Skip to content
2000
image of Enhancement of the Antibacterial Activity of Sb2O3 Nanoparticles by Coupling Cu2O

Abstract

Background

Antibacterial drugs or antibiotics, abused in medical and agricultural fields, have caused the excess production of antibiotics in the environment.

Objective

The aim of this study is to effectively enhance the antibacterial activity of SbO inhibiting the electron-hole pairs recombination through coupling the CuO to solve the significant health care challenge caused by antibiotic-resistant bacteria.

Methods

The CuO/SbO nanocomposite was successfully synthesized a facile hydrothermal method. The structure, composition, and surface morphology of the as-synthesized nanocomposite were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), Scanning electron microscopy (SEM), and High resolution transmission electron microscopy (HRTEM). The antibacterial performance of CuO/SbO nanocomposite was studied by the colony count method.

Results

It was found that the Cu-O-Sb bonds were formed on the surface of CuO/SbO after the CuO coupling, which was supported by XPS results. Compared with pure SbO, the CuO/SbO nanocomposite presented significantly enhanced antibacterial activity, and its antibacterial rate is greater than 99.9% against both and . This can be attributed to the fact that the electrons (e-) generated in the conduction band (CB) of CuO transferred into the CB of SbO, which could promote the carrier separation efficiently. The possible antibacterial mechanism of CuO/SbO nanocomposite was put forward.

Conclusion

The CuO/SbO nanocomposite exhibited excellent antibacterial properties, which presented the antibacterial rates of >99.9%, and might be a prospective candidate for potential applications in plastics, paint, and textile industries.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137374875250415080541
2025-06-30
2025-07-20
Loading full text...

Full text loading...

References

  1. Jorgensen P.S. Wernli D. Carroll S.P. Dunn R.R. Harbarth S. Levin S.A. So A.D. Schlüter M. Laxminarayan R. Use antimicrobials wisely. Nature 2016 537 7619 159 161 10.1038/537159a
    [Google Scholar]
  2. Chen S. Quan Y. Yu Y.L. Wang J.H. Graphene quantum dot/silver nanoparticle hybrids with oxidase activities for antibacterial application. ACS Biomater. Sci. Eng. 2017 3 3 313 321 10.1021/acsbiomaterials.6b00644 33465930
    [Google Scholar]
  3. Tu Y. Li P. Sun J. Jiang J. Dai F. Li C. Wu Y. Chen L. Shi G. Tan Y. Fang H. Remarkable antibacterial activity of reduced graphene oxide functionalized by copper Ions. Adv. Funct. Mater. 2021 31 13 2008018 10.1002/adfm.202008018
    [Google Scholar]
  4. Jan T. Azmat S. Mansoor Q. Waqas H.M. Adil M. Ilyas S.Z. Ahmad I. Ismail M. Superior antibacterial activity of ZnO-CuO nanocomposite synthesized by a chemical Co-precipitation approach. Microb. Pathog. 2019 134 103579 10.1016/j.micpath.2019.103579 31175970
    [Google Scholar]
  5. Wu Y.M. Zhao P.C. Jia B. Li Z. Yuan S. Li C.H. A silver-functionalized metal–organic framework with effective antibacterial activity. New J. Chem. 2022 46 13 5922 5926 10.1039/D1NJ06183F
    [Google Scholar]
  6. Esteban-Tejeda L. Malpartida F. Esteban-Cubillo A. Pecharromán C. Moya J.S. Antibacterial and antifungal activity of a soda-lime glass containing copper nanoparticles. Nanotechnology 2009 20 50 505701 10.1088/0957‑4484/20/50/505701 19907067
    [Google Scholar]
  7. Liu J. Rojas-Andrade M.D. Chata G. Peng Y. Roseman G. Lu J.E. Millhauser G.L. Saltikov C. Chen S. Photo-enhanced antibacterial activity of ZnO/graphene quantum dot nanocomposites. Nanoscale 2018 10 1 158 166 10.1039/C7NR07367D 29143052
    [Google Scholar]
  8. Acikbas G. Calis Acikbas N. Copper oxide‐ and copper‐modified antibacterial ceramic surfaces. J. Am. Ceram. Soc. 2022 105 2 873 887 10.1111/jace.18149
    [Google Scholar]
  9. Verma S.K. Jha E. Panda P.K. Das J.K. Thirumurugan A. Suar M. Parashar S.K.S. Molecular aspects of core-shell intrinsic defect induced enhanced antibacterial activity of ZnO nanocrystals. Nanomedicine 2018 13 1 43 68 10.2217/nnm‑2017‑0237 29173091
    [Google Scholar]
  10. Jan T. Iqbal J. Ismail M. Badshah N. Mansoor Q. Arshad A. Ahkam Q.M. Synthesis, physical properties and antibacterial activity of metal oxides nanostructures. Mater. Sci. Semicond. Process. 2014 21 154 160 10.1016/j.mssp.2014.01.006
    [Google Scholar]
  11. Matsuda Y. Okuyama K. Yamamoto H. Fujita M. Abe S. Sato T. Yamada N. Koka M. Sano H. Hayashi M. Sidhu S.K. Saito T. Antibacterial effect of a fluoride-containing ZnO/CuO nanocomposite. Nucl. Instrum. Methods Phys. Res. B 2019 458 184 188 10.1016/j.nimb.2019.06.039
    [Google Scholar]
  12. Menazea A.A. Mostafa M.S. Awwad N.S. Elhosiny Ali H. Moustapha M.E. Bajaber M.A. Improvement of medical applicability of hydroxyapatite/antimonous oxide/graphene oxide mixed systems for biomedical application. J. Inorg. Organomet. Polym. Mater. 2022 32 8 3220 3234 10.1007/s10904‑022‑02355‑4
    [Google Scholar]
  13. Alavi M. Karimi N. Valadbeigi T. Antibacterial, antibiofilm, antiquorum sensing, antimotility, and antioxidant activities of green fabricated Ag, Cu, TiO2, ZnO, and Fe3O4 NPs via protoparmeliopsis muralis lichen aqueous extract against multi-drug-resistant bacteria. ACS Biomater. Sci. Eng. 2019 5 9 4228 4243 10.1021/acsbiomaterials.9b00274 33417780
    [Google Scholar]
  14. Zhou Z. Zhang L. Su W. Li Y. Zhang G. Facile fabrication of AgI/Sb2O3 heterojunction photocatalyst with enhanced visible-light driven photocatalytic performance for efficient degradation of organic pollutants in water. Environ. Res. 2021 197 111143 10.1016/j.envres.2021.111143 33865821
    [Google Scholar]
  15. Xu J. Ma B. Niu L. Xu C. Chen Z. Lin Y. Study on the flame retardancy of nano-Sb 2 O 3 /BPS-PBT composites. Adv. Compos. Lett. 2019 28 0963693519865743 10.1177/0963693519865743
    [Google Scholar]
  16. Simion A. Candu N. Cojocaru B. Coman S. Bucur C. Forneli A. Primo A. Man I.C. Parvulescu V.I. Garcia H. Nanometer-thick films of antimony oxide nanoparticles grafted on defective graphenes as heterogeneous base catalysts for coupling reactions. J. Catal. 2020 390 135 149 10.1016/j.jcat.2020.07.033
    [Google Scholar]
  17. Huang X. Woo H. Wu P. Wang Q. Tan G. Choi J.W. Low-cost processed antimony sulfide nanocrystal photoanodes with increased efficiency and stability. J. Alloys Compd. 2019 777 866 871 10.1016/j.jallcom.2018.11.009
    [Google Scholar]
  18. Condurache-Bota S. Praisler M. Gavrila R. Tigau N. Sandwich heterostructures of antimony trioxide and bismuth trioxide films: Structural, morphological and optical analysis. Appl. Surf. Sci. 2017 391 59 65 10.1016/j.apsusc.2016.07.033
    [Google Scholar]
  19. Cao J. Luo B. Lin H. Xu B. Chen S. Thermodecomposition synthesis of WO3/H2WO4 heterostructures with enhanced visible light photocatalytic properties. Appl. Catal. B 2012 111-112 288 296 10.1016/j.apcatb.2011.10.010
    [Google Scholar]
  20. Widiyandari H. Purwanto A. Balgis R. Ogi T. Okuyama K. CuO/WO3 and Pt/WO3 nanocatalysts for efficient pollutant degradation using visible light irradiation. Chem. Eng. J. 2012 180 323 329 10.1016/j.cej.2011.10.095
    [Google Scholar]
  21. Sainkar S.R. Badrinarayanan S. Sinha A.P.B. Date S.K. X-ray photoelectron spectroscopic studies on ZnO-Sb2O3 varistors. Appl. Phys. Lett. 1981 39 1 65 66 10.1063/1.92517
    [Google Scholar]
  22. Zia J. P M.R. Riaz U. Photocatalytic degradation of anti-inflammatory drug using POPD/Sb2O3 organic-inorganic nanohybrid under solar light. J. Mater. Res. Technol. 2019 8 5 4079 4093 10.1016/j.jmrt.2019.07.017
    [Google Scholar]
  23. Emadian S.S. Ghorbani M. Bakeri G. Magnetically separable CoFe2O4/ZrO2 nanocomposite for the photocatalytic reduction of hexavalent chromium under visible light irradiation. Synth. Met. 2020 267 116470 10.1016/j.synthmet.2020.116470
    [Google Scholar]
  24. Zhang Z. Wang W. Wang L. Sun S. Enhancement of visible-light photocatalysis by coupling with narrow-band-gap semiconductor: A case study on Bi2S3/Bi2WO6. ACS Appl. Mater. Interfaces 2012 4 2 593 597 10.1021/am2017199 22248230
    [Google Scholar]
  25. Tatsuma T. Saitoh S. Ngaotrakanwiwat P. Ohko Y. Fujishima A. Energy storage of TiO2−WO3 photocatalysis systems in the gas phase. Langmuir 2002 18 21 7777 7779 10.1021/la026011i
    [Google Scholar]
  26. He G.H. Liang C.J. Ou Y.D. Liu D.N. Fang Y.P. Xu Y.H. Preparation of novel Sb2O3/WO3 photocatalysts and their activities under visible light irradiation. Mater. Res. Bull. 2013 48 6 2244 2249 10.1016/j.materresbull.2013.02.055
    [Google Scholar]
  27. Liu D.N. He G.H. Zhu L. Zhou W.Y. Xu Y.H. Enhancement of photocatalytic activity of TiO2 nanoparticles by coupling Sb2O3. Appl. Surf. Sci. 2012 258 20 8055 8060 10.1016/j.apsusc.2012.04.171
    [Google Scholar]
  28. zhang Y. Li X. Chen J. Wang Y. Cheng Z. Chen X. Gao X. Guo M. Porous spherical Cu2O supported by wood-based biochar skeleton for the adsorption-photocatalytic degradation of methyl orange. Appl. Surf. Sci. 2023 611 155744 10.1016/j.apsusc.2022.155744
    [Google Scholar]
  29. Pang H. Gao F. Lu Q. Morphology effect on antibacterial activity of cuprous oxide. Chem. Commun. 2009 9 1076 1078 10.1039/b816670f 19225641
    [Google Scholar]
  30. Wang Y. Li Y. Huang Q. Qi W. Zan R. Gan M. Rao Z. Fei L. Interfacial engineering of MXene-based composite aerogel for high-performance, multifunctional solar steam generator. Desalination 2023 566 116910 10.1016/j.desal.2023.116910
    [Google Scholar]
  31. Azimifar M. Ghorbani M. Peyravi M. Fabrication and evaluation of a photocatalytic membrane based on Sb2O3/CBO composite for improvement of dye removal efficiency. J. Mol. Struct. 2022 1270 133957 10.1016/j.molstruc.2022.133957
    [Google Scholar]
  32. Wang Z. Srivastava V. Wang S. Sun H. Thangaraj S.K. Jänis J. Sillanpää M. UVC-assisted photocatalytic degradation of carbamazepine by Nd-doped Sb2O3/TiO2 photocatalyst. J. Colloid Interface Sci. 2020 562 461 469 10.1016/j.jcis.2019.11.094 31787252
    [Google Scholar]
  33. Raghavaiah B.V. Veeraiah N. The role of As2O3 on the stability and some physical properties of PbO–Sb2O3 glasses. J. Phys. Chem. Solids 2004 65 6 1153 1164 10.1016/j.jpcs.2004.01.004
    [Google Scholar]
  34. Mandlik P.S. Landge A.S. Ingole M.A. Bhosale S.V. Synthesis of highly superhydrophilic C u 2 O film using dip coating method. Mater. Today Proc. 2023 10.1016/j.matpr.2023.04.687
    [Google Scholar]
  35. Karakuş S. Özbaş F. Baytemir G. Taşaltın N. Cubic-shaped corylus colurna extract coated Cu2O nanoparticles-based smartphone biosensor for the detection of ascorbic acid in real food samples. Food Chem. 2023 417 135918 10.1016/j.foodchem.2023.135918 36940511
    [Google Scholar]
  36. Qi W. Guo S. Sun H. Liu Q. Hu H. Liu P. Lin W. Zhang M. Synthesis and characterization of Sb2O3 nanoparticles by liquid phase method under acidic condition. J. Cryst. Growth 2022 588 126642 10.1016/j.jcrysgro.2022.126642
    [Google Scholar]
  37. Zhu S. Yang X. Li T. Li F. Cao W. Phase and morphology controllable synthesis of superhydrophobic Sb2O3 via a solvothermal method. J. Alloys Compd. 2017 721 149 156 10.1016/j.jallcom.2017.05.327
    [Google Scholar]
  38. Wang X. Yang Z. Mei F. Zhou Y. Xu J. Jiang Y. One pot synthesis of Sb2O3/reduced graphene oxide composite anode material for sodium ion batteries. Mater. Lett. 2020 280 128565 10.1016/j.matlet.2020.128565
    [Google Scholar]
  39. Zhang Z. Yang Y. Li W. Zhang W. Liu M. Weng Z. Huo S. Zhang J. Boosting carbon monoxide production during CO2 reduction reaction via Cu-Sb2O3 interface cooperation. J. Colloid Interface Sci. 2021 601 661 668 10.1016/j.jcis.2021.05.118 34091313
    [Google Scholar]
  40. Errokh A. Ferraria A.M. Conceição D.S. Vieira Ferreira L.F. Botelho do Rego A.M. Rei Vilar M. Boufi S. Controlled growth of Cu 2 O nanoparticles bound to cotton fibres. Carbohydr. Polym. 2016 141 229 237 10.1016/j.carbpol.2016.01.019 26877017
    [Google Scholar]
  41. Shi Y. Li Y. Huang C. Xu Y. Xu Y. Electrogenerated copper selenide with positive charge to efficiently capture and combat drug-resistant bacteria for wound healing. J. Colloid Interface Sci. 2023 634 852 863 10.1016/j.jcis.2022.12.094 36565626
    [Google Scholar]
  42. Miraz A.S.M. Meng W.J. Ramachandran B.R. Wick C.D. Computational observation of the strengthening of Cu/TiN metal/ceramic interfaces by sub-nanometer interlayers and dopants. Appl. Surf. Sci. 2021 554 149562 10.1016/j.apsusc.2021.149562
    [Google Scholar]
  43. Divya K.V. Abraham K.E. Multifunctional transition metal doped Sb2O3 thin film with high near-IR transmittance, anti-reflectance and UV blocking features. Appl. Surf. Sci. 2019 493 1115 1124 10.1016/j.apsusc.2019.07.062
    [Google Scholar]
  44. Mallik M. Monia S. Gupta M. Ghosh A. Toppo M.P. Roy H. Synthesis and characterization of Cu2O nanoparticles. J. Alloys Compd. 2020 829 154623 10.1016/j.jallcom.2020.154623
    [Google Scholar]
  45. Zhou C. Lai C. Xu P. Zeng G. Huang D. Zhang C. Cheng M. Hu L. Wan J. Liu Y. Xiong W. Deng Y. Wen M. In situ grown AgI/Bi12O17Cl2 heterojunction photocatalysts for visible light degradation of sulfamethazine: efficiency, pathway, and mechanism. 2018 6 3 4174 4184 10.1021/acssuschemeng.7b04584
    [Google Scholar]
  46. Liu C. Zhang T. Luo Y. Wang Y. Li J. Ye T. Guo R. Song P. Zhou J. Wang H. Multifunctional polyurethane sponge coatings with excellent flame retardant, antibacterial, compressible, and recyclable properties. Compos., Part B Eng. 2021 215 108785 10.1016/j.compositesb.2021.108785
    [Google Scholar]
  47. Zhang X. Zhang Q. Xue Y. Wang Y. Zhou X. Li Z. Li Q. Simple and green synthesis of calcium alginate/AgCl nanocomposites with low-smoke flame-retardant and antimicrobial properties. Cellulose 2021 28 8 5151 5167 10.1007/s10570‑021‑03825‑7 33776253
    [Google Scholar]
  48. Guo W. Gao W. Li Q. Qu S. Zhang L. Tan L.L. Shang L. Plasmon-enhanced visible-light photocatalytic antibacterial activity of metal–organic framework/gold nanocomposites. J. Mater. Chem. A Mater. Energy Sustain. 2023 11 5 2391 2401 10.1039/D2TA09061A
    [Google Scholar]
  49. Su X. Chen W. Han Y. Wang D. Yao J. In-situ synthesis of Cu2O on cotton fibers with antibacterial properties and reusable photocatalytic degradation of dyes. Appl. Surf. Sci. 2021 536 147945 10.1016/j.apsusc.2020.147945 33012933
    [Google Scholar]
  50. Zhi L. Zhang S. Xu Y. Tu J. Li M. Hu D. Liu J. Controlled growth of AgI nanoparticles on hollow WO3 hierarchical structures to act as Z-scheme photocatalyst for visible-light photocatalysis. J. Colloid Interface Sci. 2020 579 754 765 10.1016/j.jcis.2020.06.126 32673852
    [Google Scholar]
  51. Wang T. Kumar A. Sharma G. Wang S. Jia J. Zheng J. Shi H. Synergistic mechanisms of novel Z-scheme N,S co-doped biochar-based Ag₀PO₁ composites for efficient removal of norfloxacin. npj Clean Water 2024 7 97 10.1038/s41545‑024‑00393‑8
    [Google Scholar]
  52. Wang T. Shi H. Kumar A. Zhang D. Wang H. Wang S. Zheng J. Efficient visible-light photocatalysis of chloramphenicol using novel engineered biochar-based Ti-doped Bi2WO6 composite: Mechanisms, degradation pathways, and applications. Separ. Purif. Tech. 2024 332 125780 10.1016/j.seppur.2023.125780
    [Google Scholar]
  53. Li F. Dong B. Construction of novel Z-scheme Cu2O/graphene/α-Fe2O3 nanotube arrays composite for enhanced photocatalytic activity. Ceram. Int. 2017 43 17 16007 16012 10.1016/j.ceramint.2017.08.021
    [Google Scholar]
  54. Lin N. Verma D. Saini N. Arbi R. Munir M. Jovic M. Turak A. Antiviral nanoparticles for sanitizing surfaces: A roadmap to self-sterilizing against COVID-19. Nano Today 2021 40 101267 10.1016/j.nantod.2021.101267 34404999
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137374875250415080541
Loading
/content/journals/cnano/10.2174/0115734137374875250415080541
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test