Skip to content
2000
image of Diamond-modified Concentric Interdigitated Electrode DNA Biosensor for Identifying Mycoplasma pneumoniae

Abstract

Introduction

(MP) is a bacterial infection and the primary causative agent for pneumonia, which poses a significant health burden and strains the medical industry. Elderly individuals, people with compromised immune systems, those with lung diseases, sickle cell disease, and children are particularly vulnerable.

Methods

To replace traditional methods, it is essential to develop an accurate method for detecting pneumonia for early diagnosis and improved treatment outcomes. In this research, a highly sensitive nanomaterial-modified DNA biosensor was developed on a concentric interdigitated electrode (concentric-IDE) sensor for diagnosing pneumonia. The sensor surface was modified with diamond nanoparticles, followed by the attachment of captured DNA to the IDE through an amine linker. On these surfaces, specific target DNA was detected at concentrations as low as 1 pM [y = 4.2x - 1.58, R2 = 0.9908].

Results

Furthermore, selective DNA was identified in mixed samples containing single- and triple-mismatched DNA sequences, with current responses increasing as target DNA concentrations increased. Control experiments performed with unrelated capture and target DNA did not result in increased current, indicating the specific detection of the target DNA.

Conclusion

This biosensor could be widely applied in point-of-care settings for diagnosing pneumonia, particularly in rural areas.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137324795250312140821
2025-03-20
2025-09-27
Loading full text...

Full text loading...

References

  1. Lee Y.C. Chang C.H. Lee W.J. Liu T.Y. Tsai C.M. Tsai T.A. Tsai C.K. Kuo K.C. Chen C.C. Niu C.K. Yu H.R. Altered chemokine profile in Refractory Mycoplasma pneumoniae pneumonia infected children. J. Microbiol. Immunol. Infect. 2021 54 4 673 679 10.1016/j.jmii.2020.03.030 32299786
    [Google Scholar]
  2. Chen Y. Tian W.M. Chen Q. Zhao H.Y. Huang P. Lin Z.Q. Chen L. Clinical features and treatment of macrolide-resistant Mycoplasma pneumoniae pneumonia in children. Zhongguo Dang Dai Er Ke Za Zhi 2018 20 8 629 634 10.7499/j.issn.1008‑8830.2018.08.006 30111471
    [Google Scholar]
  3. Nilsson A.C. Björkman P. Persson K. Polymerase chain reaction is superior to serology for the diagnosis of acute Mycoplasma pneumoniae infection and reveals a high rate of persistent infection. BMC Microbiol. 2008 8 1 93 10.1186/1471‑2180‑8‑93 18547431
    [Google Scholar]
  4. Zetsma D.J.W. Zaat S.A.J. Vriesema A.J.M. Dankert J. Demonstration by a nested PCR for Mycoplasma pneumoniae that M. pneumoniae load in the throat is higher in patients hospitalised for M. pneumoniae infection than in non-hospitalised subjects. J. Med. Microbiol. 1999 48 12 1115 1122 10.1099/00222615‑48‑12‑1115 10591167
    [Google Scholar]
  5. Turner A.P.F. Biosensors: Sense and sensibility. Chem. Soc. Rev. 2013 42 8 3184 3196 10.1039/c3cs35528d 23420144
    [Google Scholar]
  6. Li J. Hua Y. Qiao L. Wang B. Pang X. Jia H. Yu Y. Yu B. Sun Y. Zhang X. Chen Y. A novel wide-band dielectric imaging system for electro-anatomic mapping and monitoring in radiofrequency ablation and cryoablation. J. Transl. Int. Med. 2022 10 3 264 271 10.2478/jtim‑2022‑0040 36776237
    [Google Scholar]
  7. Iversen M. Monisha M. Agarwala S. Flexible, wearable and fully-printed smart patch for ph and hydration sensing in wounds. Int. J. Bioprint. 2021 8 1 447 10.18063/ijb.v8i1.447 35187277
    [Google Scholar]
  8. Gopinath N. Artificial intelligence and neuroscience: An update on fascinating relationships. Process Biochem. 2023 125 113 120 10.1016/j.procbio.2022.12.011
    [Google Scholar]
  9. Hareesha N. Souma D.M. Mounesh J.G. Manjunatha, R.N. Rohit, P. Manikanta, D.N. Varun, N. Ataollahi, B.A. Thippeswamy, K. Pramoda, B.M. Nagaraja, Honeycomb polypore biomass-derived activated porous carbon nanosheets/graphene/nafion composite: Green and sensitive electrocatalyst for nanomolar detection of Hg2+ ions and water splitting reactions. J. Environ. Chem. Eng. 2024 12 113584 10.1016/j.jece.2024.113584
    [Google Scholar]
  10. Geng H. Gopinath S.C.B. Niu W. Highly sensitive hepatitis B virus identification by antibody-aptamer sandwich enzyme-linked immunosorbent assay. INNOSC Ther. Pharmacol. Sci. 2023 5 1 7 14 10.36922/itps.298
    [Google Scholar]
  11. Wang Y. Hou K. Jin Y. Bao B. Tang S. Qi J. Yang Y. Che X. Liu Y. Hu X. Zheng C. Lung adenocarcinoma-specific three-integrin signature contributes to poor outcomes by metastasis and immune escape pathways. J. Transl. Int. Med. 2021 9 4 249 263 10.2478/jtim‑2021‑0046 35136724
    [Google Scholar]
  12. Tigari G. Manjunatha J.G. Souza E.D. Raril C. Hareesha N. Charithra M.M. Electrochemical determination of levofloxacin drug at poly(clayton yellow)/carbon paste electrode. Monatsh. Chem. 2022 153 4 311 319 10.1007/s00706‑022‑02910‑2
    [Google Scholar]
  13. Yu L. Jin J. Xu Y. Zhu X. Aberrant energy metabolism in Alzheimer’s disease. J. Transl. Int. Med. 2022 10 3 197 206 10.2478/jtim‑2022‑0024 36776238
    [Google Scholar]
  14. Pohanka M. Skládal P. Review A. Electrochemical biosensors - principles and applications. J. Appl. Biomed. 2008 6 2 57 64 10.32725/jab.2008.008
    [Google Scholar]
  15. Teles F. Fonseca L. Trends in DNA biosensors. Talanta 2008 77 2 606 623 10.1016/j.talanta.2008.07.024
    [Google Scholar]
  16. Ma F. Zhang Q. Zhang C. Nanomaterial-based biosensors for DNA methyltransferase assay. J. Mater. Chem. B Mater. Biol. Med. 2020 8 16 3488 3501 10.1039/C9TB02458A 32095792
    [Google Scholar]
  17. Hasanjani A.H.R. Zarei K. An electrochemical sensor for attomolar determination of mercury(II) using DNA/poly-L-methionine-gold nanoparticles/pencil graphite electrode. Biosens. Bioelectron. 2019 128 1 8 10.1016/j.bios.2018.12.039 30616212
    [Google Scholar]
  18. Gopinath N. Artificial intelligence: Potential tool to subside SARS-CoV-2 pandemic. Process Biochem. 2021 110 94 99 10.1016/j.procbio.2021.08.001 34366689
    [Google Scholar]
  19. Hua Y. Ma J. Li D. Wang R. DNA-based biosensors for the biochemical analysis: A review. Biosensors 2022 12 3 183 10.3390/bios12030183 35323453
    [Google Scholar]
  20. Vermeeren V. Wenmackers S. Wagner P. Michiels L. DNA sensors with diamond as a promising alternative transducer material. Sensors 2009 9 7 5600 5636 10.3390/s90705600 22346717
    [Google Scholar]
  21. Jo J.H. Kang S.M. Jang J.H. Raja S.I. Lim D. Kim B. Han D.W. Advanced approaches with combination of 2D nanomaterials and 3D printing for exquisite neural tissue engineering. Mat. Sci. Addit. Manuf. 2023 2 2 0620 10.36922/msam.0620
    [Google Scholar]
  22. Majd M.H. Dual-targeting and specific delivery of tamoxifen to cancer cells by modified magnetic nanoparticles using hyaluronic acid and folic acid. Tumor Discovery 2022 1 1 41 10.36922/td.v1i1.41
    [Google Scholar]
  23. Holzinger M. Goff L.A. Cosnier S. Nanomaterials for biosensing applications: A review. Front Chem. 2014 2 63 10.3389/fchem.2014.00063 25221775
    [Google Scholar]
  24. Stevens M. Designing nanomaterials for ultrasensitive biosensing. N. Biotechnol. 2014 31 S36 10.1016/j.nbt.2014.05.1692
    [Google Scholar]
  25. Sarvari P. Sarvari P. Advances in nanoparticle-based drug delivery in cancer treatment. Global Transl Med 2023 2 2 1 6 10.36922/gtm.0394
    [Google Scholar]
  26. Ly S.Y. Cho N.S. Diagnosis of human hepatitis B virus in non-treated blood by the bovine IgG DNA-linked carbon nanotube biosensor. J. Clin. Virol. 2009 44 1 43 47 10.1016/j.jcv.2008.09.005 18977688
    [Google Scholar]
  27. Wang Y.H. Chen Y.X. Wu X. Huang K.J. Electrochemical biosensor based on Se-doped MWCNTs-graphene and Y-shaped DNA-aided target-triggered amplification strategy. Colloids Surf. B Biointerfaces 2018 172 407 413 10.1016/j.colsurfb.2018.08.064 30195158
    [Google Scholar]
  28. Liu L. Xiang G. Jiang D. Du C. Liu C. Huang W. Pu X. Electrochemical gene sensor for Mycoplasma pneumoniae DNA using dual signal amplification via a Pt@Pd nanowire and horse radish peroxidase. Mikrochim. Acta 2016 183 1 379 387 10.1007/s00604‑015‑1656‑8
    [Google Scholar]
  29. Ramanathan S. Gopinath S.C.B. Arshad M.M.K. Poopalan P. Multidimensional (0D-3D) nanostructures for lung cancer biomarker analysis: Comprehensive assessment on current diagnostics. Biosens. Bioelectron. 2019 141 111434 10.1016/j.bios.2019.111434 31238281
    [Google Scholar]
  30. Ramanathan S. Gopinath S.C.B. Ismail Z.H. Arshad M.M.K. Poopalan P. Aptasensing nucleocapsid protein on nanodiamond assembled gold interdigitated electrodes for impedimetric SARS-CoV-2 infectious disease assessment. Biosens. Bioelectron. 2022 197 113735 10.1016/j.bios.2021.113735 34736114
    [Google Scholar]
  31. Lakshmipriya T. Horiguchi Y. Nagasaki Y. Co-immobilized poly(ethylene glycol)-block-polyamines promote sensitivity and restrict biofouling on gold sensor surface for detecting factor IX in human plasma. Analyst 2014 139 16 3977 3985 10.1039/C4AN00168K 24922332
    [Google Scholar]
  32. Horiguchi Y. Miyachi S. Nagasaki Y. High-performance surface acoustic wave immunosensing system on a PEG/aptamer hybridized surface. Langmuir 2013 29 24 7369 7376 10.1021/la304548m 23414210
    [Google Scholar]
  33. Uchida K. Otsuka H. Kaneko M. Kataoka K. Nagasaki Y. A reactive poly(ethylene glycol) layer to achieve specific surface plasmon resonance sensing with a high S/N ratio: The substantial role of a short underbrushed PEG layer in minimizing nonspecific adsorption. Anal. Chem. 2005 77 4 1075 1080 10.1021/ac0486140 15858988
    [Google Scholar]
  34. Miyamoto D. Oishi M. Kojima K. Yoshimoto K. Nagasaki Y. Completely dispersible PEGylated gold nanoparticles under physiological conditions: Modification of gold nanoparticles with precisely controlled PEG-b-polyamine. Langmuir 2008 24 9 5010 5017 10.1021/la703813f 18386943
    [Google Scholar]
  35. Wang Y. Sun X. Gopinath S.C.B. Saheed M.S.M. Wang X. Thyroglobulin determination on silane–antibody functionalized interdigitated dielectrode surface to diagnose thyroid tumor. Biotechnol. Appl. Biochem. 2022 69 1 376 382 10.1002/bab.2116 33538049
    [Google Scholar]
  36. Xiao F. Zhou J. Sun C. Huang X. Zheng B. Fu J. Jia N. Xu Z. Cui X. Wang Y. Loop-mediated isothermal amplification coupled with nanoparticle-based biosensor: A rapid and sensitive method to detect Mycoplasma pneumoniae. Front. Cell. Infect. Microbiol. 2022 12 882855 10.3389/fcimb.2022.882855 35873146
    [Google Scholar]
  37. Qin D.Z.Y. Gong Q. Li X. Gao Y. Subash C.B. Gopinath Y.C. Identification of Mycoplasma pneumoniae by DNA-modified gold nanomaterials in a colorimetric assay. Biotechnol Appl Biochem 2023 70 2 553 559 10.1002/bab.2377
    [Google Scholar]
  38. Zhou J. Xiao F. Fu J. Jia N. Huang X. Sun C. Xu Z. Zhang Y. Qu D. Wang Y. Rapid, ultrasensitive and highly specific diagnosis of Mycoplasma pneumoniae by a CRISPR-based detection platform. Front. Cell. Infect. Microbiol. 2023 13 1147142 10.3389/fcimb.2023.1147142 37577370
    [Google Scholar]
  39. Jia N. Zhou J. Xiao F. Zheng B. Huang X. Sun C. Fu J. Xu Z. Chen M. Wang Y. A CRISPR-Cas12a—Based platform for ultrasensitive, rapid, and highly specific detection of Mycoplasma pneumonia in clinical application. Front. Bioeng. Biotechnol. 2023 11 1022066 10.3389/fbioe.2023.1022066 36733967
    [Google Scholar]
  40. Wang Y. Wang Y. Quan S. Jiao W. Li J. Sun L. Wang Y. Qi X. Wang X. Shen A. Establishment and application of a multiple cross displacement amplification coupled with nanoparticle-based lateral flow biosensor assay for detection of Mycoplasma pneumoniae. Front. Cell. Infect. Microbiol. 2019 9 325 10.3389/fcimb.2019.00325 31608243
    [Google Scholar]
  41. Wang Y. Wang Y. Jiao W. Li J. Quan S. Sun L. Wang Y. Qi X. Wang X. Shen A. Development of loop-mediated isothermal amplification coupled with nanoparticle-based lateral flow biosensor assay for Mycoplasma pneumoniae detection. AMB Express 2019 9 1 196 10.1186/s13568‑019‑0921‑3 31807946
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137324795250312140821
Loading
/content/journals/cnano/10.2174/0115734137324795250312140821
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: DNA biosensor ; sickle cell disease ; nanoparticle ; Lung infection ; biomarker ; pneumonia
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test