Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

Introduction

Due to its magnetic and semiconductor properties, VO has shown tremendous potential in resistive switching memory.

Methods

This paper investigates the resistive mechanism of oxygen vacancies in VO. The formation energies of different oxygen vacancies are calculated.

Results

The results show that oxygen vacancies tend to form single-component conductive filaments. In mixed oxygen vacancies clusters, the charge transfer characteristics and density of states of the VO-V13 vacancies are the most significant, which is consistent with the analysis of formation energy data.

Conclusions

The charge transfer of cluster oxygen vacancies was calculated, showing that V atoms directly connected to oxygen vacancies tend to lose electrons, while adjacent oxygen atoms are more likely to gain electrons. In VO-V12 and VO-V13, the number of electrons obtained by O2 and O16 exceeds the average by 36.4% and 33.2%. Thus, the formation of oxygen vacancies effectively improves the resistance characteristics of the VO.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137333910241009071115
2024-10-17
2025-09-30
Loading full text...

Full text loading...

References

  1. LiuZ. ZhaoY. YinZ. Low-power soft transistors triggering revolutionary electronics.Innovation20245310061610.1016/j.xinn.2024.10061638601793
    [Google Scholar]
  2. XiongT. LiW. YuP. MaoL. Fluidic memristor: Bringing chemistry to neuromorphic devices.Innovation20234310043510.1016/j.xinn.2023.10043537215530
    [Google Scholar]
  3. WangC. ShiG. QiaoF. LinR. WuS. HuZ. Research progress in architecture and application of RRAM with computing-in-memory.Nanoscale Adv.2023561559157310.1039/D3NA00025G36926563
    [Google Scholar]
  4. JenaA.K. SahuM.C. SahooS. MallikS.K. PradhanG.K. MohantyJ. SahooS. Multilevel resistive switching in graphene oxide-multiferroic thin-film-based bilayer RRAM device by interfacial oxygen vacancy engineering.Appl. Phys., A Mater. Sci. Process.2022128321310.1007/s00339‑021‑05243‑9
    [Google Scholar]
  5. HeL. HeC. ZhaoB. XieZ. LongX. ZhangZ. QiF. ZhangN. Influence of doping Sn direction and concentration on vanadium pentoxide based on density functional theory.Funct. Mater. Lett.2022153225102810.1142/S1793604722510286
    [Google Scholar]
  6. IelminiD. PedrettiG. Device and circuit architectures for in‐memory computing.Adv. Intell. Syst.202027200004010.1002/aisy.202000040
    [Google Scholar]
  7. WangQ. WangY. LuoR. WangJ. JiL. JiangZ. WengerC. SongZ. SongS. RenW. BiJ. NiuG. Ultrathin HfO 2 /Al 2 O 3 bilayer based reliable 1T1R RRAM electronic synapses with low power consumption for neuromorphic computing.Neuromorphic Computing and Engineering20222404401210.1088/2634‑4386/aca179
    [Google Scholar]
  8. NardiF. BalattiS. LarentisS. GilmerD.C. IelminiD. Complementary switching in oxide-based bipolar resistive-switching random memory.IEEE Transactions on Electron Devices2013601707710.1109/TED.2012.2226728
    [Google Scholar]
  9. DaiY. ZhaoY. WangJ. XuJ. YangF. First principle simulations on the effects of oxygen vacancy in HfO2-based RRAM.AIP Adv.20155101713310.1063/1.4906792
    [Google Scholar]
  10. ShenX. ZhangL. LiuL. AnY. GaoZ. GuoP. Bipolar resistive switching of Pt/Ga 2 O 3−x /SiC/Pt thin film with ultrahigh OFF/ON resistance ratios.Nanotechnology2020312222520610.1088/1361‑6528/ab758d32050184
    [Google Scholar]
  11. RuanW. HuY. XuF. ZhangS. Resistive switching behavior of organic-metallic halide perovskites CH3NH3Pb1−Bi Br3.Org. Electron.20197025225710.1016/j.orgel.2019.04.031
    [Google Scholar]
  12. PatilA.R. DongaleT.D. KamatR.K. RajpureK.Y. Binary metal oxide-based resistive switching memory devices: A status review.Mater. Today Commun.20233410535610.1016/j.mtcomm.2023.105356
    [Google Scholar]
  13. HanR. HuangP. ZhaoY. ChenZ. LiuL. LiuX. KangJ. Demonstration of logic operations in high-performance RRAM crossbar array fabricated by atomic layer deposition technique.Nanoscale Res. Lett.20171213710.1186/s11671‑016‑1807‑928091948
    [Google Scholar]
  14. HongX. LoyD.J. DananjayaP.A. TanF. NgC. LewW. Oxide-based RRAM materials for neuromorphic computing.J. Mater. Sci.201853128720874610.1007/s10853‑018‑2134‑6
    [Google Scholar]
  15. YangM.Y. KamiyaK. Magyari-KöpeB. NiwaM. NishiY. ShiraishiK. Charge-dependent oxygen vacancy diffusion in Al2O3-based resistive-random-access-memories.Appl. Phys. Lett.2013103909350410.1063/1.4819772
    [Google Scholar]
  16. TraoreB. BlaiseP. VianelloE. GrampeixH. JeannotS. PerniolaL. De SalvoB. NishiY. On the Origin of Low-Resistance State Retention Failure in HfO 2 -Based RRAM and Impact of Doping/Alloying.IEEE Trans. Electron Dev.201562124029403610.1109/TED.2015.2490545
    [Google Scholar]
  17. YildirimH. PachterR. Mechanistic Analysis of Oxygen Vacancy-Driven Conductive Filament Formation in Resistive Random Access Memory Metal/NiO/Metal Structures.ACS Appl. Mater. Interfaces201810119802981610.1021/acsami.7b1764529488379
    [Google Scholar]
  18. HeL. HeC. ZhaoB. XieZ. ZhangJ. ChenW. Research on the Effects of Sn Dopants of V2O5 Based on the First Principles.J. Electron. Mater.202251130431310.1007/s11664‑021‑09289‑6
    [Google Scholar]
  19. KresseG. HafnerJ. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium.Phys. Rev. B Condens. Matter19944920142511426910.1103/PhysRevB.49.1425110010505
    [Google Scholar]
  20. KresseG. FurthmüllerJ. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set.Phys. Rev. B Condens. Matter19965416111691118610.1103/PhysRevB.54.111699984901
    [Google Scholar]
  21. KaurG. GuptaS. GaganpreetG. DharamvirK. Hydrogen molecule on lithium adsorbed graphene: A DFT study.AIP Conf. Proc.20161728102043410.1063/1.4946485
    [Google Scholar]
  22. XiaoZ.R. GuoG.Y. Structural, electronic and magnetic properties of V2O5−x: An ab initio study.J. Chem. Phys.20091302121470410.1063/1.314679019508084
    [Google Scholar]
  23. Van de WalleC.G. NeugebauerJ. First-principles calculations for defects and impurities: Applications to III-nitrides.J. Appl. Phys.20049583851387910.1063/1.1682673
    [Google Scholar]
  24. FreysoldtC. GrabowskiB. HickelT. NeugebauerJ. KresseG. JanottiA. Van de WalleC.G. First-principles calculations for point defects in solids.Rev. Mod. Phys.201486125330510.1103/RevModPhys.86.253
    [Google Scholar]
  25. AndrewsJ.L. MukherjeeA. YooH.D. ParijaA. MarleyP.M. FakraS. PrendergastD. CabanaJ. KlieR.F. BanerjeeS. Reversible Mg-ion insertion in a metastable one-dimensional polymorph of V2O5.Chem20184356458510.1016/j.chempr.2017.12.018
    [Google Scholar]
  26. LiuJ. ShiG. QiaoF. LinR. WuS. HuZ. Origin of high photocatalytic efficiency in monolayer g-C3N4/CdS heterostructure: a hybrid DFT study.J. Phys. Chem. C201511951284172842310.1021/acs.jpcc.5b0909236926563
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137333910241009071115
Loading
/content/journals/cnano/10.2174/0115734137333910241009071115
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test