Skip to content
2000
Volume 15, Issue 4
  • ISSN: 2468-1873
  • E-ISSN: 2468-1881

Abstract

In this study, we investigate the various applications of titania in the medical field. Titania, renowned for its biocompatibility and distinctive properties, plays a significant role in pharmaceutical formulations. It is vital in coating tablets and capsules, improving drug stability and appearance. Additionally, titania nanoparticles (NPs) facilitate targeted drug delivery systems, enhancing therapeutic outcomes. Furthermore, we explore the promising prospects of titania-based photocatalysts in photodynamic therapy, highlighting their potential to transform cancer treatment and combat microbial infections. This comprehensive examination underscores the diverse and promising opportunities in which titania significantly advances medicine.

Loading

Article metrics loading...

/content/journals/cnanom/10.2174/0124681873300757240321102157
2024-04-26
2025-10-11
Loading full text...

Full text loading...

References

  1. FujishimaA. HondaK. Electrochemical photolysis of water at a semiconductor electrode.Nature197223853583738
    [Google Scholar]
  2. LiuG. WangL. YangH.G. ChengH.M. LuG.Q.M. Titania-based photocatalysts—crystal growth, doping and heterostructuring.J. Mater. Chem.201020583184310.1039/B909930A
    [Google Scholar]
  3. LiuG. YuJ.C. LuG.Q.M. ChengH.M. Crystal facet engineering of semiconductor photocatalysts: Motivations, advances and unique properties.Chem. Commun.201147246763678310.1039/c1cc10665a21448488
    [Google Scholar]
  4. PromnopasW.S. PhonkhokkongT. ThongtemT. BoonyawanD. YuL. ThongtemS. Crystalline phases and optical properties of titanium dioxide films deposited on glass substrates by microwave method.Surf. Coat. Technol.2016306116974
    [Google Scholar]
  5. YinJ.J. LiuJ. EhrenshaftM. RobertsJ.E. FuP.P. MasonR.P. ZhaoB. Phototoxicity of nano titanium dioxides in HaCaT keratinocytes—Generation of reactive oxygen species and cell damage.Toxicol. Appl. Pharmacol.20122631818810.1016/j.taap.2012.06.00122705594
    [Google Scholar]
  6. AiempanakitM. TabtimsriT. TriamnakN. SuwanchawalitC. Curcumin modified titanium dioxide nanotubes with enhanced visible light photocatalytic performance.Int. J. Electrochem. Sci.20191421954196710.20964/2019.02.28
    [Google Scholar]
  7. KhanS. ParkJ.S. IshiharaT. A review of the single-step flame synthesis of defective and heterostructured TiO2 nanoparticles for photocatalytic applications.Catalysts202313119610.3390/catal13010196
    [Google Scholar]
  8. NavidpourA.H. AbbasiS. LiD. MojiriA. ZhouJ.L. Investigation of advanced oxidation process in the presence of TiO2 semiconductor as photocatalyst: property, principle, kinetic analysis, and photocatalytic activity.Catalysts202313223210.3390/catal13020232
    [Google Scholar]
  9. ThakurN. ThakurN. KumarA. ThakurV.K. KaliaS. AryaV. KumarA. KumarS. KyzasG.Z. A critical review on the recent trends of photocatalytic, antibacterial, antioxidant and nanohybrid applications of anatase and rutile TiO2 nanoparticles.Sci. Total Environ.202491416981510.1016/j.scitotenv.2023.16981538184262
    [Google Scholar]
  10. JingZ. WangC. WangG. LiW. LuD. Preparation and antibacterial activities of undoped and palladium doped titania nanoparticles.J. Sol-Gel Sci. Technol.201056212112710.1007/s10971‑010‑2284‑8
    [Google Scholar]
  11. MansoorA. KhurshidZ. KhanM.T. MansoorE. ButtF.A. JamalA. PalmaP.J. Medical and dental applications of titania NPs: an overview.Nanomaterials20221220367010.3390/nano1220367036296859
    [Google Scholar]
  12. ChaturvediT.P. IndumathiP. SharmaV. K. AgrawalA. SinghD. UpadhyayC. Evaluation of surface-modified orthodontic wires by different concentration and dipping duration of titanium oxide (TiO2) nanoparticles.J Orthod Sci2023123
    [Google Scholar]
  13. KoraA. J. Applications of inorganic metal oxide and metal phosphate-based nanoceramics in dentistry.Industrial Applications of NanoceramicsElsevier20246377
    [Google Scholar]
  14. Esteban FlorezF.L. HiersR.D. LarsonP. JohnsonM. O’RearE. RondinoneA.J. KhajotiaS.S. Antibacterial dental adhesive resins containing nitrogen-doped titanium dioxide nanoparticles.Mater. Sci. Eng. C20189393194310.1016/j.msec.2018.08.060
    [Google Scholar]
  15. ElabdG.M. EldarsW. ShamaaM.S. TawfikM.A. Evaluation of the antibacterial effect of titanium dioxide nanoparticles combined with acrylic laminates for functional orthodontic appliances: A randomized controlled clinical trial.BMC Oral Health20242412010.1186/s12903‑023‑03805‑238178135
    [Google Scholar]
  16. PourmadadiM. TajikiA. AbdoussM. A green approach for preparation of polyacrylic acid/starch incorporated with titanium dioxide nanocomposite as a biocompatible platform for curcumin delivery to breast cancer cells.Int. J. Biol. Macromol.2023242Pt 112478510.1016/j.ijbiomac.2023.12478537169052
    [Google Scholar]
  17. XieC. ChenK. LiuN. ZhangT. XiaoX. Near-infrared light-response and on-demand drug delivery system based on titanium dioxide nanotube arrays and its drug release behavior.Mater. Lett.202333313372510.1016/j.matlet.2022.133725
    [Google Scholar]
  18. ZientalD. GoslinskaC.B. MlynarczykD.T. SobottaG.A. StaniszB. GoslinskiT. SobottaL. Titanium dioxide NPs: Prospects and applications in medicine.Nanomaterials202010238710.3390/nano1002038732102185
    [Google Scholar]
  19. BhullarS. GoyalN. GuptaS. A recipe for optimizing TiO2 nanoparticles for drug delivery applications.OpenNano2022810009610.1016/j.onano.2022.100096
    [Google Scholar]
  20. SeisenbaevaG.A. FromellK. VinogradovV.V. TerekhovA.N. PakhomovA.V. NilssonB. EkdahlK.N. VinogradovV.V. KesslerV.G. Dispersion of TiO2 nanoparticles improves burn wound healing and tissue regeneration through specific interaction with blood serum proteins.Sci. Rep.2017711544810.1038/s41598‑017‑15792‑w29133853
    [Google Scholar]
  21. SabinoR.M. KaukK. MovafaghiS. KotaA. PopatK.C. Interaction of blood plasma proteins with superhemophobic titania nanotube surfaces.Nanomedicine20192110204610.1016/j.nano.2019.10204631279063
    [Google Scholar]
  22. AzadA.M. AboelzahabA. GoelV. Bactericidal and wound disinfection efficacy of nanostructured titania.Adv. Mater. Res201214311347
    [Google Scholar]
  23. SargaziS. ErS. GelenS.S. RahdarA. BilalM. ArshadR. AjalliN. KhanF.A.M. PandeyS. Application of titanium dioxide nanoparticles in photothermal and photodynamic therapy of cancer: An updated and comprehensive review.J. Drug Deliv. Sci. Technol.20227510360510.1016/j.jddst.2022.103605
    [Google Scholar]
  24. JiM. WangY. SuW. ChenL. LiuY. YangY. FeiY. MaJ. ChenY. MiL. Enhancing the photodynamic effect of curcumin through modification with TiO2 nanoparticles and cationic polymers.J. Photochem. Photobiol. B202425211285110.1016/j.jphotobiol.2024.11285138306801
    [Google Scholar]
  25. PovnitsaO.Y. ZahorodniaS.D. ArtiukhL.O. ZahornyiM.M. IevtushenkoA.I. Photodynamic treatment of titanium dioxide nanoparticles is a convenient method of adenoviral inactivation.Mikrobiol. Zh.2023853617010.15407/microbiolj85.03.061
    [Google Scholar]
  26. JagtapC. KadamV. JadkarS. PatoleS. PathanH. Improvement in photovoltaic performance of dye-sensitized solar cell using ruthenium as dopant into titania.J. Mater. Sci. Mater. Electron.20233428193510.1007/s10854‑023‑11308‑7
    [Google Scholar]
  27. KhanM.I. MumtazS. MustafaG.M. AmamiM. ShahzadU. Al-AbbadE.A. Improving the current density and reducing the recombination rate of dye sensitized solar cells by modifying the band gap of Titania using Novel heterostructures.Opt. Mater.202314011378010.1016/j.optmat.2023.113780
    [Google Scholar]
  28. DimitrijevicN.M. SaponjicZ.V. RabaticB.M. RajhT. Assembly and charge transfer in hybrid TiO(2) architectures using biotin-avidin as a connector.J. Am. Chem. Soc.200512751344134510.1021/ja045811815686345
    [Google Scholar]
  29. LiuJ. de la GarzaL. ZhangL. DimitrijevicN.M. ZuoX. TiedeD.M. RajhT. Photocatalytic probing of DNA sequence by using TiO2/dopamine-DNA triads.Chem. Phys.20073391-315416310.1016/j.chemphys.2007.07.040
    [Google Scholar]
  30. RajhT. ChenL.X. LukasK. LiuT. ThurnauerM.C. TiedeD.M. Surface restructuring of nanoparticles: An efficient route for ligand− metal oxide crosstalk.J. Phys. Chem. B200210641105431055210.1021/jp021235v
    [Google Scholar]
  31. KotsokechagiaT. ZakiN.M. SyresK. LeonardisP. ThomasA. CellesiF. TirelliN. PEGylation of nanosubstrates (titania) with multifunctional reagents: At the crossroads between nanoparticles and nanocomposites.Langmuir20122831114901150110.1021/la301295822746328
    [Google Scholar]
  32. YuanY. ChenS. PauneskuT. GleberS.C. LiuW.C. DotyC.B. MakR. DengJ. JinQ. LaiB. BristerK. FlacheneckerC. JacobsenC. VogtS. WoloschakG.E. Epidermal growth factor receptor targeted nuclear delivery and high-resolution whole cell X-ray imaging of Fe3O4@TiO2 nanoparticles in cancer cells.ACS Nano2013712105021051710.1021/nn403329424219664
    [Google Scholar]
  33. ThurnK.T. AroraH. PauneskuT. WuA. BrownE.M. DotyC. WoloschakG. Endocytosis of titanium dioxide nanoparticles in prostate cancer PC-3M cells.Nanomedicine in CancerJenny Stanford Publishing201744146010.1201/b22358‑17
    [Google Scholar]
  34. UrdanetaI. KellerA. AtabekO. PalmaJ.L. ShapiroF.D. TarakeshwarP. MujicaV. CalatayudM. Dopamine adsorption on TiO2 anatase surfaces.J. Phys. Chem. C201411835206882069310.1021/jp506156e
    [Google Scholar]
  35. ArroyoV.M. LeBretonP.R. RajhT. ZapolP. CurtissL.A. Density functional study of the TiO2–dopamine complex.Chem. Phys. Lett.20054064-630631110.1016/j.cplett.2005.03.029
    [Google Scholar]
  36. ArzoumanidisG. Novel organotitanium complexes-potential anticancer drugs.Academia Letters20222
    [Google Scholar]
  37. YoukhanaE.Q. FeltisB. BlencoweA. GesoM. Titanium dioxide nanoparticles as radiosensitisers: An in vitro and phantom-based study.Int. J. Med. Sci.201714660261410.7150/ijms.1905828638277
    [Google Scholar]
  38. ZhangH. ShanY. DongL. A comparison of TiO2 and ZnO nanoparticles as photosensitizers in photodynamic therapy for cancer.J. Biomed. Nanotechnol.20141081450145710.1166/jbn.2014.196125016645
    [Google Scholar]
  39. OginoC. ShibataN. SasaiR. TakakiK. MiyachiY. KurodaS. NinomiyaK. ShimizuN. Construction of protein-modified TiO2 nanoparticles for use with ultrasound irradiation in a novel cell injuring method.Bioorg. Med. Chem. Lett.201020175320532510.1016/j.bmcl.2010.06.12420650634
    [Google Scholar]
  40. MahendranD. Kavi KishorP.B. GeethaN. ManishT. SahiS.V. VenkatachalamP. Efficient antibacterial/biofilm, anti-cancer and photocatalytic potential of titanium dioxide nanocatalysts green synthesised using Gloriosa superba rhizome extract.J. Exp. Nanosci.2021161113010.1080/17458080.2021.1872781
    [Google Scholar]
  41. KayaniZ.N. Maria RiazS. NaseemS. Magnetic and antibacterial studies of sol-gel dip coated Ce doped TiO2 thin films: Influence of Ce contents.Ceram. Int.202046138139010.1016/j.ceramint.2019.08.272
    [Google Scholar]
  42. WangY. WangQ. ZhangC. Synthesis of diamond-shaped mesoporous titania nanobricks as pH-responsive drug delivery vehicles for cancer therapy.ChemistrySelect20194288225822810.1002/slct.201900992
    [Google Scholar]
  43. XuJ. SunY. HuangJ. ChenC. LiuG. JiangY. ZhaoY. JiangZ. Photokilling cancer cells using highly cell-specific antibody–TiO2 bioconjugates and electroporation.Bioelectrochemistry200771221722210.1016/j.bioelechem.2007.06.00117643355
    [Google Scholar]
  44. SanattalabE. GürdağG. SigirciB.D. New approaches for enhancing the photosensitivity, antibacterial activity, and controlled release behavior of non-porous silica-titania nanoplatforms.Biomater. Adv.202314821336510.1016/j.bioadv.2023.21336536921460
    [Google Scholar]
  45. ArchanaD, Singh BK, Dutta J, Dutta PK. In vivo evaluation of chitosan-PVP-titanium dioxide nanocomposite as wound dressing material.Carbohydr Polym.2013951530-910.1016/j.carbpol.2013.03.034
    [Google Scholar]
  46. SherinS. SheejaS. Sudha DeviR. BalachandranS. SoumyaR.S. AbrahamA. in vitro and in vivo pharmacokinetics and toxicity evaluation of curcumin incorporated titanium dioxide nanoparticles for biomedical applications.Chem. Biol. Interact.2017275354610.1016/j.cbi.2017.07.02228757137
    [Google Scholar]
  47. DianaE.J. MathewT.V. Anticancer and photocatalytic antimicrobial assessment of surface engineered titania nanoparticles with modified β -cyclodextrin using thioctic acid.Nano-Struct. Nano-Objects20233410097610.1016/j.nanoso.2023.100976
    [Google Scholar]
  48. BaranwalA.K. KeerthigaG. MohanL. DuttaS.D. GuptaP. LimK.T. SantraT.S. Controlled and localized drug delivery using Titania nanotubes.Mater. Today Commun.20223210384310.1016/j.mtcomm.2022.103843
    [Google Scholar]
  49. ZhangN. DengY. TaiQ. ChengB. ZhaoL. ShenQ. HeR. HongL. LiuW. GuoS. LiuK. TsengH.R. XiongB. ZhaoX.Z. Electrospun TiO2 nanofiber-based cell capture assay for detecting circulating tumor cells from colorectal and gastric cancer patients.Adv. Mater.201224202756276010.1002/adma.20120015522528884
    [Google Scholar]
  50. JalilO. PandeyC.M. KumarD. Electrochemical biosensor for the epithelial cancer biomarker EpCAM based on reduced graphene oxide modified with nanostructured titanium dioxide.Mikrochim. Acta2020187527510.1007/s00604‑020‑04233‑732306099
    [Google Scholar]
  51. AradE. JelinekR. RapaportH. Amyloid fishing: β-Amyloid adsorption using tailor-made coated titania nanoparticles.Colloids Surf. B Biointerfaces202221211237410.1016/j.colsurfb.2022.11237435121429
    [Google Scholar]
  52. ZhaoY. LiuJ. HeM. DongQ. ZhangL. XuZ. KangY. XueP. Platinum–titania schottky junction as nanosonosensitizer, glucose scavenger, and tumor microenvironment-modulator for promoted cancer treatment.ACS Nano2022168121181213310.1021/acsnano.2c0254035904186
    [Google Scholar]
  53. ChahardoliA. HosseinzadehL. ShokoohiniaY. FattahiA. Production of rutile titanium dioxide nanoparticles by trans-ferulic acid and their biomedical applications.Mater. Today Commun.20223310430510.1016/j.mtcomm.2022.104305
    [Google Scholar]
  54. NalikaN. WaseemM. KaushikP. SalmanM. AndrabiS.S. JamalA. ParvezS. Role of melatonin and quercetin as countermeasures to the mitochondrial dysfunction induced by titanium dioxide nanoparticles.Life Sci.202332812140310.1016/j.lfs.2023.12140336669677
    [Google Scholar]
  55. EbelmenJ. J. Research on the combinations of boric and silicic acids with ethers.Paris : [s.n.]France1846vol. 1
    [Google Scholar]
  56. VelayatiM. HassaniH. SabouriZ. MostafapourA. DarroudiM. Green-based biosynthesis of Se nanorods in chitosan and assessment of their photocatalytic and cytotoxicity effects.Environ. Technol. Innov.20222710261010.1016/j.eti.2022.102610
    [Google Scholar]
  57. VelayatiM. HassaniH. HosseiniH.A. SabouriZ. MostafapourA. DarroudiM. Xanthan gum-mediated green synthesis of Se-nanoparticles for evaluation of photocatalytic and cytotoxicity effects.Eur. Phys. J. Plus20231381094710.1140/epjp/s13360‑023‑04517‑w
    [Google Scholar]
  58. TaheriK.R. GhasemiA. MeshkatZ. SabouriZ. MohtashamiM. DarroudiM. Green synthesis of silver nanoparticles using Salvadora persica and Caccinia macranthera extracts: Cytotoxicity analysis and antimicrobial activity against antibiotic-resistant bacteria.Appl. Biochem. Biotechnol.202319585120513510.1007/s12010‑023‑04407‑y36847984
    [Google Scholar]
  59. SabouriZ. SabouriM. MoghaddasS.S.T.H. MostafapourA. SamarghandianS. DarroudiM. Plant-mediated synthesis of Ag and Se dual-doped ZnO-CaO-CuO nanocomposite using Nymphaea alba L. extract: Assessment of their photocatalytic and biological properties.Biomass Convers. Biorefin.2023202311110.1007/s13399‑023‑04984‑2
    [Google Scholar]
  60. IrshadM.A. NawazR. RehmanM.Z. AdreesM. RizwanM. AliS. AhmadS. TasleemS. Synthesis, characterization and advanced sustainable applications of titanium dioxide nanoparticles: A review.Ecotoxicol. Environ. Saf.202121211197810.1016/j.ecoenv.2021.11197833561774
    [Google Scholar]
  61. SinghJ. KumarS. AlokA. UpadhyayS.K. RawatM. TsangD.C.W. BolanN. KimK-H. The potential of green synthesized zinc oxide nanoparticles as nutrient source for plant growth.J. Clean. Prod.20192141061107010.1016/j.jclepro.2019.01.018
    [Google Scholar]
  62. ChaturvediV.K. RaiS.N. TabassumN. YadavN. SinghV. BoharaR.A. SinghM.P. Rapid eco-friendly synthesis, characterization, and cytotoxic study of trimetallic stable nanomedicine: A potential material for biomedical applications.Biochem. Biophys. Rep.20202410081210.1016/j.bbrep.2020.10081233083576
    [Google Scholar]
  63. ChaturvediV.K. YadavN. RaiN.K. BoharaR.A. RaiS.N. AleyaL. SinghM.P. Two birds with one stone: Oyster mushroom mediated bimetallic Au-Pt nanoparticles for agro-waste management and anticancer activity.Environ. Sci. Pollut. Res. Int.20212811137611377510.1007/s11356‑020‑11435‑233196993
    [Google Scholar]
  64. AravindM. AmalanathanM. MaryM.S.M. Synthesis of TiO2 nanoparticles by chemical and green synthesis methods and their multifaceted properties.SN Appl. Sci.20213440910.1007/s42452‑021‑04281‑5
    [Google Scholar]
  65. MironyukI.F. SoltysL.M. TatarchukT.R. SavkaK.O. Methods of titanium dioxide synthesis.Phys. Chem. Solid State.202021346247710.15330/pcss.21.3.462‑477
    [Google Scholar]
  66. BensebaaF. Clean energy.Interface science and technologyElsevier2013Vol. 19279383
    [Google Scholar]
  67. ZhangQ. LiC. High temperature stable anatase phase titanium dioxide films synthesized by mist chemical vapor deposition.Nanomaterials202010591110.3390/nano1005091132397377
    [Google Scholar]
  68. AtyM.E.A. GhazalH. Nanotechnology and application of nano titanium dioxide, nano zinc oxide, and nano copper oxide on textile for high performance.Egypt. J. Chem.2023663309322
    [Google Scholar]
  69. SelvarajP. RoyA. UllahH. DeviS.P. TahirA.A. MallickT.K. SundaramS. Soft-template synthesis of high surface area mesoporous titanium dioxide for dye-sensitized solar cells.Int. J. Energy Res.201943152353410.1002/er.4288
    [Google Scholar]
  70. BaigN. KammakakamI. FalathW. Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges.Materials Advances2021261821187110.1039/D0MA00807A
    [Google Scholar]
  71. GrahamT. XXXV.—On the properties of silicic acid and other analogous colloidal substances.J. Chem. Soc.186417031832710.1039/JS8641700318
    [Google Scholar]
  72. DaviesJ.T. RidealE.K. Interfacial PhenomenaAcademic PressNew York1963
    [Google Scholar]
  73. FloryP.J. Principles of Polymer ChemistryIthaca, NYCornell University Press1953
    [Google Scholar]
  74. BessekhouadY. RobertD. WeberJ.V. Preparation of TiO2 nanoparticles by Sol-Gel route.Int. J. Photoenergy20035315315810.1155/S1110662X03000278
    [Google Scholar]
  75. ShahruzN. HossianM.M. Synthesis and size control of TiO2 photocatalyst nanoparticles preparation using sol-gel method.World Appl. Sci. J.2011121119811986
    [Google Scholar]
  76. HayleS.T. GonfaG.G. Synthesis and characterization of titanium oxide nanomaterials using sol-gel method.Amer. J. Nanosci. Nanotechnol.201421110.11648/j.nano.20140201.11
    [Google Scholar]
  77. LiZ. HouB. XuY. WuD. SunY. HuW. DengF. Comparative study of sol–gel-hydrothermal and sol–gel synthesis of titania–silica composite nanoparticles.J. Solid State Chem.200517851395140510.1016/j.jssc.2004.12.034
    [Google Scholar]
  78. BatheA.S. ArjonaS.A. ReganA. WallaceC. NerneyC.R. O’DonoghueN. CroslandJ.M. SimonianT. WaltonR.I. DunneP.W. Solvothermal synthesis of soluble, surface modified anatase and transition metal doped anatase hybrid nanocrystals.Nanoscale Adv.20224245343535410.1039/D2NA00640E36540114
    [Google Scholar]
  79. ChoudhuryS. PaulS. GoswamiS. DebK. Methods for nanoparticle synthesis and drug delivery.Advances in Nanotechnology-Based Drug Delivery Systems.Elsevier2022214410.1016/B978‑0‑323‑88450‑1.00005‑3
    [Google Scholar]
  80. WahiR.K. LiuY. FalknerJ.C. ColvinV.L. Solvothermal synthesis and characterization of anatase TiO2 nanocrystals with ultrahigh surface area.J. Colloid Interface Sci.2006302253053610.1016/j.jcis.2006.07.00316889789
    [Google Scholar]
  81. HoenerC.F. AllanK.A. BardA.J. CampionA. FoxM.A. MalloukT.E. WebberS.E. WhiteJ.M. Demonstration of a shell- core structure in layered cadmium selenide-zinc selenide small particles by x-ray photoelectron and Auger spectroscopies.J. Phys. Chem.19929693812381710.1021/j100188a045
    [Google Scholar]
  82. ChaudhuriG.R. PariaS. Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications.Chem. Rev.201211242373243310.1021/cr100449n22204603
    [Google Scholar]
  83. IwamotoS. TanakulrungsankW. InoueM. KagawaK. PraserthdamP. Synthesis of large-surface area silica-modified titania ultrafine particles by the glycothermal method.J. Mater. Sci. Lett.200019161439144310.1023/A:1006723422629
    [Google Scholar]
  84. MichalikA. NapruszewskaB.D. DuraczyńskaD. WalczykA. SerwickaE.M. Composites of montmorillonite and titania nanoparticles prepared by inverse microemulsion method: Physico-chemical characterization.Nanomaterials202313468610.3390/nano1304068636839054
    [Google Scholar]
  85. ChassagneuxF. CouzonN. PlaceC. MaillardM. BrioudeA. BoisL. Electrochemical properties of silver nanoparticles in mesoporous silica and titania films: Specific behavior of titania composite.Langmuir202339217317732710.1021/acs.langmuir.3c0033437199153
    [Google Scholar]
  86. AndersonC. BardA.J. Improved photocatalytic activity and characterization of mixed TiO2/SiO2 and TiO2/A12O3 materials.J. Phys. Chem. B1997101142611261610.1021/jp9626982
    [Google Scholar]
  87. Gun’koV.M. ZarkoV.I. TurovV.V. LebodaR. ChibowskiE. HolyszL. PakhlovE.M. VoroninE.F. DudnikV.V. GornikovY.I. CVD-titania on fumed silica substrate.J. Colloid Interface Sci.1998198114115610.1006/jcis.1997.52709710507
    [Google Scholar]
  88. YangZ. LinZ. HuangJ. Hierarchically structured NH2 -MIL-125/ TiO 2 /cellulose composite membranes with enhanced photocatalytic performance.ChemNanoMat202394e20220050410.1002/cnma.202200504
    [Google Scholar]
  89. SibuC.P. KumarS.R. MukundanP. WarrierK.G.K. Structural modifications and associated properties of lanthanum oxide doped sol− gel nanosized titanium oxide.Chem. Mater.20021472876288110.1021/cm010966p
    [Google Scholar]
/content/journals/cnanom/10.2174/0124681873300757240321102157
Loading
/content/journals/cnanom/10.2174/0124681873300757240321102157
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test