Skip to content
2000
Volume 15, Issue 4
  • ISSN: 2468-1873
  • E-ISSN: 2468-1881

Abstract

Enhancing therapeutic efficacy stands as a pivotal concern across various medical conditions. Traditional therapeutic approaches have encountered limitations in addressing numerous issues. Over the recent years, the integration of nanotechnology has successfully overcome these obstacles, ushering in a new era of advanced treatment modalities. One notable stride has been the utilization of lipid-based nanocarriers, which have demonstrated substantial improvements in therapeutic outcomes. Among these innovative drug delivery systems (lipid-based), nanocochleates have emerged as the focal point for augmenting therapeutic potential and enabling targeted actions. Originally employed for vaccines, genes, and fungal infections, nanocochleates have evolved to address significant life-threatening diseases where conventional therapies fall short. The distinctive capability of nanocochleates lies in their ability to deliver drugs with enhanced precision in comparison with supplementary lipid-based systems, making them a promising novel carrier for improved efficacy. This piece of writing delves into the fundamentals of nanocochleates, exploring their safety and stability aspects, recent trends, and diverse applications. Notably, nanocochleates have shown promise in managing conditions such as diabetes mellitus, malaria, leishmaniasis, cancer, viral infections, and osteoporosis. By elucidating the unique attributes and potential of nanocochleates, this review aims to contribute valuable insights into their role as a cutting-edge drug delivery system across a spectrum of critical medical scenarios.

Loading

Article metrics loading...

/content/journals/cnanom/10.2174/0124681873299928240516161243
2024-05-28
2025-12-06
Loading full text...

Full text loading...

References

  1. GadeM. SalunkeK. HarwalkarM. Nanocochleates- a novel tool for oral drug delivery system. Am. J. Pharm Tech Res.201772498512
    [Google Scholar]
  2. PawarA. JadhavK. SonkambaleN. KaleM. Nanocochleate: A novel drug delivery system.Asian J. Pharm.20161003S234S242
    [Google Scholar]
  3. YeoleS. PimpleS. ChaudhariP. A review on nanocochleate- a novel lipid-based drug delivery system.J. Biomed. Pharm. Res.20132117
    [Google Scholar]
  4. KumarD. SharmaD. SinghG. SinghM. RathoreM.S. Lipoidal soft hybrid biocarriers of supramolecular construction for drug delivery.ISRN Pharm.2012201211410.5402/2012/47483022888455
    [Google Scholar]
  5. PapahadjopoulosD. VailW.J. JacobsonK. PosteG. Cochleate lipid cylinders: Formation by fusion of unilamellar lipid vesicles.Biochim. Biophys. Acta Biomembr.1975394348349110.1016/0005‑2736(75)90299‑0805602
    [Google Scholar]
  6. PawarA. BothirajaC. ShaikhK. MaliA. An insight into cochleates, a potential drug delivery system.RSC Advances2015599811888120210.1039/C5RA08550K
    [Google Scholar]
  7. BhosaleR. GhodakeP. ManeA. GhadgeA. Nanocochleates: A novel carrier for drug transfer.J. Sci. Ind. Res.201325964969
    [Google Scholar]
  8. SankarV. ReddyY. Nanocochleate- a new approach in lipid drug delivery.Int. J. Pharm. Pharm. Sci.201024220223
    [Google Scholar]
  9. NadafS. KilledarS. Novel liposome derived nanoparticulate drug delivery system: fabrication and prospects.Cre. J. Pha. Res.20153117128
    [Google Scholar]
  10. LoombaL. ScarabelliT. Metallic nanoparticles and their medicinal potential. Part II: Aluminosilicates, nanobiomagnets, quantum dots and cochleates.Ther. Deliv.2013491179119610.4155/tde.13.7424024515
    [Google Scholar]
  11. WasankarS. MakeshwarK. DeshmukhA. Nanocochleate- a review.Research J. Pharma. Dosage Forms and Tech.201243153159
    [Google Scholar]
  12. ZarifL. GraybillJ.R. PerlinD. ManninoR.J. Cochleates: New lipid-based drug delivery system.J. Liposome Res.200010452353810.3109/08982100009031116
    [Google Scholar]
  13. ÇobanÖ. DeğimZ. Development of nanocochleates containing erlotinib HCl and dexketoprofen trometamol and evaluation of in vitro characteristic properties.Turk. J. Pharm. Sci.2018151162132454635
    [Google Scholar]
  14. RamasamyT. KhandasamyU. HinabindhuR.U. KonaK. Nanocochleate- a new drug delivery system.Fabad J. Pharm. Sci.20093491101
    [Google Scholar]
  15. AspreaM. TatiniF. PiazziniV. RossiF. BergonziM. BiliaA. Stable, monodisperse, and highly cell-permeating nanocochleates from natural soy lecithin liposomes.Pharmaceutics20191113410.3390/pharmaceutics1101003430654435
    [Google Scholar]
  16. YücelÇ. KaratoprakG.S. AtmarA. Novel resveratrol-loaded nanocochleates and effectiveness in the treatment of diabetes.Fabad J. Pharm. Sci.2018432125134
    [Google Scholar]
  17. YücelÇ. AltintaşY. DeğimZ. YılmazŞ. ArsoyT. AltıntaşL. ÇokçalışkanC. SözmenM. Novel approach to the treatment of diabetes: Embryonic stem cell and insulin-loaded liposomes and nanocochleates.J. Nanosci. Nanotechnol.20191973706371910.1166/jnn.2019.1632130764927
    [Google Scholar]
  18. ShendeP. KhairR. GaudR.S. Nanostructured cochleates: A multi-layered platform for cellular transportation of therapeutics.Drug Dev. Ind. Pharm.201945686988110.1080/03639045.2019.158375730767577
    [Google Scholar]
  19. Shuddhodana JudehZ. Alginate-coating of artemisinin-loaded cochleates results in better control over gastro-intestinal release for effective oral delivery.J. Drug Deliv. Sci. Technol.201952273610.1016/j.jddst.2019.04.020
    [Google Scholar]
  20. Shuddhodana WongP.W.K. JudehZ. Continuous, high-throughput production of artemisinin-loaded supramolecular cochleates using simple off-the-shelf flow focusing device.Mater. Sci. Eng. C202010811041010.1016/j.msec.2019.110410
    [Google Scholar]
  21. MachínL. TamargoB. PiñónA. AtíesR.C. ScullR. SetzerW.N. MonzoteL. Bixa orellana L. (Bixaceae) and Dysphania ambrosioides (L.) Mosyakin & Clemants (Amaranthaceae) essential oils formulated in nanocochleates against Leishmania amazonensis. Molecules20192423422210.3390/molecules2423422231757083
    [Google Scholar]
  22. BothirajaC. RajputN. PoudelI. RajalakshmiS. PandaB. PawarA. Development of novel biofunctionalized chitosan decorated nanocochleates as a cancer targeted drug delivery platform.Artif. Cells Nanomed. Biotechnol.201846sup144746110.1080/21691401.2018.143058429368543
    [Google Scholar]
  23. PoudelI. AhiwaleR. PawarA. MahadikK. BothirajaC. Development of novel biotinylated chitosan-decorated docetaxel-loaded nanocochleates for breast cancer targeting.Artif. Cells Nanomed. Biotechnol.201846sup222924010.1080/21691401.2018.145383129575931
    [Google Scholar]
  24. NadafS.J. KilledarS.G. Curcumin nanocochleates: Use of design of experiments, solid state characterization, in vitro apoptosis and cytotoxicity against breast cancer MCF-7 cells.J. Drug Deliv. Sci. Technol.20184733735010.1016/j.jddst.2018.06.026
    [Google Scholar]
  25. ZhongX. ChenB. YangZ. Nanocochleates as the potential delivery systems for oral antitumor of hydroxycamptothecin.J. Biomed. Nanotechnol.20181471339134610.1166/jbn.2018.257229944107
    [Google Scholar]
  26. AnantharamanN. UdhumanshaU. RathnamG. in-vitro diffusion studies and anticancer activity of cytarabine loaded nanocochleates against MCF-7 cell lines.Int. J. Pharm. Anal. Res.201873285294
    [Google Scholar]
  27. AnantharamanN. UdhumanshaU. RathnamG. Optimization of cytarabine loaded nanocochleates for targeting leukemia by response surface methodology.Int. J. Res. Pharmacol. Pharmacother.201873205221
    [Google Scholar]
  28. ÇobanÖ. DeğimZ. YılmazŞ. AltıntaşL. ArsoyT. SözmenM. Efficacy of targeted liposomes and nanocochleates containing imatinib plus dexketoprofen against fibrosarcoma.Drug Dev. Res.201980555656510.1002/ddr.2153030901500
    [Google Scholar]
  29. ShanmugamT. JoshiN. AhamadN. DeshmukhA. BanerjeeR. Enhanced absorption, and efficacy of oral self-assembled paclitaxel nanocochleates in multi-drug resistant colon cancer.Int. J. Pharm.202058611948210.1016/j.ijpharm.2020.11948232492505
    [Google Scholar]
  30. ShanmugamT. JoshiN. KaviratnaA. AhamadN. BhatiaE. BanerjeeR. Aerosol delivery of paclitaxel-containing self-assembled nanocochleates for treating pulmonary metastasis: An approach supporting pulmonary mechanics.ACS Biomater. Sci. Eng.20217114415610.1021/acsbiomaterials.0c0112633346632
    [Google Scholar]
  31. BelubbiT. ShevadeS. DhawanV. SridharV. MajumdarA. NunesR. AraújoF. SarmentoB. NagarsenkerK. SteinigerF. FahrA. MagarkarA. BunkerA. NagarsenkerM. Lipid architectonics for superior oral bioavailability of nelfinavir mesylate: Comparative in vitro and in vivo assessment.AAPS PharmSciTech20181983584359810.1208/s12249‑018‑1156‑330209788
    [Google Scholar]
  32. EskandarynasabM. Etemad-MoghadamS. AlaeddiniM. DoustimotlaghA.H. NazeriA. DehpourA.R. GoudarziR. PartoazarA. Novel osteoprotective nanocochleate formulation: A dual combination therapy-codelivery system against glucocorticoid induced osteoporosis.Nanomedicine20202910227310.1016/j.nano.2020.10227332711046
    [Google Scholar]
  33. O’DonnellF. Gould-FogeriteS. ManninoR. Apoprotein cochleate compositions.U.S. Patent 110473732006
  34. ManninoR. Krause-ElsmoreS. Gould-FogeriteS. DelmarreD. TanF. Cochleate preparations of fragile nutrients.U.S. Patent 107593812005
  35. DelmarreD. LuR. TattonN. Krause-ElsmoreS. Gould-FogeriteS. ManninoR.J. Formulation of hydrophobic drugs into cochleate delivery vehicles: A simplified protocol & formulation kit.Drug Del. Technol.2004416469
    [Google Scholar]
  36. ZarifL. GraybillJ.R. PerlinD. NajvarL. BocanegraR. ManninoR.J. Antifungal activity of amphotericin B cochleates against Candida albicans infection in a mouse model.Antimicrob. Agents Chemother.20004461463146910.1128/AAC.44.6.1463‑1469.200010817694
    [Google Scholar]
  37. SantangeloR. PaderuP. DelmasG. ChenZ.W. ManninoR. ZarifL. PerlinD.S. Efficacy of oral cochleate-amphotericin B in a mouse model of systemic candidiasis.Antimicrob. Agents Chemother.20004492356236010.1128/AAC.44.9.2356‑2360.200010952579
    [Google Scholar]
  38. SegarraI. MovshinD.A. ZarifL. Pharmacokinetics and tissue distribution after intravenous administration of a single dose of amphotericin B cochleates, a new lipid-based delivery system.J. Pharm. Sci.20029181827183710.1002/jps.1017312115810
    [Google Scholar]
  39. DelmasG. ParkS. ChenZ.W. TanF. KashiwazakiR. ZarifL. PerlinD.S. Efficacy of orally delivered cochleates containing amphotericin B in a murine model of aspergillosis.Antimicrob. Agents Chemother.20024682704270710.1128/AAC.46.8.2704‑2707.200212121962
    [Google Scholar]
  40. PhamT.T.H. BarrattG. MichelJ.P. LoiseauP.M. Saint-Pierre-ChazaletM. Interactions of antileishmanial drugs with monolayers of lipids used in the development of amphotericin B–miltefosine-loaded nanocochleates.Colloids Surf. B Biointerfaces201310622423310.1016/j.colsurfb.2013.01.04123434716
    [Google Scholar]
  41. PhamT.T. GueutinC. CheronM. AbreuS. ChaminadeP. LoiseauP.M. BarrattG. Development of antileishmanial lipid nanocomplexes.Biochimie2014107Pt A14315310.1016/j.biochi.2014.06.007
    [Google Scholar]
  42. Batista-DuharteA. LastreM. RomeuB. PortuondoD.L. Téllez-MartínezD. ManenteF.A. PérezO. CarlosI.Z. Antifungal and immunomodulatory activity of a novel cochleate for amphotericin B delivery against Sporothrix schenckii.Int. Immunopharmacol.20164027728710.1016/j.intimp.2016.09.00827639705
    [Google Scholar]
  43. ZarifL. ManninoR.J. Cochleates.Adv. Exp. Med. Biol.2002465839310.1007/0‑306‑46817‑4_910810618
    [Google Scholar]
  44. GibsonB. DuffyA.M. Gould FogeriteS. Krause-ElsmoreS. LuR. ShangG. ChenZ.W. ManninoR.J. Bouchier-HayesD.J. HarmeyJ.H. A novel gene delivery system for mammalian cells.Anticancer Res.2004242A48348815152947
    [Google Scholar]
  45. BrachoG. ZayasC. WangL. CoppelR. PérezO. PetrovskyN. AFCo1, a meningococcal B-derived cochleate adjuvant, strongly enhances antibody and T-cell immunity against Plasmodium falciparum merozoite surface protein 4 and 5.Malar. J.2009813510.1186/1475‑2875‑8‑3519250541
    [Google Scholar]
  46. CampoJ. ZayasC. RomeuB. AcevedoR. GonzálezE. BrachoG. CuelloM. CabreraO. BalboaJ. LastreM. Mucosal immunization using proteoliposome and cochleate structures from Neisseria meningitidis serogroup B induce mucosal and systemic responses.Methods200949430130810.1016/j.ymeth.2009.03.02519410000
    [Google Scholar]
  47. PérezO. BrachoG. LastreM. MoraN. Del CampoJ. GilD. ZayasC. AcevedoR. GonzálezD. LópezJ.A. TaboadaC. SolisR.L. SolisR.L. Novel adjuvant based on a proteoliposome-derived cochleate structure containing native lipopolysaccharide as a pathogen-associated molecular pattern.Immunol. Cell Biol.200482660361010.1111/j.1440‑1711.2004.01293.x15550118
    [Google Scholar]
  48. PérezO. LastreM. BrachoG. del CampoJ. ZayasC. AcevedoR. GilD. MoraN. GonzálezD. BalboaJ. CabreraO. CuelloC. PérezD.R. BarberáR. FajardoE.F. SierraG. SolísR.L. CampaC. Natural neisseria derive proteoliposome and cochleate as potent vaccine adjuvants.Pharmacologyonline20063762764
    [Google Scholar]
  49. PérezO. BrachoG. LastreM. ZayasC. GonzálezD. GilD. del CampoJ. AcevedoR. TaboadaC. RodríguezT. FajardoM.E. SierraG. CampaC. MoraN. BarberáR. SolísR.L. Proteliposome-derived Cochleate as an immunomodulator for nasal vaccine.Vaccine200624Suppl. 2S52S53, 310.1016/j.vaccine.2005.01.12716823925
    [Google Scholar]
  50. ZayasC. BrachoG. LastreM. GonzálezD. GilD. AcevedoR. del CampoJ. TaboadaC. SolísR.L. BarberáR. PérezO. Scale up of proteoliposome derived Cochleate production.Vaccine200624Suppl. 2S94S95, 510.1016/j.vaccine.2005.01.13916823944
    [Google Scholar]
  51. BrachoG. LastreM. CampoJ. ZayasC. GonzálezD. GilD. AcevedoR. TaboadaC. SolísR.L. PérezO. Proteoliposome derived cochleate as novel adjuvant.Vaccine200624Suppl. 2S30S3110.1016/j.vaccine.2005.01.10816823914
    [Google Scholar]
  52. AcevedoR. CallicóA. del CampoJ. GonzálezE. CedréB. GonzálezL. RomeuB. ZayasC. LastreM. FernándezS. OlivaR. GarcíaL. PérezJ.L. PérezO. Intranasal administration of proteoliposome-derived cochleates from Vibrio cholerae O1 induce mucosal and systemic immune responses in mice.Methods200949430931510.1016/j.ymeth.2009.03.02719545630
    [Google Scholar]
  53. ZayasC. GonzálezD. AcevedoR. del CampoJ. LastreM. GonzálezE. RomeuB. CuelloM. BalboaJ. CabreraO. GuilhermeL. PérezO. Pilot scale production of the vaccine adjuvant Proteoliposome derived Cochleates (AFCo1) from Neisseria meningitidis serogroup B.BMC Immunol.201314S1Suppl. 1S410.1186/1471‑2172‑14‑S1‑S423458578
    [Google Scholar]
  54. MicleaR.D. VarmaP.R. PengA. Balu-IyerS.V. Development and characterization of lipidic cochleate containing recombinant factor VIII.Biochim. Biophys. Acta Biomembr.20071768112890289810.1016/j.bbamem.2007.08.00117936245
    [Google Scholar]
  55. KosloskiM.P. PengA. VarmaP.R. FathallahA.M. MicleaR.D. MagerD.E. Balu-iyerS.V. Immunogenicity and pharmacokinetic studies of recombinant Factor VIII containing lipid cochleates.Drug Deliv.201118424625410.3109/10717544.2010.53626921114461
    [Google Scholar]
  56. PopescuC. FranzblauS. ZarifL. Cochleates potentiate the efficacy of antibacterial drug, clofazimine.ICAAC 41st Interscience Conference on Antimicrobial Agents and ChemotherapyChicago, Illinois, December 16-19, 2001.
    [Google Scholar]
  57. ManninoR. Gould-FogeriteS. Krause-ElsmoreS. DelmarreD. LuR. Encochleation methods, cochleates and methods of use.U.S. Patent 8,642,0732014
  58. MartinO. GonalezE. RomeuB. AlonsoJ. AcevedoR. ZayasC. CuelloM. CabreraM. GutierrezN. GonzalezJ. Single time vaccines.U.S. Patent 2011/0256214 A12011
  59. LuR. ManninoR. Cochleate compositions and methods of making and using same.U.S. Patent 14/115,7702014
  60. Gould-FogeriteS. ManninoR. AhlP. ShangG. ChenZ. Krause-ElsmoreS. Cochleate compositions directed against expression of proteins.U.S. Patent 8,546,5552013
  61. ManninoR. LuR. Cochleates made with soy phosphatidylserine.U.S. Patent 14/418,3922015
  62. GoudarziR. NassabM. DehpourA. PartoazarA. Nanocochleate formulation and method of preparing the nanocochleate formulation.U.S. Patent 16/516,4932021
  63. LuR. Compositions and methods for treating mycobacteria infections and lung disease.U.S. Patent 15/567,2992018
  64. ManninoR. LuR. Matinas biopharma nanotechnologies, Inc New Jersey assignee. Immunogenic cochleates and method of use.W.O. Patent 2017/205550 2017
  65. ManninoR. LuR. Compositions and methods for treating inflammatory diseases.W.O. Patent 2016/205654 A12014
  66. ManninoR. LuR. Cochleates and methods of using the same to enhance tissue penetration of pharmacologically active agent.W.O. Patent 2016/141203 A12016
  67. ManninoR. LuR. KingD. Encochleated antifungal compounds for central nervous system delivery and treatment of Cryptococcus infections.U.S. Patent 2018/013711 A12018
  68. BhosaleR.R. GangadharappaH.V. GowdaD.V. OsmaniR.A.M. VaghelaR. A review on nanocochleates: The inimitable nanoparticulate drug carriers.Adv. Sci. Eng. Med.20179535936910.1166/asem.2017.2020
    [Google Scholar]
  69. TilawatM. BondeS. Nanocochleates: A potential drug delivery system.J. Mol. Liq.202133411611510.1016/j.molliq.2021.116115
    [Google Scholar]
  70. Lipa-CastroA. LegrandF.X. BarrattG. Cochleate drug delivery systems: An approach to their characterization.Int. J. Pharm.202161012122510.1016/j.ijpharm.2021.12122534710542
    [Google Scholar]
  71. LiuM. ZhongX. YangZ. Chitosan functionalized nanocochleates for enhanced oral absorption of cyclosporine A.Sci. Rep.2017714132210.1038/srep4132228112262
    [Google Scholar]
  72. TilawatM. BondeS. Curcumin and quercetin loaded nanocochleates gel formulation for localized application in breast cancer therapy.Heliyon2023912e2289210.1016/j.heliyon.2023.e2289238058440
    [Google Scholar]
  73. GovardhaneS. ShendeP. Phthalocyanine-based glucose-responsive nanocochleates for dynamic prevention of β-cell damage in diabetes.J. Liposome Res.20231211637171277
    [Google Scholar]
  74. KanugoA. DeshpandeA. SharmaR. Formulation optimization and evaluation of nanocochleate gel of famciclovir for the treatment of herpes zoster.Recent Pat. Nanotechnol.202317325926910.2174/187221051666622062211555335733311
    [Google Scholar]
  75. ZhongX. YangJ. LiuH. YangZ. LuoP. Potential lipid-based strategies of amphotericin B designed for oral administration in clinical application.Drug Deliv.2023301216167110.1080/10717544.2022.216167136601799
    [Google Scholar]
  76. TipugadeO. PatilS. NakhareP. Insights of nanocochleates in conventional drug delivery system.Curr. Pharm. Res.202011140504062
    [Google Scholar]
/content/journals/cnanom/10.2174/0124681873299928240516161243
Loading
/content/journals/cnanom/10.2174/0124681873299928240516161243
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test