Skip to content
2000
image of Nanoparticles for the Delivery of Drugs to Specific Targets: An Update

Abstract

Drug delivery using nanoparticles has shown to be a flexible and favourable platform that provides accurate and effective ways to deliver curative drugs to their targeted locations of action. Because targeted medication delivery minimizes off-target consequences, whereas enabling the particular distribution of therapeutic medicines to certain cells, tissues, or organs, it characterizes a productive change in treatment. Because of their special qualities and tuneable nature, nanoparticles have shown to be excellent transporters for this use. This review paper will elaborate on the various limitations of conventional drug delivery systems, the different types of nanoparticles, their structure, target strategies of these nanoparticles, their application, and future advancement in target drug delivery by nanoparticles. In contrast to previous assessments, this work strictly examines the structural variety, targeting tactics, and applications of different nanoparticles while going into great detail on the shortcomings of conventional drug delivery systems. This work has been described as a forward-looking investigation due to its unique focus on assessing the tunability and optimizing nanoparticle properties for precise drug delivery. We provide fresh perspectives on enhancing targeted delivery systems by identifying upcoming developments and new trends, paving the way to better treatment results.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137354461250312091944
2025-03-18
2025-08-21
Loading full text...

Full text loading...

References

  1. Singh R. Lillard J.W. Jr Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol. 2009 86 3 215 223 10.1016/j.yexmp.2008.12.004 19186176
    [Google Scholar]
  2. Wilczewska A.Z. Niemirowicz K. Markiewicz K.H. Car H. Nanoparticles as drug delivery systems. Pharmacol. Rep. 2012 64 5 1020 1037 10.1016/S1734‑1140(12)70901‑5 23238461
    [Google Scholar]
  3. Mitchell M.J. Billingsley M.M. Haley R.M. Wechsler M.E. Peppas N.A. Langer R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021 20 2 101 124 10.1038/s41573‑020‑0090‑8 33277608
    [Google Scholar]
  4. Sultana A. Zare M. Thomas V. Kumar T.S.S. Ramakrishna S. Nano-based drug delivery systems: Conventional drug delivery routes, recent developments and future prospects. Medicine in Drug Discovery 2022 15 100134 10.1016/j.medidd.2022.100134
    [Google Scholar]
  5. Karahmet Sher E. Alebić M. Marković Boras M. Boškailo E. Karahmet Farhat E. Karahmet A. Pavlović B. Sher F. Lekić L. Nanotechnology in medicine revolutionizing drug delivery for cancer and viral infection treatments. Int. J. Pharm. 2024 660 124345 10.1016/j.ijpharm.2024.124345 38885775
    [Google Scholar]
  6. Cheng X. Xie Q. Sun Y. Advances in nanomaterial-based targeted drug delivery systems. Front. Bioeng. Biotechnol. 2023 11 1177151 10.3389/fbioe.2023.1177151 37122851
    [Google Scholar]
  7. Langer R. Drug delivery and targeting. Nature 1998 392 6679 Suppl. 5 10 9579855
    [Google Scholar]
  8. Narmani A. Rezvani M. Farhood B. Darkhor P. Mohammadnejad J. Amini B. Refahi S. Abdi Goushbolagh N. Folic acid functionalized nanoparticles as pharmaceutical carriers in drug delivery systems. Drug Dev. Res. 2019 80 4 404 424 10.1002/ddr.21545 31140629
    [Google Scholar]
  9. Cho K. Wang X. Nie S. Chen Z. Shin D. M. Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res. 2008 14 5 1310 10.1158/1078‑0432.CCR‑07‑1441
    [Google Scholar]
  10. Tangri P. Khurana S. Basics of ocular drug delivery systems. Int. J. Res. Pharm. Biomed. Sci. 2011 2 4 1541 1552
    [Google Scholar]
  11. Utreja P. Jain S. Tiwary A.K. Novel drug delivery systems for sustained and targeted delivery of anti- cancer drugs: current status and future prospects. Curr. Drug Deliv. 2010 7 2 152 161 10.2174/156720110791011783 20158482
    [Google Scholar]
  12. Li C. Wang J. Wang Y. Gao H. Wei G. Huang Y. Yu H. Gan Y. Wang Y. Mei L. Chen H. Hu H. Zhang Z. Jin Y. Recent progress in drug delivery. Acta Pharm. Sin. B 2019 9 6 1145 1162 10.1016/j.apsb.2019.08.003 31867161
    [Google Scholar]
  13. Lee H. Song C. Baik S. Kim D. Hyeon T. Kim D.H. Device-assisted transdermal drug delivery. Adv. Drug Deliv. Rev. 2018 127 35 45 10.1016/j.addr.2017.08.009 28867296
    [Google Scholar]
  14. Alam M.I. Beg S. Samad A. Baboota S. Kohli K. Ali J. Ahuja A. Akbar M. Strategy for effective brain drug delivery. Eur. J. Pharm. Sci. 2010 40 5 385 403 10.1016/j.ejps.2010.05.003 20497904
    [Google Scholar]
  15. Hersh D.S. Wadajkar A.S. Roberts N. Perez J.G. Connolly N.P. Frenkel V. Winkles J.A. Woodworth G.F. Kim A.J. Evolving drug delivery strategies to overcome the blood brain barrier. Curr. Pharm. Des. 2016 22 9 1177 1193 10.2174/1381612822666151221150733 26685681
    [Google Scholar]
  16. Shinde N. C. Keskar N. J. Argade P. D. Advances in drug delivery systems, challenges and future directions. Heliyon 2012 9 6 10.1016/j.heliyon.2023.e17488
    [Google Scholar]
  17. Rabinow B.E. Nanosuspensions in drug delivery. Nat. Rev. Drug Discov. 2004 3 9 785 796 10.1038/nrd1494 15340388
    [Google Scholar]
  18. Wang L. Du J. Zhou Y. Wang Y. Safety of nanosuspensions in drug delivery. Nanomedicine 2017 13 2 455 469 10.1016/j.nano.2016.08.007 27558350
    [Google Scholar]
  19. Ma Y. Cong Z. Gao P. Wang Y. Nanosuspensions technology as a master key for nature products drug delivery and in vivo fate. Eur. J. Pharm. Sci. 2023 185 106425 10.1016/j.ejps.2023.106425 36934992
    [Google Scholar]
  20. Patravale V.B. Date A.A. Kulkarni R.M. Nanosuspensions: A promising drug delivery strategy. J. Pharm. Pharmacol. 2004 56 7 827 840 10.1211/0022357023691 15233860
    [Google Scholar]
  21. Jacob S. Nair A.B. Shah J. Emerging role of nanosuspensions in drug delivery systems. Biomater. Res. 2020 24 1 3 10.1186/s40824‑020‑0184‑8 31969986
    [Google Scholar]
  22. Mu H. Holm R. Solid lipid nanocarriers in drug delivery: Characterization and design. Expert Opin. Drug Deliv. 2018 15 8 771 785 10.1080/17425247.2018.1504018 30064267
    [Google Scholar]
  23. Manjunath K. Reddy J.S. Venkateswarlu V. Solid lipid nanoparticles as drug delivery systems. Methods Find. Exp. Clin. Pharmacol. 2005 27 2 127 144 10.1358/mf.2005.27.2.876286 15834465
    [Google Scholar]
  24. Blasi P. Giovagnoli S. Schoubben A. Ricci M. Rossi C. Solid lipid nanoparticles for targeted brain drug delivery. Adv. Drug Deliv. Rev. 2007 59 6 454 477 10.1016/j.addr.2007.04.011 17570559
    [Google Scholar]
  25. Mukherjee S. Ray S. Thakur R.S. Solid lipid nanoparticles: A modern formulation approach in drug delivery system. Indian J. Pharm. Sci. 2009 71 4 349 358 10.4103/0250‑474X.57282 20502539
    [Google Scholar]
  26. Prabhu R.H. Patravale V.B. Joshi M.D. Polymeric nanoparticles for targeted treatment in oncology: Current insights. Int. J. Nanomedicine 2015 10 1001 1018 25678788
    [Google Scholar]
  27. Nagavarma B.V. Yadav H.K. Ayaz A.V. Vasudha L.S. Shivakumar H.G. Different techniques for preparation of polymeric nanoparticles: A review. Asian J. Pharm. Clin. Res. 2012 5 3 16 23
    [Google Scholar]
  28. Soppimath K.S. Aminabhavi T.M. Kulkarni A.R. Rudzinski W.E. Biodegradable polymeric nanoparticles as drug delivery devices. J. Control. Release 2001 70 1-2 1 20 10.1016/S0168‑3659(00)00339‑4 11166403
    [Google Scholar]
  29. McBain SC Yiu HH Dobson J Magnetic nanoparticles for gene and drug delivery. Int J. Nanomedicine. 2008 3 2 169
    [Google Scholar]
  30. Veiseh O. Gunn J.W. Zhang M. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv. Drug Deliv. Rev. 2010 62 3 284 304 10.1016/j.addr.2009.11.002 19909778
    [Google Scholar]
  31. Huang J. Li Y. Orza A. Lu Q. Guo P. Wang L. Yang L. Mao H. Magnetic nanoparticle facilitated drug delivery for cancer therapy with targeted and image‐guided approaches. Adv. Funct. Mater. 2016 26 22 3818 3836 10.1002/adfm.201504185 27790080
    [Google Scholar]
  32. Ebbesen T.W. Carbon nanotubes. Annu. Rev. Mater. Sci. 1994 24 1 235 264 10.1146/annurev.ms.24.080194.001315
    [Google Scholar]
  33. Popov V. Carbon nanotubes: properties and application. Mater. Sci. Eng. Rep. 2004 43 3 61 102 10.1016/j.mser.2003.10.001
    [Google Scholar]
  34. Şimşek M. Nonlocal effects in the forced vibration of an elastically connected double-carbon nanotube system under a moving nanoparticle. Comput. Mater. Sci. 2011 50 7 2112 2123 10.1016/j.commatsci.2011.02.017
    [Google Scholar]
  35. Seifoori S. Abbaspour F. Zamani E. Analytical spring-mass model of impact behavior of double-walled carbon nanotubes. Chall. Nano Micro Scale Sci. 2020 8 1 32 38
    [Google Scholar]
  36. Ravi Kiran A.V.V.V. Kusuma Kumari G. Krishnamurthy P.T. Carbon nanotubes in drug delivery: Focus on anticancer therapies. J. Drug Deliv. Sci. Technol. 2020 59 101892 10.1016/j.jddst.2020.101892
    [Google Scholar]
  37. Madani S.Y. Naderi N. Dissanayake O. Tan A. Seifalian A.M. A new era of cancer treatment: Carbon nanotubes as drug delivery tools. Int. J. Nanomedicine 2011 6 2963 2979 22162655
    [Google Scholar]
  38. Bhatt A Jain A Gurnany E Jain R Modi A Jain A. Carbon nanotubes: A promising carrier for drug delivery and targeting. Nanoarchitectonics for Smart Delivery and Drug Targeting. William Andrew Publishing 2016 465 501 10.1016/B978‑0‑323‑47347‑7.00017‑3
    [Google Scholar]
  39. Daraee H. Etemadi A. Kouhi M. Alimirzalu S. Akbarzadeh A. Application of liposomes in medicine and drug delivery. Artif. Cells Nanomed. Biotechnol. 2016 44 1 381 391 10.3109/21691401.2014.953633 25222036
    [Google Scholar]
  40. Guimarães D. Cavaco-Paulo A. Nogueira E. Design of liposomes as drug delivery system for therapeutic applications. Int. J. Pharm. 2021 601 120571 10.1016/j.ijpharm.2021.120571 33812967
    [Google Scholar]
  41. Lestini B.J. Sagnella S.M. Xu Z. Shive M.S. Richter N.J. Jayaseharan J. Case A.J. Kottke-Marchant K. Anderson J.M. Marchant R.E. Surface modification of liposomes for selective cell targeting in cardiovascular drug delivery. J. Control. Release 2002 78 1-3 235 247 10.1016/S0168‑3659(01)00505‑3 11772464
    [Google Scholar]
  42. Allen T.M. Cullis P.R. Liposomal drug delivery systems: From concept to clinical applications. Adv. Drug Deliv. Rev. 2013 65 1 36 48 10.1016/j.addr.2012.09.037 23036225
    [Google Scholar]
  43. Pasarin D. Ghizdareanu A.I. Enascuta C.E. Matei C.B. Bilbie C. Paraschiv-Palada L. Veres P.A. Coating materials to increase the stability of liposomes. Polymers 2023 15 3 782 10.3390/polym15030782 36772080
    [Google Scholar]
  44. Sydykov B. Oldenhof H. Sieme H. Wolkers W.F. Storage stability of liposomes stored at elevated subzero temperatures in DMSO/sucrose mixtures. PLoS One 2018 13 7 e0199867 10.1371/journal.pone.0199867 29975741
    [Google Scholar]
  45. Lombardo D. Kiselev M.A. Methods of liposomes preparation: Formation and control factors of versatile nanocarriers for biomedical and nanomedicine application. Pharmaceutics 2022 14 3 543 10.3390/pharmaceutics14030543 35335920
    [Google Scholar]
  46. Shao P. Wang P. Niu B. Kang J. Environmental stress stability of pectin-stabilized resveratrol liposomes with different degree of esterification. Int. J. Biol. Macromol. 2018 119 53 59 10.1016/j.ijbiomac.2018.07.139 30036624
    [Google Scholar]
  47. Hirsch L.R. Gobin A.M. Lowery A.R. Tam F. Drezek R.A. Halas N.J. West J.L. Metal nanoshells. Ann. Biomed. Eng. 2006 34 1 15 22 10.1007/s10439‑005‑9001‑8 16528617
    [Google Scholar]
  48. Gobin A.M. O’Neal D.P. Watkins D.M. Halas N.J. Drezek R.A. West J.L. Near infrared laser-tissue welding using nanoshells as an exogenous absorber. Lasers Surg. Med. 2005 37 2 123 129 10.1002/lsm.20206 16047329
    [Google Scholar]
  49. Delcea M. Möhwald H. Skirtach A.G. Stimuli-responsive LbL capsules and nanoshells for drug delivery. Adv. Drug Deliv. Rev. 2011 63 9 730 747 10.1016/j.addr.2011.03.010 21463658
    [Google Scholar]
  50. Hirsch L.R. Stafford R.J. Bankson J.A. Sershen S.R. Rivera B. Price R.E. Hazle J.D. Halas N.J. West J.L. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. USA 2003 100 23 13549 13554 10.1073/pnas.2232479100 14597719
    [Google Scholar]
  51. Loo C. Lowery A. Halas N. West J. Drezek R. Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett. 2005 5 4 709 711 10.1021/nl050127s 15826113
    [Google Scholar]
  52. Amirthalingam T. Kalirajan J. Chockalingam A. Use of silica-gold core shell structured nanoparticles for targeted drug delivery system. J. Nanomed. Nanotechnol. 2011 2 6 10.4172/2157‑7439.1000119
    [Google Scholar]
  53. Thomas S. Harshita B.S.P. Mishra P. Talegaonkar S. Ceramic nanoparticles: Fabrication methods and applications in drug delivery. Curr. Pharm. Des. 2015 21 42 6165 6188 10.2174/1381612821666151027153246 26503144
    [Google Scholar]
  54. Yang L. Sheldon B.W. Webster T.J. Nanophase ceramics for improved drug delivery. Am. Ceram. Soc. Bull. 2010 89 2 24 32
    [Google Scholar]
  55. Moreno-Vega A.I. Gómez-Quintero T. Nuñez-Anita R.E. Acosta-Torres L.S. Castaño V. Polymeric and ceramic nanoparticles in biomedical applications. J. Nanotechnol. 2012 2012 1 1 10 10.1155/2012/936041
    [Google Scholar]
  56. Singh D. Singh S. Sahu J. Srivastava S. Singh M.R. Ceramic nanoparticles: Recompense, cellular uptake and toxicity concerns. Artif. Cells Nanomed. Biotechnol. 2016 44 1 401 409 10.3109/21691401.2014.955106 25229834
    [Google Scholar]
  57. Beg S. Rahman M. Jain A. Saini S. Midoux P. Pichon C. Ahmad F.J. Akhter S. Nanoporous metal organic frameworks as hybrid polymer–metal composites for drug delivery and biomedical applications. Drug Discov. Today 2017 22 4 625 637 10.1016/j.drudis.2016.10.001 27742533
    [Google Scholar]
  58. Radhakrishnan D. Mohanan S. Choi G. Choy J.H. Tiburcius S. Trinh H.T. Bolan S. Verrills N. Tanwar P. Karakoti A. Vinu A. The emergence of nanoporous materials in lung cancer therapy. Sci. Technol. Adv. Mater. 2022 23 1 225 274 10.1080/14686996.2022.2052181 35875329
    [Google Scholar]
  59. Jeon G. Yang S.Y. Kim J.K. Functional nanoporous membranes for drug delivery. J. Mater. Chem. 2012 22 30 14814 14834 10.1039/c2jm32430j
    [Google Scholar]
  60. Vauthier C. Bouchemal K. Methods for the preparation and manufacture of polymeric nanoparticles. Pharm. Res. 2009 26 5 1025 1058 10.1007/s11095‑008‑9800‑3 19107579
    [Google Scholar]
  61. Gilik Ç. Plga nanofiber wound dressing with silver nanoparticles encapsulated with cinnamon extract Master's thesis, Necmettin Erbakan University (Turkey) 2021
    [Google Scholar]
  62. Fernández A. Reddy E.P. Rojas T.C. Sánchez-López J.C. Application of the gas phase condensation to the preparation of nanoparticles. Vacuum 1999 52 1-2 83 88 10.1016/S0042‑207X(98)00235‑8
    [Google Scholar]
  63. Wegner K. Walker B. Tsantilis S. Pratsinis S.E. Design of metal nanoparticle synthesis by vapor flow condensation. Chem. Eng. Sci. 2002 57 10 1753 1762 10.1016/S0009‑2509(02)00064‑7
    [Google Scholar]
  64. Jones AC Hitchman ML Overview of chemical vapour deposition. Chemical vapour deposition: Precursors, processes and applications. The Royal Society of Chemistry 2009 1 36
    [Google Scholar]
  65. Tavakoli A. Sohrabi M. Choi C.J. Kargari A. Effects of pertinent operating parameters on the size of iron nanoparticles synthesised by chemical vapour condensation method applying experimental design procedure. Micro. Nano Lett. 2010 5 2 135 139 10.1049/mnl.2009.0109
    [Google Scholar]
  66. Low C.T.J. Wills R.G.A. Walsh F.C. Electrodeposition of composite coatings containing nanoparticles in a metal deposit. Surf. Coat. Tech. 2006 201 1-2 371 383 10.1016/j.surfcoat.2005.11.123
    [Google Scholar]
  67. Yu M.K. Park J. Jon S. Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics 2012 2 1 3 44 10.7150/thno.3463 22272217
    [Google Scholar]
  68. Petros R.A. DeSimone J.M. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov. 2010 9 8 615 627 10.1038/nrd2591 20616808
    [Google Scholar]
  69. Nel A. Ruoslahti E. Meng H. New insights into “permeability” as in the enhanced permeability and retention effect of cancer nanotherapeutics. ACS Nano 2017 11 10 9567 9569 10.1021/acsnano.7b07214 29065443
    [Google Scholar]
  70. Kalyane D. Raval N. Maheshwari R. Tambe V. Kalia K. Tekade R.K. Employment of enhanced permeability and retention effect (EPR): Nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer. Mater. Sci. Eng. C 2019 98 1252 1276 10.1016/j.msec.2019.01.066 30813007
    [Google Scholar]
  71. Ejigah V. Owoseni O. Bataille-Backer P. Ogundipe O.D. Fisusi F.A. Adesina S.K. Approaches to improve macromolecule and nanoparticle accumulation in the tumor microenvironment by the enhanced permeability and retention effect. Polymers 2022 14 13 2601 10.3390/polym14132601 35808648
    [Google Scholar]
  72. Shinde V.R. Revi N. Murugappan S. Singh S.P. Rengan A.K. Enhanced permeability and retention effect: A key facilitator for solid tumor targeting by nanoparticles. Photodiagn. Photodyn. Ther. 2022 39 102915 10.1016/j.pdpdt.2022.102915 35597441
    [Google Scholar]
  73. Yoo J.W. Chambers E. Mitragotri S. Factors that control the circulation time of nanoparticles in blood: Challenges, solutions and future prospects. Curr. Pharm. Des. 2010 16 21 2298 2307 10.2174/138161210791920496 20618151
    [Google Scholar]
  74. Chambers E. Mitragotri S. Prolonged circulation of large polymeric nanoparticles by non-covalent adsorption on erythrocytes. J. Control. Release 2004 100 1 111 119 10.1016/j.jconrel.2004.08.005 15491815
    [Google Scholar]
  75. Termsarasab U. Yoon I.S. Park J.H. Moon H.T. Cho H.J. Kim D.D. Polyethylene glycol-modified arachidyl chitosan-based nanoparticles for prolonged blood circulation of doxorubicin. Int. J. Pharm. 2014 464 1-2 127 134 10.1016/j.ijpharm.2014.01.015 24451239
    [Google Scholar]
  76. Bazak R. Houri M. El Achy S. Kamel S. Refaat T. Cancer active targeting by nanoparticles: A comprehensive review of literature. J. Cancer Res. Clin. Oncol. 2015 141 5 769 784 10.1007/s00432‑014‑1767‑3 25005786
    [Google Scholar]
  77. Byrne J.D. Betancourt T. Brannon-Peppas L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv. Drug Deliv. Rev. 2008 60 15 1615 1626 10.1016/j.addr.2008.08.005 18840489
    [Google Scholar]
  78. Yoo J. Park C. Yi G. Lee D. Koo H. Active targeting strategies using biological ligands for nanoparticle drug delivery systems. Cancers 2019 11 5 640 10.3390/cancers11050640 31072061
    [Google Scholar]
  79. Nobs L. Buchegger F. Gurny R. Allémann E. Current methods for attaching targeting ligands to liposomes and nanoparticles. J. Pharm. Sci. 2004 93 8 1980 1992 10.1002/jps.20098 15236448
    [Google Scholar]
  80. Xu S. Olenyuk B.Z. Okamoto C.T. Hamm-Alvarez S.F. Targeting receptor-mediated endocytotic pathways with nanoparticles: Rationale and advances. Adv. Drug Deliv. Rev. 2013 65 1 121 138 10.1016/j.addr.2012.09.041 23026636
    [Google Scholar]
  81. Engelberg S. Modrejewski J. Walter J.G. Livney Y.D. Assaraf Y.G. Cancer cell-selective, clathrin-mediated endocytosis of aptamer decorated nanoparticles. Oncotarget 2018 9 30 20993 21006 10.18632/oncotarget.24772 29765515
    [Google Scholar]
  82. Yameen B. Choi W.I. Vilos C. Swami A. Shi J. Farokhzad O.C. Insight into nanoparticle cellular uptake and intracellular targeting. J. Control. Release 2014 190 485 499 10.1016/j.jconrel.2014.06.038 24984011
    [Google Scholar]
  83. Mosquera J. García I. Liz-Marzán L.M. Cellular uptake of nanoparticles versus small molecules: A matter of size. Acc. Chem. Res. 2018 51 9 2305 2313 10.1021/acs.accounts.8b00292 30156826
    [Google Scholar]
  84. Adjei IM Sharma B Labhasetwar V Nanoparticles: Cellular uptake and cytotoxicity. Adv Exp Med Biol. 2014 811 73 91 10.1007/978‑94‑017‑8739‑0_5
    [Google Scholar]
  85. Kanamala M. Wilson W.R. Yang M. Palmer B.D. Wu Z. Mechanisms and biomaterials in pH-responsive tumour targeted drug delivery: A review. Biomaterials 2016 85 152 167 10.1016/j.biomaterials.2016.01.061 26871891
    [Google Scholar]
  86. Wang Z. Deng X. Ding J. Zhou W. Zheng X. Tang G. Mechanisms of drug release in pH-sensitive micelles for tumour targeted drug delivery system: A review. Int. J. Pharm. 2018 535 1-2 253 260 10.1016/j.ijpharm.2017.11.003 29113804
    [Google Scholar]
  87. Gao W. Chan J.M. Farokhzad O.C. pH-Responsive nanoparticles for drug delivery. Mol. Pharm. 2010 7 6 1913 1920 10.1021/mp100253e 20836539
    [Google Scholar]
  88. Chen Z. Li Z. Lin Y. Yin M. Ren J. Qu X. Biomineralization inspired surface engineering of nanocarriers for pH-responsive, targeted drug delivery. Biomaterials 2013 34 4 1364 1371 10.1016/j.biomaterials.2012.10.060 23140999
    [Google Scholar]
  89. Gonuguntla S. Reversible size and shape changing smart materials and their applications. Ph.D Thesis Doctoral dissertation, National University of Singapore 24-Aug 2018 https://www.proquest.com/openview/16d7098dd472f12fdf9bb1b5ae4b3ba9/1?cbl=2026366&diss=y&pq-origsite=gscholar
    [Google Scholar]
  90. Bami M.S. Raeisi Estabragh M.A. Khazaeli P. Ohadi M. Dehghannoudeh G. pH-responsive drug delivery systems as intelligent carriers for targeted drug therapy: Brief history, properties, synthesis, mechanism and application. J. Drug Deliv. Sci. Technol. 2022 70 102987 10.1016/j.jddst.2021.102987
    [Google Scholar]
  91. Koppolu B. Bhavsar Z. Wadajkar A.S. Nattama S. Rahimi M. Nwariaku F. Nguyen K.T. Temperature-sensitive polymer-coated magnetic nanoparticles as a potential drug delivery system for targeted therapy of thyroid cancer. J. Biomed. Nanotechnol. 2012 8 6 983 990 10.1166/jbn.2012.1465 23030006
    [Google Scholar]
  92. Li J. Wang B. Liu P. Possibility of active targeting to tumor by local hyperthermia with temperature-sensitive nanoparticles. Med. Hypotheses 2008 71 2 249 251 10.1016/j.mehy.2008.03.023 18455320
    [Google Scholar]
  93. Bolla P.K. Rodriguez V.A. Kalhapure R.S. Kolli C.S. Andrews S. Renukuntla J. A review on pH and temperature responsive gels and other less explored drug delivery systems. J. Drug Deliv. Sci. Technol. 2018 46 416 435 10.1016/j.jddst.2018.05.037
    [Google Scholar]
  94. Ruan L. Chen J. Du C. Lu H. Zhang J. Cai X. Dou R. Lin W. Chai Z. Nie G. Hu Y. Mitochondrial temperature-responsive drug delivery reverses drug resistance in lung cancer. Bioact. Mater. 2022 13 191 199 10.1016/j.bioactmat.2021.10.045 35224301
    [Google Scholar]
  95. Cheng R. Meng F. Deng C. Klok H.-A. Zhong Z. J. B. Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials 2013 34 14 3647 10.1016/j.biomaterials.2013.01.084
    [Google Scholar]
  96. M S.M. Veeranarayanan S. Maekawa T. D S.K. External stimulus responsive inorganic nanomaterials for cancer theranostics. Adv. Drug Deliv. Rev. 2019 138 18 40 10.1016/j.addr.2018.10.007 30321621
    [Google Scholar]
  97. Son J. Yi G. Yoo J. Park C. Koo H. Choi H.S. Light-responsive nanomedicine for biophotonic imaging and targeted therapy. Adv. Drug Deliv. Rev. 2019 138 133 147 10.1016/j.addr.2018.10.002 30321619
    [Google Scholar]
  98. Tang Y. Wang G. NIR light-responsive nanocarriers for controlled release. J. Photochem. Photobiol. Photochem. Rev. 2021 47 100420 10.1016/j.jphotochemrev.2021.100420
    [Google Scholar]
  99. Kang T. Li F. Baik S. Shao W. Ling D. Hyeon T. Surface design of magnetic nanoparticles for stimuli-responsive cancer imaging and therapy. Biomaterials 2017 136 98 114 10.1016/j.biomaterials.2017.05.013 28525855
    [Google Scholar]
  100. Zhang J.L. Srivastava R.S. Misra R.D.K. Core-shell magnetite nanoparticles surface encapsulated with smart stimuli-responsive polymer: Synthesis, characterization, and LCST of viable drug-targeting delivery system. Langmuir 2007 23 11 6342 6351 10.1021/la0636199 17461602
    [Google Scholar]
  101. Kim Y.H. Min K.H. Wang Z. Kim J. Jacobson O. Huang P. Zhu G. Liu Y. Yung B. Niu G. Chen X. Development of sialic acid-coated nanoparticles for targeting cancer and efficient evasion of the immune system. Theranostics 2017 7 4 962 973 10.7150/thno.19061 28382168
    [Google Scholar]
  102. Fadeel B. Hide and seek: Nanomaterial interactions with the immune system. Front. Immunol. 2019 10 133 10.3389/fimmu.2019.00133 30774634
    [Google Scholar]
  103. Wang H. Liu Y. He R. Xu D. Zang J. Weeranoppanant N. Dong H. Li Y. Cell membrane biomimetic nanoparticles for inflammation and cancer targeting in drug delivery. Biomater. Sci. 2020 8 2 552 568 10.1039/C9BM01392J 31769765
    [Google Scholar]
  104. Fang R.H. Hu C.M.J. Zhang L. Nanoparticles disguised as red blood cells to evade the immune system. Expert Opin. Biol. Ther. 2012 12 4 385 389 10.1517/14712598.2012.661710 22332936
    [Google Scholar]
  105. Cheng Q. Wei T. Farbiak L. Johnson L.T. Dilliard S.A. Siegwart D.J. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat. Nanotechnol. 2020 15 4 313 320 10.1038/s41565‑020‑0669‑6 32251383
    [Google Scholar]
  106. Raj S Khurana S Choudhari R Kesari KK Kamal MA Garg N Ruokolainen J Das BC Kumar D Specific targeting cancer cells with nanoparticles and drug delivery in cancer therapy. Semin Cancer Biol 2021 69 166 177 10.1016/j.semcancer.2019.11.002
    [Google Scholar]
  107. Zhao Z. Ukidve A. Kim J. Mitragotri S. Targeting strategies for tissue-specific drug delivery. Cell 2020 181 1 151 167 10.1016/j.cell.2020.02.001 32243788
    [Google Scholar]
  108. Dilliard S.A. Cheng Q. Siegwart D.J. On the mechanism of tissue-specific mRNA delivery by selective organ targeting nanoparticles. Proc. Natl. Acad. Sci. USA 2021 118 52 e2109256118 10.1073/pnas.2109256118 34933999
    [Google Scholar]
  109. Glasgow M.D.K. Chougule M.B. Recent developments in active tumor targeted multifunctional nanoparticles for combination chemotherapy in cancer treatment and imaging. J. Biomed. Nanotechnol. 2015 11 11 1859 1898 10.1166/jbn.2015.2145 26554150
    [Google Scholar]
  110. Tie S. Su W. Chen Y. Wu S. Wu H. Song Y. Fei S. Tan M. Dual targeting procyanidin nanoparticles with glutathione response for colitis treatment. Chem. Eng. J. 2022 441 136095 10.1016/j.cej.2022.136095
    [Google Scholar]
  111. Estelrich J. Sánchez-Martín M.J. Busquets M.A. Nanoparticles in magnetic resonance imaging: From simple to dual contrast agents. Int. J. Nanomedicine 2015 10 1727 1741 25834422
    [Google Scholar]
  112. Wang Q. Song Y. Chen J. Li Q. Gao J. Tan H. Zhu Y. Wang Z. Li M. Yang H. Zhang N. Li X. Qian J. Pang Z. Huang Z. Ge J. Direct in vivo reprogramming with non-viral sequential targeting nanoparticles promotes cardiac regeneration. Biomaterials 2021 276 121028 10.1016/j.biomaterials.2021.121028 34293701
    [Google Scholar]
  113. Cheng K. Ding Y. Zhao Y. Ye S. Zhao X. Zhang Y. Ji T. Wu H. Wang B. Anderson G.J. Ren L. Nie G. Sequentially responsive therapeutic peptide assembling nanoparticles for dual-targeted cancer immunotherapy. Nano Lett. 2018 18 5 3250 3258 10.1021/acs.nanolett.8b01071 29683683
    [Google Scholar]
  114. Cheng Z. Al Zaki A. Hui J.Z. Muzykantov V.R. Tsourkas A. Multifunctional nanoparticles: Cost versus benefit of adding targeting and imaging capabilities. Science 2012 338 6109 903 910 10.1126/science.1226338 23161990
    [Google Scholar]
  115. Faridi-Majidi R. Nekounam H. Babaei M. Kisomi M.F. Pourkhodadad S. Mahmoodi N. Nazbar A. Hasanzadeh E. Zarei M. Application of functional magnetic nanoparticles for separation of target materials: A review. Curr. Nanosci. 2022 18 5 554 570 10.2174/1573413717666210708162149
    [Google Scholar]
  116. Batool S. Sohail S. ud Din F. Alamri A.H. Alqahtani A.S. Alshahrani M.A. Alshehri M.A. Choi H.G. A detailed insight of the tumor targeting using nanocarrier drug delivery system. Drug Deliv. 2023 30 1 2183815 10.1080/10717544.2023.2183815 36866455
    [Google Scholar]
  117. Venkatesan J Anil S Singh SK Kim SK Preparations and applications of alginate nanoparticles. Seaweed polysaccharides Elsevier 2017 251 268 10.1016/B978‑0‑12‑809816‑5.00013‑X
    [Google Scholar]
  118. Pham E. Yin M. Peters C.G. Lee C.R. Brown D. Xu P. Man S. Jayaraman L. Rohde E. Chow A. Lazarus D. Eliasof S. Foster F.S. Kerbel R.S. Preclinical efficacy of bevacizumab with CRLX101, an investigational nanoparticle–drug conjugate, in treatment of metastatic triple-negative breast cancer. Cancer Res. 2016 76 15 4493 4503 10.1158/0008‑5472.CAN‑15‑3435 27325647
    [Google Scholar]
  119. Onishi H Machida Y. Recent innovations in cancer chemotherapy by nanomedicines. Curr. Nanomedicine 2016 6 1 43 10.2174/1877912306999160122160138
    [Google Scholar]
  120. El-Hammadi M.M. Arias J.L. An update on liposomes in drug delivery: A patent review (2014-2018). Expert Opin. Ther. Pat. 2019 29 11 891 907 10.1080/13543776.2019.1679767 31603360
    [Google Scholar]
  121. Bawa R. Melethil S. Simmons W.J. Harris D. Nanopharmaceuticals: Patenting issues and FDA regulatory challenges. SciTech Lawyer. 2008 5 2 10 15
    [Google Scholar]
  122. Lin H. Artificial intelligence with great potential in medical informatics: A brief review. Medinformatics 2024 1 1 2 9 10.47852/bonviewMEDIN42022204
    [Google Scholar]
  123. Meenakshi DU Nandakumar S Francis AP Sweety P Fuloria S Fuloria NK Subramaniyan V Khan SA Deep learning and site‐specific drug delivery: The future and intelligent decision support for pharmaceutical manufacturing science. Deep Learning for Targeted Treatments: Transformation in Healthcare Wiley 2022 1 38
    [Google Scholar]
  124. He S. Leanse L.G. Feng Y. Artificial intelligence and machine learning assisted drug delivery for effective treatment of infectious diseases. Adv. Drug Deliv. Rev. 2021 178 113922 10.1016/j.addr.2021.113922 34461198
    [Google Scholar]
  125. Gavas S. Quazi S. Karpiński T.M. Nanoparticles for cancer therapy: Current progress and challenges. Nanoscale Res. Lett. 2021 16 1 173 10.1186/s11671‑021‑03628‑6 34866166
    [Google Scholar]
  126. Brigger I. Dubernet C. Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv. Drug Deliv. Rev. 2012 64 24 36 10.1016/j.addr.2012.09.006 12204596
    [Google Scholar]
  127. Gu F.X. Karnik R. Wang A.Z. Alexis F. Levy-Nissenbaum E. Hong S. Langer R.S. Farokhzad O.C. Targeted nanoparticles for cancer therapy. Nano Today 2007 2 3 14 21 10.1016/S1748‑0132(07)70083‑X
    [Google Scholar]
  128. Alexis F. Pridgen E.M. Langer R. Farokhzad O.C. Nanoparticle technologies for cancer therapy. Handb. Exp. Pharmacol. 2010 197 197 55 86 10.1007/978‑3‑642‑00477‑3_2 20217526
    [Google Scholar]
  129. Patel T. Zhou J. Piepmeier J.M. Saltzman W.M. Polymeric nanoparticles for drug delivery to the central nervous system. Adv. Drug Deliv. Rev. 2012 64 7 701 705 10.1016/j.addr.2011.12.006 22210134
    [Google Scholar]
  130. Saeedi M. Eslamifar M. Khezri K. Dizaj S.M. Applications of nanotechnology in drug delivery to the central nervous system. Biomed. Pharmacother. 2019 111 666 675 10.1016/j.biopha.2018.12.133 30611991
    [Google Scholar]
  131. Craparo E.F. Bondì M.L. Pitarresi G. Cavallaro G. Nanoparticulate systems for drug delivery and targeting to the central nervous system. CNS Neurosci. Ther. 2011 17 6 670 677 10.1111/j.1755‑5949.2010.00199.x 20950327
    [Google Scholar]
  132. Provenzale J.M. Silva G.A. Uses of nanoparticles for central nervous system imaging and therapy. AJNR Am. J. Neuroradiol. 2009 30 7 1293 1301 10.3174/ajnr.A1590 19617446
    [Google Scholar]
  133. Dilnawaz F. Sahoo S.K. Therapeutic approaches of magnetic nanoparticles for the central nervous system. Drug Discov. Today 2015 20 10 1256 1264 10.1016/j.drudis.2015.06.008 26103617
    [Google Scholar]
  134. Wu J.R. Hernandez Y. Miyasaki K.F. Kwon E.J. Engineered nanomaterials that exploit blood-brain barrier dysfunction for delivery to the brain. Adv. Drug Deliv. Rev. 2023 197 114820 10.1016/j.addr.2023.114820 37054953
    [Google Scholar]
  135. Leite P.E.C. Pereira M.R. Granjeiro J.M. Hazard effects of nanoparticles in central nervous system: Searching for biocompatible nanomaterials for drug delivery. Toxicol. in vitro 2015 29 7 1653 1660 10.1016/j.tiv.2015.06.023 26116398
    [Google Scholar]
  136. Xue Y. Wu J. Sun J. Four types of inorganic nanoparticles stimulate the inflammatory reaction in brain microglia and damage neurons in vitro. Toxicol. Lett. 2012 214 2 91 98 10.1016/j.toxlet.2012.08.009 22939914
    [Google Scholar]
  137. Haase A. Rott S. Mantion A. Graf P. Plendl J. Thünemann A.F. Meier W.P. Taubert A. Luch A. Reiser G. Effects of silver nanoparticles on primary mixed neural cell cultures: Uptake, oxidative stress and acute calcium responses. Toxicol. Sci. 2012 126 2 457 468 10.1093/toxsci/kfs003 22240980
    [Google Scholar]
  138. Nashat N. Haider Z. Therapeutic applications of nanozymes and their role in cardiovascular disease. Int. J. Nanomater. Nanotechnol. Nanomedicine. 2021 7 1 9 18
    [Google Scholar]
  139. Pala R. Anju V.T. Dyavaiah M. Busi S. Nauli S.M. Nanoparticle-mediated drug delivery for the treatment of cardiovascular diseases. Int. J. Nanomedicine 2020 15 3741 3769 10.2147/IJN.S250872 32547026
    [Google Scholar]
  140. Deng Y. Zhang X. Shen H. He Q. Wu Z. Liao W. Yuan M. Application of the nano-drug delivery system in treatment of cardiovascular diseases. Front. Bioeng. Biotechnol. 2020 7 489 10.3389/fbioe.2019.00489 32083068
    [Google Scholar]
  141. Safarpour R. Pooresmaeil M. Namazi H. Folic acid functionalized Ag@MOF(Ag) decorated carboxymethyl starch nanoparticles as a new doxorubicin delivery system with inherent antibacterial activity. Int. J. Biol. Macromol. 2024 282 Pt 2 137096 10.1016/j.ijbiomac.2024.137096 39486742
    [Google Scholar]
  142. Zazo H. Colino C.I. Lanao J.M. Current applications of nanoparticles in infectious diseases. J. Control. Release 2016 224 86 102 10.1016/j.jconrel.2016.01.008 26772877
    [Google Scholar]
  143. Colino C.I. Millán C.G. Lanao J.M. Nanoparticles for signaling in biodiagnosis and treatment of infectious diseases. Int. J. Mol. Sci. 2018 19 6 1627 10.3390/ijms19061627 29857492
    [Google Scholar]
  144. Pandey P. Purohit D. Dureja H. Nanosponges: A promising novel drug delivery system. Recent Pat. Nanotechnol. 2018 12 3 180 191 10.2174/1872210512666180925102842 30251614
    [Google Scholar]
  145. Li H. Yang Y.G. Sun T. Nanoparticle-based drug delivery systems for induction of tolerance and treatment of autoimmune diseases. Front. Bioeng. Biotechnol. 2022 10 889291 10.3389/fbioe.2022.889291 35464732
    [Google Scholar]
  146. Ulbrich W. Lamprecht A. Targeted drug-delivery approaches by nanoparticulate carriers in the therapy of inflammatory diseases. J. R. Soc. Interface 2010 7 Suppl 1 Suppl. 1 S55 S66 10.1098/rsif.2009.0285.focus 19940000
    [Google Scholar]
  147. Youshia J. Lamprecht A. Size-dependent nanoparticulate drug delivery in inflammatory bowel diseases. Expert Opin. Drug Deliv. 2016 13 2 281 294 10.1517/17425247.2016.1114604 26637060
    [Google Scholar]
  148. Gregory A.E. Titball R. Williamson D. Vaccine delivery using nanoparticles. Front. Cell. Infect. Microbiol. 2013 3 13 10.3389/fcimb.2013.00013 23532930
    [Google Scholar]
  149. Wendorf J. Singh M. Chesko J. Kazzaz J. Soewanan E. Ugozzoli M. O’Hagan D. A practical approach to the use of nanoparticles for vaccine delivery. J. Pharm. Sci. 2006 95 12 2738 2750 10.1002/jps.20728 16927245
    [Google Scholar]
  150. Liu C. Zhang N. Nanoparticles in gene therapy principles, prospects, and challenges. Prog. Mol. Biol. Transl. Sci. 2011 104 509 562 10.1016/B978‑0‑12‑416020‑0.00013‑9 22093228
    [Google Scholar]
  151. Rai R. Alwani S. Badea I. Polymeric nanoparticles in gene therapy: New avenues of design and optimization for delivery applications. Polymers 2019 11 4 745 10.3390/polym11040745 31027272
    [Google Scholar]
  152. Bucolo C. Drago F. Salomone S. Ocular drug delivery: A clue from nanotechnology. Front. Pharmacol. 2012 3 188 10.3389/fphar.2012.00188 23125835
    [Google Scholar]
  153. Zhou H.Y. Hao J.L. Wang S. Zheng Y. Zhang W.S. Nanoparticles in the ocular drug delivery. Int. J. Ophthalmol. 2013 6 3 390 396 23826539
    [Google Scholar]
  154. Omerović N. Vranić E. Application of nanoparticles in ocular drug delivery systems. Health Technol. (Berl.) 2020 10 1 61 78 10.1007/s12553‑019‑00381‑w
    [Google Scholar]
  155. Rümenapp C. Gleich B. Haase A. Magnetic nanoparticles in magnetic resonance imaging and diagnostics. Pharm. Res. 2012 29 5 1165 1179 10.1007/s11095‑012‑0711‑y 22392330
    [Google Scholar]
  156. Posadas I. Monteagudo S. Ceña V. Nanoparticles for brain-specific drug and genetic material delivery, imaging and diagnosis. Nanomedicine (Lond.) 2016 11 7 833 849 10.2217/nnm.16.15 26980585
    [Google Scholar]
  157. Baetke S.C. Lammers T. Kiessling F. Applications of nanoparticles for diagnosis and therapy of cancer. Br. J. Radiol. 2015 88 1054 20150207 10.1259/bjr.20150207 25969868
    [Google Scholar]
  158. Yao C.G. Martins P.N. Nanotechnology applications in transplantation medicine. Transplantation 2020 104 4 682 693 10.1097/TP.0000000000003032 31651794
    [Google Scholar]
  159. Ochando J. Braza M.S. Nanoparticle-based modulation and monitoring of antigen-presenting cells in organ transplantation. Front. Immunol. 2017 8 1888 10.3389/fimmu.2017.01888 29312352
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137354461250312091944
Loading
/content/journals/cnano/10.2174/0115734137354461250312091944
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test