Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

Introduction

Iron oxide nanoparticles have gained significant attention in pharmaceutical applications because of their unique properties. The hydrothermal method is employed for the synthesis of iron nanoparticles (IONPs), which offers advantages such as uniform composition and size distribution.

Methods

However, the size and properties of IONPs can be influenced by various factors. In this study, we utilized quality by design (QBD) response surface methodology to investigate the impact of temperature, time, and pH on the size of hydrothermally prepared IONPs. The optimized synthesis conditions were determined, and the resulting nanoparticles were characterized using techniques such as dynamic light scattering (DLS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), vibrating sample magnetometry (VSM), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR).

Results

The findings contribute to a better understanding of the controlled synthesis of IONPs and their potential applications in nanomedicine. The XRD characterization revealed that the product was FeO. The FTIR results indicate that FeO nanoparticles were coated with PEG-400. The SEM and HRTEM images of the FeO nanoparticles showed that they were spherical and had a well-distributed size with an optimized hydrodynamic size of 65 nm.

Conclusion

The magnetic properties of the FeO nanoparticles indicated that they exhibited ferromagnetic properties. These prepared nanoparticles are suitable for biomedical purposes, like serving as contrast agents for magnetic resonance imaging in different cancers and delivering drugs.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137336579241008054823
2024-10-17
2025-09-30
Loading full text...

Full text loading...

References

  1. EtemadiH. BuchananJ.K. KandileN.G. PliegerP.G. Iron oxide nanoparticles: Physicochemical characteristics and historical developments to commercialization for potential technological applications.ACS Biomater. Sci. Eng.20217125432545010.1021/acsbiomaterials.1c0093834786932
    [Google Scholar]
  2. AjinkyaN. YuX. KaithalP. LuoH. SomaniP. RamakrishnaS. Magnetic iron oxide nanoparticle (IONP) synthesis to applications: Present and future.Materials (Basel)20201320464410.3390/ma1320464433080937
    [Google Scholar]
  3. AnsariS.A.M.K. FiciaràE. RuffinattiF.A. SturaI. ArgenzianoM. AbollinoO. CavalliR. GuiotC. D’AgataF. Magnetic iron oxide nanoparticles: synthesis, characterization and functionalization for biomedical applications in the central nervous system.Materials (Basel)201912346510.3390/ma1203046530717431
    [Google Scholar]
  4. FengQ. LiuY. HuangJ. ChenK. HuangJ. XiaoK. Uptake, distribution, clearance, and toxicity of iron oxide nanoparticles with different sizes and coatings.Sci. Rep.201881208210.1038/s41598‑018‑19628‑z29391477
    [Google Scholar]
  5. AlphandéryE. Iron oxide nanoparticles for therapeutic applications.Drug Discov. Today202025114114910.1016/j.drudis.2019.09.02031586641
    [Google Scholar]
  6. BruschiM.L. de ToledoL.A.S. Pharmaceutical applications of iron-oxide magnetic nanoparticles.Magnetochemistry2019535010.3390/magnetochemistry5030050
    [Google Scholar]
  7. CaoJ. HuangD. PeppasN.A. Advanced engineered nanoparticulate platforms to address key biological barriers for delivering chemotherapeutic agents to target sites.Adv. Drug Deliv. Rev.202016717018810.1016/j.addr.2020.06.03032622022
    [Google Scholar]
  8. WaheedS. LiZ. ZhangF. ChiariniA. ArmatoU. WuJ. Engineering nano-drug biointerface to overcome biological barriers toward precision drug delivery.J. Nanobiotechnology202220139510.1186/s12951‑022‑01605‑436045386
    [Google Scholar]
  9. MuQ. JiangG. ChenL. ZhouH. FourchesD. TropshaA. YanB. Chemical basis of interactions between engineered nanoparticles and biological systems.Chem. Rev.2014114157740778110.1021/cr400295a24927254
    [Google Scholar]
  10. AbdelsattarA.S. DawoudA. HelalM.A. Interaction of nanoparticles with biological macromolecules: A review of molecular docking studies.Nanotoxicology2021151669510.1080/17435390.2020.184253733283572
    [Google Scholar]
  11. Abd ElrahmanA.A. MansourF.R. Targeted magnetic iron oxide nanoparticles: Preparation, functionalization and biomedical application.J. Drug Deliv. Sci. Technol.20195270271210.1016/j.jddst.2019.05.030
    [Google Scholar]
  12. JeonM. HalbertM.V. StephenZ.R. ZhangM. Iron oxide nanoparticles as T1 contrast agents for magnetic resonance imaging: Fundamentals, challenges, applications, and prospectives.Adv. Mater.20213323190653910.1002/adma.20190653932495404
    [Google Scholar]
  13. SugumaranP.J. LiuX.L. HerngT.S. PengE. DingJ. GO-functionalized large magnetic iron oxide nanoparticles with enhanced colloidal stability and hyperthermia performance.ACS Appl. Mater. Interfaces20191125227032271310.1021/acsami.9b0426131244027
    [Google Scholar]
  14. SavariM.N. JabaliA. Properties of Iron Oxide Nanoparticles (IONPs).Theranostic Iron-Oxide Based Nanoplatforms in Oncology: Synthesis, Metabolism, and Toxicity for Simultaneous Imaging and Therapy.Springer2023496510.1007/978‑981‑99‑6507‑6_4
    [Google Scholar]
  15. YusefiM. ShameliK. JumaatA.F. Preparation and properties of magnetic iron oxide nanoparticles for biomedical applications: A brief review.Journal of Advanced Research in Materials Science2020751101810.37934/arms.75.1.1018
    [Google Scholar]
  16. AliK. JavedY. JamilY. Size and Shape Control Synthesis of Iron Oxide–Based Nanoparticles: Current Status and Future Possibility.Complex Magnetic Nanostructures2017398110.1007/978‑3‑319‑52087‑2_2.
    [Google Scholar]
  17. AvasthiA. CaroC. Pozo-TorresE. LealM.P. García-MartínM.L. Magnetic Nanoparticles as MRI Contrast Agents.Surface-modified Nanobiomaterials for Electrochemical and Biomedicine Applications2020499110.1007/978‑3‑030‑55502‑3_3
    [Google Scholar]
  18. RahmanM. Magnetic resonance imaging and iron-oxide nanoparticles in the era of personalized medicine.Nanotheranostics20237442444910.7150/ntno.8646737650011
    [Google Scholar]
  19. XieW. GuoZ. GaoF. GaoQ. WangD. LiawB. CaiQ. SunX. WangX. ZhaoL. Shape-, size- and structure-controlled synthesis and biocompatibility of iron oxide nanoparticles for magnetic theranostics.Theranostics20188123284330710.7150/thno.2522029930730
    [Google Scholar]
  20. EstelrichJ. EscribanoE. QueraltJ. BusquetsM. Iron oxide nanoparticles for magnetically-guided and magnetically-responsive drug delivery.Int. J. Mol. Sci.20151648070810110.3390/ijms1604807025867479
    [Google Scholar]
  21. KievitF.M. ZhangM. Surface engineering of iron oxide nanoparticles for targeted cancer therapy.Acc. Chem. Res.2011441085386210.1021/ar200027721528865
    [Google Scholar]
  22. LiZ. BaiR. YiJ. ZhouH. XianJ. ChenC. Designing smart iron oxide nanoparticles for MR imaging of tumors.Chem. Biomed. Imaging20231431533910.1021/cbmi.3c0002637501794
    [Google Scholar]
  23. JinR. LinB. LiD. AiH. Superparamagnetic iron oxide nanoparticles for MR imaging and therapy: Design considerations and clinical applications.Curr. Opin. Pharmacol.201418182710.1016/j.coph.2014.08.00225173782
    [Google Scholar]
  24. ElahiN. RizwanM. Progress and prospects of magnetic iron oxide nanoparticles in biomedical applications: A review.Artif. Organs202145111272129910.1111/aor.1402734245037
    [Google Scholar]
  25. AlphandéryE. Iron oxide nanoparticles as multimodal imaging tools.RSC Advances2019969405774058710.1039/C9RA08612A35542631
    [Google Scholar]
  26. NoqtaO.A. AzizA.A. UsmanI.A. BououdinaM. Recent advances in iron oxide nanoparticles (IONPs): Synthesis and surface modification for biomedical applications.J. Supercond. Nov. Magn.201932477979510.1007/s10948‑018‑4939‑6
    [Google Scholar]
  27. KöçkarH. KaraagacO. ÖzelF. Effects of biocompatible surfactants on structural and corresponding magnetic properties of iron oxide nanoparticles coated by hydrothermal process.J. Magn. Magn. Mater.201947433233610.1016/j.jmmm.2018.11.053
    [Google Scholar]
  28. SunS.N. WeiC. ZhuZ.Z. HouY.L. VenkatramanS.S. XuZ.C. Magnetic iron oxide nanoparticles: Synthesis and surface coating techniques for biomedical applications.Chin. Phys. B201423303750310.1088/1674‑1056/23/3/037503
    [Google Scholar]
  29. KimD.K. MikhaylovaM. ZhangY. MuhammedM. Protective coating of superparamagnetic iron oxide nanoparticles.Chem. Mater.20031581617162710.1021/cm021349j
    [Google Scholar]
  30. GuptaA.K. NaregalkarR.R. VaidyaV.D. GuptaM. Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications.Nanomedicine (Lond.)200721233910.2217/17435889.2.1.2317716188
    [Google Scholar]
  31. GambhirR.P. RohiwalS.S. TiwariA.P. Multifunctional surface functionalized magnetic iron oxide nanoparticles for biomedical applications: A review.Appl. Surf. Sci. Adv.20221110030310.1016/j.apsadv.2022.100303
    [Google Scholar]
  32. Lazaro-CarrilloA. FiliceM. GuillénM.J. AmaroR. ViñambresM. TaberoA. ParedesK.O. VillanuevaA. CalvoP. del Puerto MoralesM. MarcielloM. Tailor-made PEG coated iron oxide nanoparticles as contrast agents for long lasting magnetic resonance molecular imaging of solid cancers.Mater. Sci. Eng. C202010711026210.1016/j.msec.2019.11026231761230
    [Google Scholar]
  33. PovoskiS.P. DavisP.D. ColcherD. MartinE.W.Jr Single molecular weight discrete PEG compounds: Emerging roles in molecular diagnostics, imaging and therapeutics.Expert Rev. Mol. Diagn.201313431531910.1586/erm.13.1923638813
    [Google Scholar]
  34. FeeC.J. Size comparison between proteins PEGylated with branched and linear poly(ethylene glycol) molecules.Biotechnol. Bioeng.200798472573110.1002/bit.2148217461424
    [Google Scholar]
  35. MohapatraP. SinghD. SahooS.K. PEGylated Nanoparticles as a Versatile Drug Delivery System.Nanoengineering of Biomaterials JanaS. JanaS. 202110.1002/9783527832095.ch10
    [Google Scholar]
  36. MohapatraA. UthamanS. ParkI.K. Polyethylene Glycol Nanoparticles as Promising Tools for Anticancer Therapeutics.Polymeric Nanoparticles as a Promising Tool for Anti-cancer Therapeutics201920523110.1016/B978‑0‑12‑816963‑6.00010‑8
    [Google Scholar]
  37. AlQahtaniA.D. O’ConnorD. DomlingA. GodaS.K. Strategies for the production of long-acting therapeutics and efficient drug delivery for cancer treatment.Biomed. Pharmacother.201911310875010.1016/j.biopha.2019.10875030849643
    [Google Scholar]
  38. JainA. JainS. PEGylation: an approach for drug delivery. A review.Crit. Rev. Ther. Drug Carrier Syst.200825540344710.1615/CritRevTherDrugCarrierSyst.v25.i5.1019062633
    [Google Scholar]
  39. LuW. ZhangY. TanY.Z. HuK.L. JiangX.G. FuS.K. Cationic albumin-conjugated pegylated nanoparticles as novel drug carrier for brain delivery.J. Control. Release2005107342844810.1016/j.jconrel.2005.03.02716176844
    [Google Scholar]
  40. Yue-JianC. juanT. FeiX. Jia-BiZ. NingG. Yi-HuaZ. YeD. LiangG. Synthesis, self-assembly, and characterization of PEG-coated iron oxide nanoparticles as potential MRI contrast agent.Drug Dev. Ind. Pharm.201036101235124410.3109/0363904100371015120818962
    [Google Scholar]
  41. CursaruL.M. PiticescuR.M. DragutD.V. MorelR. ThébaultC. CarrièreM. JoistenH. DienyB. One-step soft chemical synthesis of magnetite nanoparticles under inert gas atmosphere. Magnetic properties and in vitro study.Nanomaterials (Basel)2020108150010.3390/nano1008150032751692
    [Google Scholar]
  42. IqbalA. IqbalK. LiB. GongD. QinW. Recent advances in iron nanoparticles: preparation, properties, biological and environmental application.J. Nanosci. Nanotechnol.20171774386440910.1166/jnn.2017.14196
    [Google Scholar]
  43. XuW. YangT. LiuS. DuL. ChenQ. LiX. DongJ. ZhangZ. LuS. GongY. ZhouL. LiuY. TanX. Insights into the Synthesis, types and application of iron Nanoparticles: The overlooked significance of environmental effects.Environ. Int.202215810698010.1016/j.envint.2021.106980
    [Google Scholar]
  44. AliA. ZafarH. ZiaM. ul HaqI. PhullA.R. AliJ.S. HussainA. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles.Nanotechnol. Sci. Appl.20169496710.2147/NSA.S9998627578966
    [Google Scholar]
  45. TahaA.B. EssaM.S. ChiadB.T. Spectroscopic study of iron oxide nanoparticles synthesized via hydrothermal method.Chem Methodol.2022612977984
    [Google Scholar]
  46. PalagiriB. ChintapartyR. NagireddyR.R. Imma ReddyV.R. Influence of synthesis conditions on structural, optical and magnetic properties of iron oxide nanoparticles prepared by hydrothermal method.Phase Transit.201790657858910.1080/01411594.2016.1237636
    [Google Scholar]
  47. HasanyS.F. AhmedI. RajanJ. RehmanA. Systematic review of the preparation techniques of iron oxide magnetic nanoparticles.Nanosci Nanotechnol.20122614815810.5923/j.nn.20120206.01
    [Google Scholar]
  48. SamrotA.V. SahithyaC.S. Selvarani AJ. PurayilS.K. PonnaiahP. A review on synthesis, characterization and potential biological applications of superparamagnetic iron oxide nanoparticles.Curr. Res. Green Sustain.2021410004210.1016/j.crgsc.2020.100042
    [Google Scholar]
  49. HawC.Y. MohamedF. ChiaC.H. RadimanS. ZakariaS. HuangN.M. LimH.N. Hydrothermal synthesis of magnetite nanoparticles as MRI contrast agents.Ceram. Int.20103641417142210.1016/j.ceramint.2010.02.005
    [Google Scholar]
  50. RocaA.G. GutiérrezL. GavilánH. Fortes BrolloM.E. Veintemillas-VerdaguerS. MoralesM.P. Design strategies for shape-controlled magnetic iron oxide nanoparticles.Adv. Drug Deliv. Rev.20191386810410.1016/j.addr.2018.12.00830553951
    [Google Scholar]
  51. JiangF.Y. WangC.M. FuY. LiuR.C. Synthesis of iron oxide nanocubes via microwave-assisted solvolthermal method.J. Alloys Compd.20105032L31L3310.1016/j.jallcom.2010.05.020
    [Google Scholar]
  52. AhmadiS. ChiaC.H. ZakariaS. SaeedfarK. AsimN. Synthesis of Fe3O4 nanocrystals using hydrothermal approach.J. Magn. Magn. Mater.2012324244147415010.1016/j.jmmm.2012.07.023
    [Google Scholar]
  53. LiQ. KartikowatiC.W. HorieS. OgiT. IwakiT. OkuyamaK. Correlation between particle size/domain structure and magnetic properties of highly crystalline Fe3O4 nanoparticles.Sci. Rep.201771989410.1038/s41598‑017‑09897‑528855564
    [Google Scholar]
  54. JafariA. ShayestehS. SaloutiM. BoustaniK. Effect of annealing temperature on magnetic phase transition in Fe3O4 nanoparticles.J. Magn. Magn. Mater.201537930531210.1016/j.jmmm.2014.12.050
    [Google Scholar]
  55. TakamiS. SatoT. MousavandT. OharaS. UmetsuM. AdschiriT. Hydrothermal synthesis of surface-modified iron oxide nanoparticles.Mater. Lett.200761264769477210.1016/j.matlet.2007.03.024
    [Google Scholar]
  56. YangG. ParkS.J. Conventional and microwave hydrothermal synthesis and application of functional materials: A review.Materials (Basel)2019127117710.3390/ma1207117730978917
    [Google Scholar]
  57. DebatarajaA. ZulhendriD.W. YuliartoB. Nugraha Hiskia SunendarB. Investigation of nanostructured SnO2 synthesized with polyol technique for CO gas sensor applications.Procedia Eng.2017170606410.1016/j.proeng.2017.03.011
    [Google Scholar]
  58. BreigS.J.M. LutiK.J.K. Response surface methodology: A review on its applications and challenges in microbial cultures.Mater. Today Proc.2021422277228410.1016/j.matpr.2020.12.316
    [Google Scholar]
  59. EbrahimiS. Stephen , M.N.C. Bin ArshadS.E. Hydrothermal synthesis of hydroxyapatite powders using Response Surface Methodology (RSM).PLoS One2021165e025100910.1371/journal.pone.025100934014966
    [Google Scholar]
  60. VezaI. SpraggonM. FattahI.M.R. IdrisM. Response surface methodology (RSM) for optimizing engine performance and emissions fueled with biofuel: Review of RSM for sustainability energy transition.Results Eng.202318110121310.1016/j.rineng.2023.101213.
    [Google Scholar]
  61. MengY.Q. ShiY.N. ZhuY.P. LiuY.Q. GuL.W. LiuD.D. MaA. XiaF. GuoQ.Y. XuC.C. ZhangJ.Z. QiuC. WangJ.G. Recent trends in preparation and biomedical applications of iron oxide nanoparticles.J. Nanobiotechnology20242212410.1186/s12951‑023‑02235‑038191388
    [Google Scholar]
  62. KumarP. KhanduriH. PathakS. SinghA. BasheedG.A. PantR.P. Temperature selectivity for single phase hydrothermal synthesis of PEG-400 coated magnetite nanoparticles.Dalton Trans.202049258672868310.1039/D0DT01318H32598416
    [Google Scholar]
  63. ZhuangL. ZhangW. ZhaoY. ShenH. LinH. LiangJ. Preparation and characterization of Fe3O4 particles with novel nanosheets morphology and magnetochromatic property by a modified solvothermal method.Sci. Rep.201551932010.1038/srep0932025799320
    [Google Scholar]
  64. ChandraniD.N. GhoshS. TannaA.R. Green Synthesis for Fabrication of Cobalt Ferrite Nanoparticles with Photocatalytic Dye Degrading Potential as a Sustainable Effluent Treatment Strategy.J. Inorg. Organomet. Polym. Mater.20243473100311410.1007/s10904‑023‑02981‑6
    [Google Scholar]
  65. HaddadP.S. SantosM.C. de Guzzi CassagoC.A. BernardesJ.S. de JesusM.B. SeabraA.B. Synthesis, characterization, and cytotoxicity of glutathione-PEG-iron oxide magnetic nanoparticles.J. Nanopart. Res.2016181236910.1007/s11051‑016‑3680‑y
    [Google Scholar]
  66. ParkJ.Y. DakshaP. LeeG.H. WooS. ChangY. Highly water-dispersible PEG surface modified ultra small superparamagnetic iron oxide nanoparticles useful for target-specific biomedical applications.Nanotechnology2008193636560310.1088/0957‑4484/19/36/36560321828874
    [Google Scholar]
  67. KhodadadiA. TalebtashM.R. FarahmandjouM. Effect of PVA/PEG-coated Fe3O4 nanoparticles on the structure, morphology and magnetic properties.Phys. Chem. Res.2022104537547
    [Google Scholar]
  68. MüssigS. KuttichB. FidlerF. HaddadD. WintzheimerS. KrausT. MandelK. Reversible magnetism switching of iron oxide nanoparticle dispersions by controlled agglomeration.Nanoscale Adv.20213102822282910.1039/D1NA00159K36134194
    [Google Scholar]
  69. MosaferJ. AbnousK. TafaghodiM. JafarzadehH. RamezaniM. Preparation and characterization of uniform-sized PLGA nanospheres encapsulated with oleic acid-coated magnetic-Fe 3 O 4 nanoparticles for simultaneous diagnostic and therapeutic applications.Colloids Surf. A Physicochem. Eng. Asp.201751414615410.1016/j.colsurfa.2016.11.056
    [Google Scholar]
  70. XueW. LiuY. ZhangN. YaoY. MaP. WenH. HuangS. LuoY.E. FanH. Effects of core size and PEG coating layer of iron oxide nanoparticles on the distribution and metabolism in mice.Int. J. Nanomedicine2018135719573110.2147/IJN.S16545130310275
    [Google Scholar]
  71. DebbageP. JaschkeW. Molecular imaging with nanoparticles: giant roles for dwarf actors.Histochem. Cell Biol.2008130584587510.1007/s00418‑008‑0511‑y18825403
    [Google Scholar]
  72. NguyenM.D. TranH.V. XuS. LeeT.R. Fe3O4 Nanoparticles: Structures, synthesis, magnetic properties, surface functionalization, and emerging applications.Appl. Sci. (Basel)202111231130110.3390/app11231130135844268
    [Google Scholar]
  73. BurzoE. TeteanR. New insights on the spin glass behavior in ferrites nanoparticles.Nanomaterials (Basel)20221210178210.3390/nano1210178235631004
    [Google Scholar]
  74. JiaB. GaoL. Morphological transformation of Fe3O4 spherical aggregates from solid to hollow and their self-assembly under an external magnetic field.J. Phys. Chem. C2008112366667110.1021/jp0763477
    [Google Scholar]
  75. JainK. PathakS. PantR.P. Enhanced magnetic properties in ordered oriented ferrofibres.RSC Advances2016675709437094610.1039/C6RA12650B
    [Google Scholar]
  76. GencS. DerinB. Synthesis and rheology of ferrofluids: A review.Curr. Opin. Chem. Eng.2014311812410.1016/j.coche.2013.12.006
    [Google Scholar]
  77. ButterK. PhilipseA.P. VroegeG.J. Synthesis and properties of iron ferrofluids.J. Magn. Magn. Mater.20022521310.1016/S0304‑8853(02)00620‑0
    [Google Scholar]
  78. AmstadE. GillichT. BileckaI. TextorM. ReimhultE. Ultrastable iron oxide nanoparticle colloidal suspensions using dispersants with catechol-derived anchor groups.Nano Lett.20099124042404810.1021/nl902212q19835370
    [Google Scholar]
  79. VivekanandhanS. VenkateswarluM. SatyanarayanaN. SureshP. NagarajuD.H. MunichandraiahN. Effect of calcining temperature on the electrochemical performance of nanocrystalline LiMn2O4 powders prepared by polyethylene glycol (PEG-400) assisted Pechini process.Mater. Lett.200660273212321610.1016/j.matlet.2006.02.074
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137336579241008054823
Loading
/content/journals/cnano/10.2174/0115734137336579241008054823
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test