12‑816421‑1.00002‑1
    [Google Scholar]
  22. CostaF. SilvaR. BoccacciniA. Fibrous protein-based biomaterials (silk, keratin, elastin, and resilin proteins) for tissue regeneration and repair.Pept. Prot. Biomat. Tiss. Regen. Rep.2018175204
    [Google Scholar]
  23. NairL.S. LaurencinC.T. Biodegradable polymers as biomaterials.Prog. Polym. Sci.2007328-976279810.1016/j.progpolymsci.2007.05.017
    [Google Scholar]
  24. AshfaqA. ClochardM.C. CoqueretX. DispenzaC. DriscollM.S. UlańskiP. Al-SheikhlyM. Polymerization reactions and modifications of polymers by ionizing radiation.Polymers 20201212287710.3390/polym1212287733266261
    [Google Scholar]
  25. MutluH. CeperE.B. LiX. YangJ. DongW. OzmenM.M. TheatoP. Sulfur chemistry in polymer and materials science.Macromol. Rapid Commun.2019401180065010.1002/marc.20180065030468540
    [Google Scholar]
  26. JiangF. WangX. HeC. SaricilarS. WangH. Mechanical properties of tough hydrogels synthesized with a facile simultaneous radiation polymerization and cross-linking method.Radiat. Phys. Chem.201510671510.1016/j.radphyschem.2014.06.020
    [Google Scholar]
  27. GhazinezhadM. BozorgianA. Gholami DastnaeiP. A review of frontal polymerization in the chemical industry.Int. J. New. Chem.202294285308
    [Google Scholar]
  28. RodriguesR.C. Berenguer-MurciaÁ. Fernandez-LafuenteR. Coupling chemical modification and immobilization to improve the catalytic performance of enzymes.Adv. Synth. Catal.2011353132216223810.1002/adsc.201100163
    [Google Scholar]
  29. HoT.C. ChangC.C. ChanH.P. ChungT.W. ShuC.W. ChuangK.P. DuhT.H. YangM.H. TyanY.C. Hydrogels: Properties and applications in biomedicine.Molecules2022279290210.3390/molecules2709290235566251
    [Google Scholar]
  30. YadavN. Skin anatomy and morphology. DwivediA. AgarwalN. RayL. Skin Aging & Cancer.SpringerSingapore201910.1007/978‑981‑13‑2541‑0_1
    [Google Scholar]
  31. AhmedM.S. KhanI.J. AmanS. ChauhanS. KaurN. ShriwastavS. GoelK. SainiM. DhankarS. SinghT.G. DevJ. MujwarS. Phytochemical investigations, in-vitro antioxidant, antimicrobial potential, and in-silico computational docking analysis of Euphorbia milii Des Moul.J. Exp. Biol. Agric. Sci.202311238039310.18006/2023.11(2).380.393
    [Google Scholar]
  32. ChauhanS. Current approaches in healing of wounds in diabetes and diabetic foot ulcers.Curr. Bioact. Compd.2023193104121
    [Google Scholar]
  33. ChauhanS. Antihyperglycemic and Antioxidant Potential of Plant Extract of Litchi chinensis and Glycine max.Int. J. Nutr. Pharmacol. Neurol. Dis.2021113225233
    [Google Scholar]
  34. SenC.K. Wound healing essentials: Let there be oxygen.Wound Repair Regen.200917111810.1111/j.1524‑475X.2008.00436.x19152646
    [Google Scholar]
  35. RayA. SoutarD. Skin injuries and wound healing.The Soft Tissues.Elsevier1993558210.1016/B978‑0‑7506‑0170‑2.50010‑8
    [Google Scholar]
  36. Samrat ChauhanL.K. Potential anti-arthritic agents from indian medicinal plants.Res. Rev. J. Pharm. Pharm. Sci.2015431022
    [Google Scholar]
  37. NunanR. HardingK.G. MartinP. Clinical challenges of chronic wounds: Searching for an optimal animal model to recapitulate their complexity.Dis. Model. Mech.20147111205121310.1242/dmm.01678225359790
    [Google Scholar]
  38. GeerligsM. Skin layer mechanics.EindhovenTU Eindhoven2010
    [Google Scholar]
  39. KarppinenS.M. HeljasvaaraR. GullbergD. TasanenK. PihlajaniemiT. Toward understanding scarless skin wound healing and pathological scarring.F1000 Res.2019878710.12688/f1000research.18293.131231509
    [Google Scholar]
  40. GouldB.E. DyerR. Pathophysiology for the health professions-e-book.Elsevier Health Sciences2010
    [Google Scholar]
  41. FrykbergRobertG. Challenges in the treatment of chronic wounds.Adv. Wound Care2015
    [Google Scholar]
  42. LalitK. Phyto-pharmacological review of Coccinia indica.World J. Pharm. Pharm. Sci.20143217341745
    [Google Scholar]
  43. BergmeierW. HynesR.O. Extracellular matrix proteins in hemostasis and thrombosis.Cold Spring Harb. Perspect. Biol.201242a00513210.1101/cshperspect.a00513221937733
    [Google Scholar]
  44. RohillaS. SharmaP. KambojS. DhankharS. GargN. ChauhanS. RaniN. Anabolic androgenic steroids: A Review.Emir. Med. J.20245e0250688225370610.2174/0102506882253706240104073440
    [Google Scholar]
  45. SaharanR. KaurJ. DhankharS. GargN. ChauhanS. KumarS. SharmaH. Hydrogel-based drug delivery system in diabetes management.Pharm. Nanotechnol.20231211110.2174/012211738526627623092806423537818559
    [Google Scholar]
  46. NurdenA.T. The biology of the platelet with special reference to inflammation wound healing and immunity.Front. Biosci.201823272675110.2741/461328930569
    [Google Scholar]
  47. DhankarS. MujwarS. GargN. ChauhanS. SharmaP. Kumar SharmaS. KamalM.A. RaniD.N. KumarS. SainiM. Artificial intelligence in the management of neurodegenerative disorders.CNS Neurol. Disord. Drug Targets20232311037861051
    [Google Scholar]
  48. DhankharS. SharmaP. ChauhanS. SainiM. GargN. SinghR. KamalM.A. Kumar SharmaS. RaniN. Cognitive rehabilitation for early-stage dementia: a review.Current Psychiatry Research and Reviews20242011410.2174/0126660822275618231129073551
    [Google Scholar]
  49. MittalP. DhankharS. ChauhanS. GargN. BhattacharyaT. AliM. ChaudharyA.A. RudayniH.A. Al-ZharaniM. AhmadW. KhanS.U.D. SinghT.G. MujwarS. A review on natural antioxidants for their role in the treatment of parkinson’s disease.Pharmaceuticals 202316790810.3390/ph1607090837513820
    [Google Scholar]
  50. SteedD.L. The role of growth factors in wound healing.Surg. Clin. North Am.199777357558610.1016/S0039‑6109(05)70569‑79194881
    [Google Scholar]
  51. SchellerE.L. KrebsbachP.H. KohnD.H. Tissue engineering: State of the art in oral rehabilitation.J. Oral Rehabil.200936536838910.1111/j.1365‑2842.2009.01939.x19228277
    [Google Scholar]
  52. EslahiN. AbdorahimM. SimchiA. Smart polymeric hydrogels for cartilage tissue engineering: A review on the chemistry and biological functions.Biomacromolecules201617113441346310.1021/acs.biomac.6b0123527775329
    [Google Scholar]
  53. SurS. RathoreA. DaveV. ReddyK.R. ChouhanR.S. SadhuV. Recent developments in functionalized polymer nanoparticles for efficient drug delivery system.Nano-Struct. Nano-Obj.20192010039710.1016/j.nanoso.2019.100397
    [Google Scholar]
  54. ViswanathV. SanthakumarK. Perspectives on dendritic architectures and their biological applications: From core to cell.J. Photochem. Photobiol. B2017173618310.1016/j.jphotobiol.2017.05.02328564631
    [Google Scholar]
  55. Chandra BoroR. KaushalJ. NangiaY. WangooN. BhasinA. SuriC.R. Gold nanoparticles catalyzed chemiluminescence immunoassay for detection of herbicide 2,4-dichlorophenoxyacetic acid.Analyst2011136102125213010.1039/c0an00810a21455533
    [Google Scholar]
  56. BhattacharyaT. SoaresG.A.B. ChopraH. RahmanM.M. HasanZ. SwainS.S. CavaluS. Applications of phyto-nanotechnology for the treatment of neurodegenerative disorders.Materials 202215380410.3390/ma1503080435160749
    [Google Scholar]
  57. MudgilM. PawarP.K. Preparation and in vitro/ex-vivo evaluation of moxifloxacin-loaded PLGA nanosuspensions for ophthalmic application.Sci. Pharm.201381259160610.3797/scipharm.1204‑1623833723
    [Google Scholar]
  58. DuvalK. GroverH. HanL.H. MouY. PegoraroA.F. FredbergJ. ChenZ. Modeling physiological events in 2D vs. 3D cell culture.Physiology (Bethesda)201732426627710.1152/physiol.00036.201628615311
    [Google Scholar]
  59. TetiA. Regulation of cellular functions by extracellular matrix.J. Am. Soc. Nephrol.1992210Suppl.S83S8710.1681/ASN.V210s831318112
    [Google Scholar]
  60. ChaiQ. JiaoY. YuX. Hydrogels for biomedical applications: their characteristics and the mechanisms behind them.Gels201731610.3390/gels301000630920503
    [Google Scholar]
  61. AliA. AhmedS. Recent advances in edible polymer based hydrogels as a sustainable alternative to conventional polymers.J. Agric. Food Chem.201866276940696710.1021/acs.jafc.8b0105229878765
    [Google Scholar]
  62. CaccavoD. CasconeS. LambertiG. BarbaA.A. Modeling the drug release from hydrogel-based matrices.Mol. Pharm.201512247448310.1021/mp500563n25495793
    [Google Scholar]
  63. FonderM.A. LazarusG.S. CowanD.A. Aronson-CookB. KohliA.R. MamelakA.J. Treating the chronic wound: A practical approach to the care of nonhealing wounds and wound care dressings.J. Am. Acad. Dermatol.200858218520610.1016/j.jaad.2007.08.04818222318
    [Google Scholar]
  64. NarwalS. DhandaT. SharmaP. SharmaV. DhankharS. GargN. GhoshN.S. RaniN. Current Therapeutic Strategies for Chagas Disease.Antiinfect. Agents20232111110.2174/2211352521666230823122601
    [Google Scholar]
  65. PanchalM. RanaP. GargN. DhankharS. SharmaH. ChauhanS. A comprehensive review of alternative therapeutic approaches for nausea and vomiting relief in pregnancy.Emir. Med. J.20245e0250688228292910.2174/0102506882282929231212074538
    [Google Scholar]
  66. RohillaM. Rishabh BansalS. GargA. DhimanS. DhankharS. SainiM. ChauhanS. AlsubaieN. BatihaG.E.S. AlbezrahN.K.A. SinghT.G. Discussing pathologic mechanisms of Diabetic retinopathy & therapeutic potentials of curcumin and β-glucogallin in the management of Diabetic retinopathy.Biomed. Pharmacother.202316911588110.1016/j.biopha.2023.11588137989030
    [Google Scholar]
  67. XiangJ. ShenL. HongY. Status and future scope of hydrogels in wound healing: Synthesis, materials and evaluation.Eur. Polym. J.202013010960910.1016/j.eurpolymj.2020.109609
    [Google Scholar]
  68. UhrichK.E. CannizzaroS.M. LangerR.S. ShakesheffK.M. Polymeric systems for controlled drug release.Chem. Rev.199999113181319810.1021/cr940351u11749514
    [Google Scholar]
  69. DuncanS.E. Macrophage activities in myocardial infarction and heart failure.Cardiol Res Pract20202020437512710.1155/2020/4375127
    [Google Scholar]
  70. SanganalmathS.K. BolliR. Cell therapy for heart failure: A comprehensive overview of experimental and clinical studies, current challenges, and future directions.Circ. Res.2013113681083410.1161/CIRCRESAHA.113.30021923989721
    [Google Scholar]
  71. WieringaP.A. Gonçalves de PinhoA.R. MiceraS. van WezelR.J.A. MoroniL. Biomimetic architectures for peripheral nerve repair: A review of biofabrication strategies.Adv. Healthc. Mater.201878170116410.1002/adhm.20170116429349931
    [Google Scholar]
  72. FrostH.M. From Wolff’s law to the Utah paradigm: Insights about bone physiology and its clinical applications.Anat. Rec.2001262439841910.1002/ar.104911275971
    [Google Scholar]
  73. Fernandez de GradoG. KellerL. Idoux-GilletY. WagnerQ. MussetA.M. Benkirane-JesselN. BornertF. OffnerD. Bone substitutes: A review of their characteristics, clinical use, and perspectives for large bone defects management.J. Tissue Eng.2018910.1177/204173141877681929899969
    [Google Scholar]
  74. YueS. HeH. LiB. HouT. Hydrogel as a biomaterial for bone tissue engineering: A review.Nanomaterials 2020108151110.3390/nano1008151132752105
    [Google Scholar]
  75. AhujaC.S. WilsonJ.R. NoriS. KotterM.R.N. DruschelC. CurtA. FehlingsM.G. Traumatic spinal cord injury.Nat. Rev. Dis. Primers2017311701810.1038/nrdp.2017.1828447605
    [Google Scholar]
  76. CofanoF. BoidoM. MonticelliM. ZengaF. DucatiA. VercelliA. GarbossaD. Mesenchymal stem cells for spinal cord injury: current options, limitations, and future of cell therapy.Int. J. Mol. Sci.20192011269810.3390/ijms2011269831159345
    [Google Scholar]
  77. BoidoM. GhibaudiM. GentileP. FavaroE. FusaroR. Tonda- TuroC. Chitosan-based hydrogel to support the paracrine activity of mesenchymal stem cells in spinal cord injury treatment.Sci. Rep.201991640210.1038/s41598‑019‑42848‑w31024032
    [Google Scholar]
  78. Woodell-MayJ.E. SommerfeldS.D. Role of inflammation and the immune system in the progression of osteoarthritis.J. Orthop. Res.202038225325710.1002/jor.2445731469192
    [Google Scholar]
  79. ZhangF. KingM.W. Biodegradable polymers as the pivotal player in the design of tissue engineering scaffolds.Adv. Healthc. Mater.2020913190135810.1002/adhm.20190135832424996
    [Google Scholar]
  80. ThassuD. PathakY. DeleersM. Nanoparticulate drug-delivery systems: An overview.CRC PressBoca Raton2007137610.1201/9781420008449.ch1
    [Google Scholar]
  81. JainK.K. An overview of drug delivery systems. drug delivery systems.Methods Mol Biol2020154
    [Google Scholar]
  82. MishraD. HubenakJ.R. MathurA.B. Nanoparticle systems as tools to improve drug delivery and therapeutic efficacy.J. Biomed. Mater. Res. A2013101123646366010.1002/jbm.a.3464223878102
    [Google Scholar]
  83. HuaS. de MatosM.B.C. MetselaarJ.M. StormG. Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: pathways for translational development and commercialization.Front. Pharmacol.2018979010.3389/fphar.2018.0079030065653
    [Google Scholar]
  84. MariappanN. Current trends in Nanotechnology applications in surgical specialties and orthopedic surgery.Biomed. Pharmacol. J.20191231095112710.13005/bpj/1739
    [Google Scholar]
  85. DumanF.D. Inorganic materials in drug delivery.Biomed. Applic. Inorg. Mat.202114126
    [Google Scholar]
  86. SyamaS. MohananP.V. Safety and biocompatibility of graphene: A new generation nanomaterial for biomedical application.Int. J. Biol. Macromol.20168654655510.1016/j.ijbiomac.2016.01.11626851208
    [Google Scholar]
  87. QuY. HeF. YuC. LiangX. LiangD. MaL. ZhangQ. LvJ. WuJ. Advances on graphene-based nanomaterials for biomedical applications.Mater. Sci. Eng. C20189076478010.1016/j.msec.2018.05.01829853147
    [Google Scholar]
  88. DaniyalM. LiuB. WangW. Comprehensive review on graphene oxide for use in drug delivery system.Curr. Med. Chem.202027223665368510.2174/1381612825666190201129629030706776
    [Google Scholar]
  89. ChenD. FengH. LiJ. Graphene oxide: preparation, functionalization, and electrochemical applications.Chem. Rev.2012112116027605310.1021/cr300115g22889102
    [Google Scholar]
  90. AgarwalR. SinghS. ShalanA.E. Sustainable energy storage devices and device design for sensors and actuators applications.Sustainable Energy Storage in the Scope of Circular Economy: Advanced Materials and Device DesignWiley Online Library202312110.1002/9781119817741.ch10
    [Google Scholar]
  91. MishraR.K. Exploring the nexus between structure, properties and applications in graphene conductors.Biomat. Polym. Horiz.202214150
    [Google Scholar]
  92. PatilK.B. PatelJ.K. Review on Smart nanocarrier bilayer lipid-coated graphene@msn nanocomposites.Preprints202320232023081166
    [Google Scholar]
  93. PhanL.M.T. VoT.A.T. HoangT.X. ChoS. Graphene integrated hydrogels based biomaterials in photothermal biomedicine.Nanomaterials 202111490610.3390/nano1104090633918204
    [Google Scholar]
  94. LiS. XingR. ChangR. ZouQ. YanX. Nanodrugs based on peptide-modulated self-assembly: Design, delivery and tumor therapy.Curr. Opin. Colloid Interface Sci.201835172510.1016/j.cocis.2017.12.004
    [Google Scholar]
  95. ZhaoZ. Three-dimensional graphene-based hydrogel/aerogel materials.Rev. Adv. Mater. Sci.201436137151
    [Google Scholar]
  96. LiaoG. HuJ. ChenZ. ZhangR. WangG. KuangT. Preparation, properties, and applications of graphene-based hydrogels.Front Chem.2018645010.3389/fchem.2018.0045030327765
    [Google Scholar]
  97. KumarS.S.A. BashirS. RameshK. RameshS. New perspectives on graphene/graphene oxide based polymer nanocomposites for corrosion applications: The relevance of the Graphene/Polymer barrier coatings.Prog. Org. Coat.202115410621510.1016/j.porgcoat.2021.106215
    [Google Scholar]
  98. XiaoY. PangY.X. YanY. QianP. ZhaoH. ManickamS. WuT. PangC.H. Synthesis and functionalization of graphene materials for biomedical applications: Recent advances, challenges, and perspectives.Adv. Sci.2023109220529210.1002/advs.20220529236658693
    [Google Scholar]
  99. DarvishiS. SouissiM. KharazihaM. KarimzadehF. SaharaR. AhadianS. Gelatin methacryloyl hydrogel for glucose biosensing using Ni nanoparticles-reduced graphene oxide: An experimental and modeling study.Electrochim. Acta201826127528310.1016/j.electacta.2017.12.126
    [Google Scholar]
  100. DhankharS. ChauhanS. MehtaD.K. Nitika SainiK. SainiM. DasR. GuptaS. GautamV. Novel targets for potential therapeutic use in Diabetes mellitus.Diabetol. Metab. Syndr.20231511710.1186/s13098‑023‑00983‑536782201
    [Google Scholar]
  101. AnwerA.H. AhteshamA. ShoebM. MashkoorF. AnsariM.Z. ZhuS. JeongC. State-of-the-art advances in nanocomposite and bio-nanocomposite polymeric materials: A comprehensive review.Adv. Colloid Interface Sci.202331810295510.1016/j.cis.2023.10295537467558
    [Google Scholar]
  102. VithalaniR.S. Modification of Exterior Oxidative Debris: Towards the Development of Conventional Catalysts.IndiaMaharaja Sayajirao University of Baroda2020
    [Google Scholar]
  103. LuoX. HeZ. GongH. HeL. Recent advances in oil-water separation materials with special wettability modified by graphene and its derivatives: A review.Chem. Eng. Process.202217010867810.1016/j.cep.2021.108678
    [Google Scholar]
  104. MohammadiS. JonesL. GorbetM. Extended latanoprost release from commercial contact lenses: in vitro studies using corneal models.PLoS One201499e10665310.1371/journal.pone.010665325207851
    [Google Scholar]
  105. OladosuY. RafiiM.Y. AroluF. ChukwuS.C. SalisuM.A. FagbohunI.K. MuftaudeenT.K. SwarayS. HaliruB.S. Superabsorbent polymer hydrogels for sustainable agriculture: A review.Horticulturae20228760510.3390/horticulturae8070605
    [Google Scholar]
  106. QiX. TongX. PanW. ZengQ. YouS. ShenJ. Recent advances in polysaccharide-based adsorbents for wastewater treatment.J. Clean. Prod.202131512822110.1016/j.jclepro.2021.128221
    [Google Scholar]
  107. MuthoosamyK. BaiR. ManickamS. Graphene metal nanoclusters in cutting-edge theranostics nanomedicine applications.Adv. Biomat. Biomed. Applic.201742947710.1007/978‑981‑10‑3328‑5_11
    [Google Scholar]
  108. FongY. ChenC.H. ChenJ.P. Intratumoral delivery of doxorubicin on folate-conjugated graphene oxide by in-situ forming thermo-sensitive hydrogel for breast cancer therapy.Nanomaterials 201771138810.3390/nano711038829135959
    [Google Scholar]
  109. Hoseini-GhahfarokhiM. MirkianiS. MozaffariN. Abdolahi SadatluM.A. GhasemiA. AbbaspourS. AkbarianM. FarjadainF. KarimiM. Applications of graphene and graphene oxide in smart drug/gene delivery: is the world still flat?Int. J. Nanomedicine2020159469949610.2147/IJN.S26587633281443
    [Google Scholar]
  110. AlamA. MengQ. ShiG. ArabiS. MaJ. ZhaoN. KuanH-C. Electrically conductive, mechanically robust, pH-sensitive graphene/polymer composite hydrogels.Compos. Sci. Technol.201612711912610.1016/j.compscitech.2016.02.024
    [Google Scholar]
  111. TeodorescuF. OzY. QuéniatG. AbderrahmaniA. FoulonC. LecoeurM. SanyalR. SanyalA. BoukherroubR. SzuneritsS. Photothermally triggered on-demand insulin release from reduced graphene oxide modified hydrogels.J. Control. Release201724616417310.1016/j.jconrel.2016.10.02827984105
    [Google Scholar]
  112. AminM.C.I.M. AhmadN. PandeyM. AbeerM.M. MohamadN. Recent advances in the role of supramolecular hydrogels in drug delivery.Expert Opin. Drug Deliv.20151271149116110.1517/17425247.2015.99770725547588
    [Google Scholar]
  113. KhanM.U.A. YaqoobZ. AnsariM.N.M. RazakS.I.A. RazaM.A. SajjadA. HaiderS. BusraF.M. Chitosan/poly vinyl alcohol/graphene oxide based pH-responsive composite hydrogel films: Drug release, anti-microbial and cell viability studies.Polymers 20211318312410.3390/polym1318312434578025
    [Google Scholar]
  114. ChenK. LingY. CaoC. LiX. ChenX. WangX. Chitosan derivatives/reduced graphene oxide/alginate beads for small-molecule drug delivery.Mater. Sci. Eng. C2016691222122810.1016/j.msec.2016.08.03627612820
    [Google Scholar]
  115. ZhangJ. LuN. PengH. LiJ. YanR. ShiX. MaP. LvM. WangL. TangZ. ZhangM. Multi-triggered and enzyme-mimicking graphene oxide/polyvinyl alcohol/G-quartet supramolecular hydrogels.Nanoscale20201285186519510.1039/C9NR10779G32073092
    [Google Scholar]
/content/journals/cnanom/10.2174/0124681873241638240409131332
Loading
/content/journals/cnanom/10.2174/0124681873241638240409131332
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): controlled; drug delivery; graphene; Hydrogels; nanomaterials; novel
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test