Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

Cancer has long been the leading cause of death in many countries. This complex category of diseases is characterized by the uncontrolled growth and spread of abnormal cells. To reduce the cancer mortality rate, early detection of the disease is essential. As a result, extensive research is directed towards the early identification of the cancer disease by developing novel cancer cell detection technologies. One such novel technology is Surface Enhanced Raman Scattering (SERS). This technique is highly sensitive because of the highly enhanced SERS signals due to metal nanoparticles, which allow the detection of ultra-low concentration (femto-molar) of several important cancer biomarkers. Moreover, metal nanoparticle-based SERS is found to be more sensitive and can be used for the detection of cancer cells or biomarkers over a longer period. The SERS is also useful for multiple biomarker detection. Compared to other fluorescence bands, Raman bands are narrower, which allows for the individual and simultaneous detection of multiple biomarkers. In this context, we have outlined the latest advancements in SERS for the effective detection of cancer biomarkers. Additionally, we discuss the current challenges and future potential of SERS in cancer cell detection.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137351673241121072348
2025-01-13
2026-01-03
Loading full text...

Full text loading...

References

  1. SiegelR. MaJ. ZouZ. JemalA. Cancer statistics, 2014.CA Cancer J. Clin.201464192910.3322/caac.21208 24399786
    [Google Scholar]
  2. Worldwide cancer data2022Available from: https://www.wcrf.org/cancer-trends/worldwide-cancer-data/(accessedon 4-11-2024).
  3. AardraB.S. AnithaP. Smiline GirijaA.S. ParamasivamA. Vijayashree PriyadharsiniJ. Analysis of differentially expressed genes in dysplastic oral keratinocyte cell line and their role in the development of HNSCC.J. Stomatol. Oral Maxillofac. Surg.2024125410192810.1016/j.jormas.2024.101928 38815724
    [Google Scholar]
  4. ArumugamP. Targeting oncogenic protein arginine methyltransferase 5 as a treatment strategy for head and neck cancer.Oral Oncol. Rep.20241010033410.1016/j.oor.2024.100334
    [Google Scholar]
  5. AnithaP. ParamasivamA. PriyadharsiniV.J. Evolution of CRISPR technology and its implications in oral cancer diagnosis.Oral Oncol. Rep.20241010040310.1016/j.oor.2024.100403
    [Google Scholar]
  6. SridharanG. GanapathyD. RamadossR. AtchudanR. AryaS. SundramoorthyA.K. Biosensors for rapid and accurate determination of oral cancer.Oral Oncol. Rep.2023510002110.1016/j.oor.2023.100021
    [Google Scholar]
  7. BaluS. SundramoorthyA.K. Label-free immunosensors for the ultrasensitive detection of cancer biomarkers.Oral Oncol. Rep.20241010027310.1016/j.oor.2024.100273
    [Google Scholar]
  8. SundramoorthyA.K. Selection of best biomarker for the early detection of oral squamous cell carcinoma.Oral Oncol. Rep.2024910019710.1016/j.oor.2024.100197
    [Google Scholar]
  9. SridharanG. AtchudanR. MageshV. AryaS. GanapathyD. NallaswamyD. SundramoorthyA.K. Advanced electrocatalytic materials based biosensors for cancer cell detection – A review.Electroanalysis2023359e20230009310.1002/elan.202300093
    [Google Scholar]
  10. MadhivananK. AtchudanR. AryaS. SundramoorthyA.K. Utilization of nanomaterials functionalized bio-field-effect transistors for detection of cancer biomarkers.Oral Oncol. Rep.20241010036310.1016/j.oor.2024.100363
    [Google Scholar]
  11. TianM. WuR. XiangC. NiuG. GuanW. Recent advances in fluorescent probes for cancer biomarker detection.Molecules2024295116810.3390/molecules29051168 38474680
    [Google Scholar]
  12. WangH. WuT. LiM. TaoY. Recent advances in nanomaterials for colorimetric cancer detection.J. Mater. Chem. B Mater. Biol. Med.20219492193810.1039/D0TB02163F 33367450
    [Google Scholar]
  13. MadhivananK. GanapathyD. SundramoorthyA.K. Molecularly imprinted polymers based sensors for identification of various cancer biomarkers.Oral Oncol. Rep.2024910021110.1016/j.oor.2024.100211
    [Google Scholar]
  14. LawW.C. YongK.T. BaevA. PrasadP.N. Sensitivity improved surface plasmon resonance biosensor for cancer biomarker detection based on plasmonic enhancement.ACS Nano2011564858486410.1021/nn2009485 21510685
    [Google Scholar]
  15. SundramoorthyA.K. AtchudanR. AryaS. Utilization of Raman spectroscopy in biochemical fingerprint analysis for oral cancer screening and diagnosis.Oral Oncol.202213510619210.1016/j.oraloncology.2022.106192 36270203
    [Google Scholar]
  16. IssaqH.J. VeenstraT.D. The role of electrophoresis in disease biomarker discovery.Electrophoresis200728121980198810.1002/elps.200600834 17503404
    [Google Scholar]
  17. WuL. QuX. Cancer biomarker detection: Recent achievements and challenges.Chem. Soc. Rev.201544102963299710.1039/C4CS00370E 25739971
    [Google Scholar]
  18. QianJ. ZhaoL. HuangY. ZhaoC. LiuH. LiuX. ChengZ. YuF. A microdroplet SERS-RCA biosensor with enhanced specificity and reproducibility for profiling dual miRNAs in idiopathic pulmonary fibrosis diagnosis and monitoring.Chem. Eng. J.202448214901210.1016/j.cej.2024.149012
    [Google Scholar]
  19. ChakrabortyA. GhoshA. BaruiA. Advances in surface‐enhanced Raman spectroscopy for cancer diagnosis and staging.J. Raman Spectrosc.202051173610.1002/jrs.5726
    [Google Scholar]
  20. NargisH.F. NawazH. BhattiH.N. JilaniK. SaleemM. Comparison of surface enhanced Raman spectroscopy and Raman spectroscopy for the detection of breast cancer based on serum samples.Spectrochim. Acta A Mol. Biomol. Spectrosc.202124611903410.1016/j.saa.2020.119034 33049470
    [Google Scholar]
  21. SridharanG. MuruganR.V. AtchudanR. AryaS. SundramoorthyA.K. Electrochemical detection of dopamine using green synthesized gold nanoparticles from Strobilanthes kunthiana’s leaf extract.Nano Life20242024S179398442450015610.1142/S1793984424500156
    [Google Scholar]
  22. KooK.M. WeeE.J.H. MainwaringP.N. WangY. TrauM. Toward precision medicine: A cancer molecular subtyping nano‐strategy for RNA biomarkers in tumor and urine.Small201612456233624210.1002/smll.201602161 27717152
    [Google Scholar]
  23. ChangH. KangH. KoE. JunB.H. LeeH.Y. LeeY.S. JeongD.H. PSA detection with femtomolar sensitivity and a broad dynamic range using SERS nanoprobes and an area-scanning method.ACS Sens.20161664564910.1021/acssensors.6b00053
    [Google Scholar]
  24. WangJ. KooK.M. WeeE.J.H. WangY. TrauM. A nanoplasmonic label-free surface-enhanced Raman scattering strategy for non-invasive cancer genetic subtyping in patient samples.Nanoscale20179103496350310.1039/C6NR09928A 28240336
    [Google Scholar]
  25. LiX. ZhangY. XueB. KongX. LiuX. TuL. ChangY. ZhangH. A SERS nano-tag-based fiber-optic strategy for in situ immunoassay in unprocessed whole blood.Biosens. Bioelectron.20179251752210.1016/j.bios.2016.10.070 27836611
    [Google Scholar]
  26. YangK. HuY. DongN. ZhuG. ZhuT. JiangN. A novel SERS-based magnetic aptasensor for prostate specific antigen assay with high sensitivity.Biosens. Bioelectron.20179428629110.1016/j.bios.2017.02.048 28292735
    [Google Scholar]
  27. YangL. GaoM.X. ZhanL. GongM. ZhenS.J. HuangC.Z. An enzyme-induced Au@Ag core–shell nanostructure used for an ultrasensitive surface-enhanced Raman scattering immunoassay of cancer biomarkers.Nanoscale2017972640264510.1039/C6NR07979B 28155925
    [Google Scholar]
  28. GrangerJ.H. GrangerM.C. FirpoM.A. MulvihillS.J. PorterM.D. Toward development of a surface-enhanced Raman scattering (SERS)-based cancer diagnostic immunoassay panel.Analyst (Lond.)2013138241041610.1039/C2AN36128K 23150876
    [Google Scholar]
  29. MaH. SunX. ChenL. HanX.X. ZhaoB. LuH. HeC. Antibody-free discrimination of protein biomarkers in human serum based on surface-enhanced Raman spectroscopy.Anal. Chem.20189021123421234610.1021/acs.analchem.8b03701 30338981
    [Google Scholar]
  30. LuZ. HuangY. CaoM. Electrochemical surface-enhanced Raman spectroscopy for structure analysis of 1, 4-benzenedithiol assembled on gold nanoparticles.Int. J. Electrochem. Sci.202217922097010.20964/2022.09.64
    [Google Scholar]
  31. LiM. CushingS.K. ZhangJ. SuriS. EvansR. PetrosW.P. GibsonL.F. MaD. LiuY. WuN. Three-dimensional hierarchical plasmonic nano-architecture enhanced surface-enhanced Raman scattering immunosensor for cancer biomarker detection in blood plasma.ACS Nano2013764967497610.1021/nn4018284 23659430
    [Google Scholar]
  32. FleischmannM. HendraP.J. McQuillanA.J. Raman spectra of pyridine adsorbed at a silver electrode.Chem. Phys. Lett.197426216316610.1016/0009‑2614(74)85388‑1
    [Google Scholar]
  33. BoujdayS. ChapelleM. SrajerJ. KnollW. Enhanced vibrational spectroscopies as tools for small molecule biosensing.Sensors (Basel)2015159212392126410.3390/s150921239 26343666
    [Google Scholar]
  34. SubashR. SridharanG. NallaswamyD. AtchudanR. AryaS. SundramoorthyA.K. Electrochemical detection of nitrofurantoin using green synthesized silver-doped palladium nanocluster-modified sensor.Nanosci. Nanotechnol. Asia2024143e25032422830410.2174/0122106812282033240320102203
    [Google Scholar]
  35. ItoT. OkazakiS. Pushing the limits of lithography.Nature200040667991027103110.1038/35023233 10984061
    [Google Scholar]
  36. ChenY. Nanofabrication by electron beam lithography and its applications: A review.Microelectron. Eng.2015135577210.1016/j.mee.2015.02.042
    [Google Scholar]
  37. ColsonP. HenristC. ClootsR. Nanosphere lithography: A powerful method for the controlled manufacturing of nanomaterials.J. Nanomater.20132013194851010.1155/2013/948510
    [Google Scholar]
  38. GuoL.J. Recent progress in nanoimprint technology and its applications.J. Phys. D Appl. Phys.20043711R123R14110.1088/0022‑3727/37/11/R01
    [Google Scholar]
  39. SmithC.J. OsbornA.M. Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology.FEMS Microbiol. Ecol.200967162010.1111/j.1574‑6941.2008.00629.x 19120456
    [Google Scholar]
  40. TeymouriM. MollazadehS. MortazaviH. Naderi Ghale-noie, Z.; Keyvani, V.; Aghababaei, F.; Hamblin, M.R.; Abbaszadeh-Goudarzi, G.; Pourghadamyari, H.; Hashemian, S.M.R.; Mirzaei, H. Recent advances and challenges of RT-PCR tests for the diagnosis of COVID-19.Pathol. Res. Pract.202122115344310.1016/j.prp.2021.153443 33930607
    [Google Scholar]
  41. AryaS.K. EstrelaP. Recent advances in enhancement strategies for electrochemical ELISA-based immunoassays for cancer biomarker detection.Sensors (Basel)2018187201010.3390/s18072010 29932161
    [Google Scholar]
  42. NimseS.B. SonawaneM.D. SongK.S. KimT. Biomarker detection technologies and future directions.Analyst (Lond.)2016141374075510.1039/C5AN01790D 26583164
    [Google Scholar]
  43. ChengZ. ChoiN. WangR. LeeS. MoonK.C. YoonS.Y. ChenL. ChooJ. Simultaneous detection of dual prostate specific antigens using surface-enhanced Raman scattering-based immunoassay for accurate diagnosis of prostate cancer.ACS Nano20171154926493310.1021/acsnano.7b01536 28441008
    [Google Scholar]
  44. SchlückerS. SERS microscopy: Nanoparticle probes and biomedical applications.ChemPhysChem2009109-101344135410.1002/cphc.200900119 19565576
    [Google Scholar]
  45. XuK. ZhouR. TakeiK. HongM. Toward flexible surface-enhanced Raman scattering (SERS) sensors for point-of-care diagnostics.Adv. Sci. (Weinh.)2019616190092510.1002/advs.201900925 31453071
    [Google Scholar]
  46. ConnollyJ.M. DaviesK. KazakeviciuteA. WheatleyA.M. DockeryP. KeoghI. OlivoM. Non-invasive and label-free detection of oral squamous cell carcinoma using saliva surface-enhanced Raman spectroscopy and multivariate analysis.Nanomedicine20161261593160110.1016/j.nano.2016.02.021 27015768
    [Google Scholar]
  47. TanY. YanB. XueL. LiY. LuoX. JiP. Surface-enhanced Raman spectroscopy of blood serum based on gold nanoparticles for the diagnosis of the oral squamous cell carcinoma.Lipids Health Dis.20171617310.1186/s12944‑017‑0465‑y 28388900
    [Google Scholar]
  48. ClarkeO.J.R. GoodallB.L. HuiH.P. VatsN. BrosseauC.L. Development of a SERS-based rapid vertical flow assay for point-of-care diagnostics.Anal. Chem.20178931405141010.1021/acs.analchem.6b04710 28208248
    [Google Scholar]
  49. DixonK. BononR. IvanderF. Ale EbrahimS. NamdarK. ShayeganniaM. KhalvatiF. KheraniN.P. ZavodniA. MatsuuraN. Using machine learning and silver nanoparticle-based surface-enhanced Raman spectroscopy for classification of cardiovascular disease biomarkers.ACS Appl. Nano Mater.2023617153851539610.1021/acsanm.3c01442 37706067
    [Google Scholar]
  50. ChoiN. DangH. DasA. SimM.S. ChungI.Y. ChooJ. SERS biosensors for ultrasensitive detection of multiple biomarkers expressed in cancer cells.Biosens. Bioelectron.202016411232610.1016/j.bios.2020.112326 32553352
    [Google Scholar]
  51. BaluS. AtchudanR. AryaS. SundramoorthyA.K. The role of gold nanostructures in the development of detection devices for oral squamous cell carcinoma.Oral Oncol. Rep.2024910014610.1016/j.oor.2023.100146
    [Google Scholar]
  52. QianX. PengX.H. AnsariD.O. Yin-GoenQ. ChenG.Z. ShinD.M. YangL. YoungA.N. WangM.D. NieS. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags.Nat. Biotechnol.2008261839010.1038/nbt1377 18157119
    [Google Scholar]
  53. LussierF. ThibaultV. CharronB. WallaceG.Q. MassonJ.F. Deep learning and artificial intelligence methods for Raman and surface-enhanced Raman scattering.Trends Analyt. Chem.202012411579610.1016/j.trac.2019.115796
    [Google Scholar]
  54. GuoS. DongS. Metal nanomaterial-based self-assembly: Development, electrochemical sensing and SERS applications.J. Mater. Chem.201121421670410.1039/c1jm11382h
    [Google Scholar]
  55. WahabM.R.A. PalaniyandiT. RaviM. ViswanathanS. BaskarG. SurendranH. GangadharanS.G.D. RajendranB.K. Biomarkers and biosensors for early cancer diagnosis, monitoring and prognosis.Pathol. Res. Pract.202325015481210.1016/j.prp.2023.154812
    [Google Scholar]
  56. GhoshS. RajendranR.L. MahajanA.A. ChowdhuryA. BeraA. GuhaS. ChakrabortyK. ChowdhuryR. PaulA. JhaS. DeyA. Harnessing exosomes as cancer biomarkers in clinical oncology.Cancer Cell Int.20242427810.1186/s12935‑024‑03464‑5
    [Google Scholar]
  57. AalamiA.H. ShahriariA. MazaheriM. AalamiF. SahebkarA. Advancing gastrointestinal cancer diagnostics: A systematic review and meta-analysis of circulating microRNA-1246 as a non-invasive biomarker.Biomarkers20242923324310.1080/1354750X.2024.2350714
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137351673241121072348
Loading
/content/journals/cnano/10.2174/0115734137351673241121072348
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test