Skip to content
2000
Volume 21, Issue 3
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

Objective

Melatonin has been associated with accelerated tissue regeneration and grapeseed oil has abundant unsaturated fatty acids, particularly linoleic acid that makes it a strong antioxidant, having the potential to promote wound healing by enhancing the presence of free radicals at the wound site. The study is aimed to evaluate the potential of a microemulsion gel using grapeseed oil as the organic phase and melatonin encapsulated in the vesicles to exhibit synergistic wound healing in Swiss albino rats.

Materials and Methods

Microemulsion containing grapeseed oil encapsulating melatonin was developed using the water-titration method. The surfactant and co-surfactant ratio (S) were fixed at 1:1. A pseudo-ternary diagram was used to determine the microemulsion zone and the developed microemulsion was further incorporated in carbopol 934P gel. The formulations were evaluated for their physicochemical properties and cytotoxicity assay. The optimized formulation was topically applied to cutaneous wounds of Swiss albino rat models. 30 Swiss albino rats were divided into five groups of 6 animals each: (i) Negative control group, (ii) Standard marketed formulation treated group, (iii) Optimized microemulsion containing Grapeseed oil and melatonin treated group, (iv) Grapeseed oil treated group and (v) Melatonin treated group. All the rats in each group were topically applied with the desired formulations daily for up to 14 days.

Results

The treatment with a formulation comprising 10.18% Grapeseed oil, 24.88% water, and 64.94% S exhibited the highest entrapment efficiency of 86.65 ± 1.88% with an enhanced drug release of up to 83.02 ± 1.09%, also demonstrating first-order release kinetics. Furthermore, it did not inhibit L929 mouse fibroblast cell proliferation up to 500 μg/mL and promoted wound closure prior to other groups. Additionally, increased tissue maturation with higher collagen deposition was mostly seen by day 7. Thus demonstrating it is suitable for dermal application and sustained release of melatonin. The wound healing study and histological investigations on rat models demonstrated comparable results as observed in the marketed formulation of melatonin.

Conclusion

The results showed that GSO oil based microemulsion encapsulating MEL could be a promising wound treatment option to exhibit accelerated wound healing effects.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137290869240307105633
2024-10-29
2025-11-04
Loading full text...

Full text loading...

References

  1. EmingS.A. MartinP. Tomic-CanicM. Wound repair and regeneration: Mechanisms, signaling, and translation.Sci. Transl. Med.20146265265sr610.1126/scitranslmed.3009337 25473038
    [Google Scholar]
  2. KaplaniK. KoutsiS. ArmenisV. SkondraF.G. KarantzelisN. TsanirasC.S. TaravirasS. Wound healing related agents: Ongoing research and perspectives.Adv. Drug Deliv. Rev.201812924225310.1016/j.addr.2018.02.007 29501699
    [Google Scholar]
  3. SchnittertJ. BansalR. StormG. PrakashJ. Integrins in wound healing, fibrosis and tumor stroma: High potential targets for therapeutics and drug delivery.Adv. Drug Deliv. Rev.2018129375310.1016/j.addr.2018.01.020 29414674
    [Google Scholar]
  4. KoivistoL. HeinoJ. HäkkinenL. LarjavaH. Integrins in wound healing.Adv. Wound Care201431276278310.1089/wound.2013.0436 25493210
    [Google Scholar]
  5. MartinP. NunanR. Cellular and molecular mechanisms of repair in acute and chronic wound healing.Br. J. Dermatol.2015173237037810.1111/bjd.13954 26175283
    [Google Scholar]
  6. BarchittaM. MaugeriA. FavaraG. LioM.S.R. EvolaG. AgodiA. BasileG. Nutrition and wound healing: An overview focusing on the beneficial effects of curcumin.Int. J. Mol. Sci.2019205111910.3390/ijms20051119 30841550
    [Google Scholar]
  7. AlipoorE. JazayeriS. DahmardeheiM. SalehiS. YaseriM. EmamiM.R. RezayatS.M. Hosseinzadeh-AttarM.J. Effect of a collagen-enriched beverage with or without omega-3 fatty acids on wound healing, metabolic biomarkers, and adipokines in patients with major burns.Clin. Nutr.202342329830810.1016/j.clnu.2022.12.014 36724726
    [Google Scholar]
  8. ZhaoD. YuY. ShenY. LiuQ. ZhaoZ. SharmaR. ReiterR.J. Melatonin synthesis and function: Evolutionary history in animals and plants.Front. Endocrinol.20191024910.3389/fendo.2019.00249 31057485
    [Google Scholar]
  9. Cipolla-NetoJ. AmaralF.G. Melatonin as a hormone: New physiological and clinical insights.Endocr. Rev.2018396990102810.1210/er.2018‑00084 30215696
    [Google Scholar]
  10. Calderon-JofreR. MoragaD. MoragaF.A. The effect of chronic intermittent hypobaric hypoxia on sleep quality and melatonin serum levels in chilean miners.Front. Physiol.20221280936010.3389/fphys.2021.809360 35222064
    [Google Scholar]
  11. KvetnoyI. IvanovD. MironovaE. EvsyukovaI. NasyrovR. KvetnaiaT. PolyakovaV. Melatonin as the cornerstone of neuroimmunoendocrinology.Int. J. Mol. Sci.2022233183510.3390/ijms23031835 35163757
    [Google Scholar]
  12. TanD.X. ReiterR.J. ZimmermanS. HardelandR. Melatonin: Both a messenger of darkness and a participant in the cellular actions of non-visible solar radiation of near infrared light.Biology 20231218910.3390/biology12010089 36671781
    [Google Scholar]
  13. VaseenonS. ChattipakornN. ChattipakornS.C. Effects of melatonin in wound healing of dental pulp and periodontium: Evidence from in vitro, in vivo and clinical studies.Arch. Oral Biol.202112310503710.1016/j.archoralbio.2020.105037 33440268
    [Google Scholar]
  14. AmirzargarM.R. ShahriyaryF. ShahidiM. KooshariA. VafajooM. NekouianR. FaranoushM. Angiogenesis, coagulation, and fibrinolytic markers in acute promyelocytic leukemia (NB4): An evaluation of melatonin effects.J. Pineal Res.2023753e1290110.1111/jpi.12901 37485730
    [Google Scholar]
  15. GaoT. WangZ. CaoJ. DongY. ChenY. Melatonin ameliorates corticosterone-mediated oxidative stress-induced colitis in sleep-deprived mice involving gut microbiota.Oxid. Med. Cell. Longev.2021202112410.1155/2021/9981480 34257825
    [Google Scholar]
  16. RenM. LiuH. JiangW. ZhouZ. YaoX. LiuZ. MaN. ChenB. YangM. Melatonin repairs osteoporotic bone defects in iron-overloaded rats through PI3K/AKT/GSK-3β/P70S6k signaling pathway.Oxid. Med. Cell. Longev.2023202311410.1155/2023/7718155 36703914
    [Google Scholar]
  17. YuS. TangQ. ChenG. LuX. YinY. XieM. LongY. ZhengW. GuoF. ShaoL. ShiA. ChenL. Circadian rhythm modulates endochondral bone formation via MTR1/AMPKβ1/BMAL1 signaling axis.Cell Death Differ.202229487488710.1038/s41418‑021‑00919‑4 35094018
    [Google Scholar]
  18. Al-WarhiT. ZahranE.M. SelimS. Al-SaneaM.M. GhoneimM.M. MaherS.A. MostafaY.A. AlsenaniF. ElrehanyM.A. AlmuhayawiM.S. Al JaouniS.K. AbdelmohsenU.R. ElmaidomyA.H. Antioxidant and wound healing potential of Vitis vinifera seeds supported by phytochemical characterization and docking studies.Antioxidants202211588110.3390/antiox11050881 35624745
    [Google Scholar]
  19. AmitaA. VishnuA.G. PrashanthV. Incorporation of grape seed extract towards wound care product development.3 Biotech2021116261
    [Google Scholar]
  20. GuptaM. DeyS. MarbaniangD. PalP. RayS. MazumderB. Grape seed extract: Having a potential health benefits.J. Food Sci. Technol.20205741205121510.1007/s13197‑019‑04113‑w 32180617
    [Google Scholar]
  21. IzadpanahA. SoorgiS. GeraminejadN. hosseini, M. Effect of grape seed extract ointment on cesarean section wound healing: A double-blind, randomized, controlled clinical trial.Complement. Ther. Clin. Pract.20193532332810.1016/j.ctcp.2019.03.011 31003677
    [Google Scholar]
  22. ChaoC.Y. ManiM.P. JaganathanS.K. Engineering electrospun multicomponent polyurethane scaffolding platform comprising grapeseed oil and honey/propolis for bone tissue regeneration.PLoS One20181310e020569910.1371/journal.pone.0205699 30372449
    [Google Scholar]
  23. PayyalS.P. RompicherlaN.C. SathyanarayanaS.D. ShriramR.G. VadakkepushpakathA.N. Microemulsion based gel of sulconazole nitrate for topical application.Turk. J. Pharm. Sci.202017325926410.4274/tjps.galenos.2019.75537 32636702
    [Google Scholar]
  24. DaryabM. FaiziM. MahboubiA. AboofazeliR. Preparation and characterization of lidocaine-loaded, microemulsion-based topical gels.Iran. J. Pharm. Res.2022211e12378710.5812/ijpr.123787 35765506
    [Google Scholar]
  25. MuratB. KadriG. Pseudo ternary phase diagrams: A practical approach for the area and centroid calculation of stable microemulsion regions. İstanbul.J. Pharm.20215114249
    [Google Scholar]
  26. VoT.V. ChouY.Y. ChenB.H. Preparation of microemulsion from an alkyl polyglycoside surfactant and tea tree oil.Molecules2021267197110.3390/molecules26071971 33807380
    [Google Scholar]
  27. HungW.H. ChenP.K. FangC.W. LinY.C. WuP.C. Preparation and evaluation of azelaic acid topical microemulsion formulation: In vitro and in vivo study.Pharmaceutics202113341010.3390/pharmaceutics13030410 33808836
    [Google Scholar]
  28. LiangY. ZouJ. ZhangX. ShiY. TaiJ. WangY. GuoD. YangM. Preparation and quality evaluation of a volatile oil microemulsion from Flos magnoliae and Centipeda minima.Mol. Med. Rep.20202264531454010.3892/mmr.2020.11571 33174034
    [Google Scholar]
  29. YangJ. XuH. WuS. JuB. ZhuD. YanY. WangM. HuJ. Preparation and evaluation of microemulsion-based transdermal delivery of Cistanche tubulosa phenylethanoid glycosides.Mol. Med. Rep.20171531109111610.3892/mmr.2017.6147 28138704
    [Google Scholar]
  30. SarheedO. DibiM. RameshK.V.R.N.S. DrechslerM. Fabrication of alginate-based o/w nanoemulsions for transdermal drug delivery of lidocaine: Influence of the oil phase and surfactant.Molecules2021269255610.3390/molecules26092556 33925764
    [Google Scholar]
  31. Üstündağ OkurN. YavaşoğluA. KarasuluH.Y. Preparation and evaluation of microemulsion formulations of naproxen for dermal delivery.Chem. Pharm. Bull.201462213514310.1248/cpb.c13‑00051 24492583
    [Google Scholar]
  32. SalimiA. AmirimoghadamS. BagheriF. Preparation, optimization, and investigation of naringenin-loaded microemulsion for topical application.Iran. Biomed. J.202226536637310.52547/ibj.3722 36403103
    [Google Scholar]
  33. ChenH. ChangX. DuD. LiJ. XuH. YangX. Microemulsion-based hydrogel formulation of ibuprofen for topical delivery.Int. J. Pharm.20063151-2525810.1016/j.ijpharm.2006.02.015 16600540
    [Google Scholar]
  34. ŠpaglováM. PapadakosM. ČuchorováM. MatušováD. Release of tretinoin solubilized in microemulsion from carbopol and xanthan gel: In vitro versus ex vivo permeation study.Polymers202315232910.3390/polym15020329 36679211
    [Google Scholar]
  35. de AssisK.M.A. da Silva LeiteJ.M. de MeloD.F. BorgesJ.C. SantanaL.M.B. dos ReisM.M.L. MoreiraV.M. da RochaW.R.V. CatãoR.M.R. dos SantosS.G. da Silva PortelaA. de Sousa SilvaS.M. de OliveiraT.K.B. de Souza da SilveiraJ.W. PiresE.G. NonakaC.F.W. SanchesF.A.C. de Lima DamascenoB.P.G. Bicontinuous microemulsions containing Melaleuca alternifolia essential oil as a therapeutic agent for cutaneous wound healing.Drug Deliv. Transl. Res.20201061748176310.1007/s13346‑020‑00850‑0 32924099
    [Google Scholar]
  36. VlaiaL. OlariuI. MuţA.M. ConeacG. VlaiaV. AnghelD.F. MaximM.E. StângăG. DobrescuA. SuciuM. SzabadaiZ. LupuleasaD. New, biocompatible, chitosan-gelled microemulsions based on essential oils and sucrose esters as nanocarriers for topical delivery of fluconazole.Pharmaceutics20211417510.3390/pharmaceutics14010075 35056971
    [Google Scholar]
  37. PromjanS. BoonmeP. Itraconazole-loaded microemulsions: Formulation, characterization, and dermal delivery using shed snakeskin as the model membrane.Pharm. Dev. Technol.2023281516010.1080/10837450.2022.2162082 36547258
    [Google Scholar]
  38. MasoodA. MaheenS. KhanH.U. ShafqatS.S. IrshadM. AslamI. RasulA. BashirS. ZafarM.N. Pharmaco-technical evaluation of statistically formulated and optimized dual drug-loaded silica nanoparticles for improved antifungal efficacy and wound healing.ACS Omega20216128210822510.1021/acsomega.0c06242 33817480
    [Google Scholar]
  39. OzdemirK.G. YılmazH. YılmazS. In vitro evaluation of cytotoxicity of soft lining materials on L929 cells by MTT assay.J. Biomed. Mater. Res. B Appl. Biomater.200990B1828610.1002/jbm.b.31256 18985793
    [Google Scholar]
  40. HavrdováM. UrbančičI. Bartoň TománkováK. MalinaL. ŠtrancarJ. BourlinosA.B. Self-targeting of carbon dots into the cell nucleus: Diverse mechanisms of toxicity in NIH/3T3 and L929 cells.Int. J. Mol. Sci.20212211560810.3390/ijms22115608 34070594
    [Google Scholar]
  41. OkurM.E. AylaŞ. YozgatlıV. AksuN.B. YoltaşA. OrakD. SipahiH. Üstündağ OkurN. Evaluation of burn wound healing activity of novel fusidic acid loaded microemulsion based gel in male Wistar albino rats.Saudi Pharm. J.202028333834810.1016/j.jsps.2020.01.015 32194336
    [Google Scholar]
  42. GuoJ.W. PuC.M. LiuC.Y. LoS.L. YenY.H. Curcumin-loaded self-microemulsifying gel for enhancing wound closure.Skin Pharmacol. Physiol.202033630030810.1159/000512122 33472208
    [Google Scholar]
  43. Masson-MeyersD.S. AndradeT.A.M. CaetanoG.F. GuimaraesF.R. LeiteM.N. LeiteS.N. FradeM.A.C. Experimental models and methods for cutaneous wound healing assessment.Int. J. Exp. Pathol.20201011-2213710.1111/iep.12346 32227524
    [Google Scholar]
  44. Davidov-PardoG. McClementsD.J. Nutraceutical delivery systems: Resveratrol encapsulation in grape seed oil nanoemulsions formed by spontaneous emulsification.Food Chem.201516720521210.1016/j.foodchem.2014.06.082 25148980
    [Google Scholar]
  45. PatelV. KukadiyaH. MashruR. SurtiN. MandalS. Development of microemulsion for solubility enhancement of clopidogrel.Iran. J. Pharm. Res.201094327334 24381597
    [Google Scholar]
  46. CortésH. Hernández-ParraH. Bernal-ChávezS.A. Prado-AudeloM.L.D. Caballero-FloránI.H. Borbolla-JiménezF.V. González-TorresM. MagañaJ.J. Leyva-GómezG. Non-ionic surfactants for stabilization of polymeric nanoparticles for biomedical uses.Materials20211412319710.3390/ma14123197 34200640
    [Google Scholar]
  47. MarchianòV. MatosM. MarcetI. CabalM.P. GutiérrezG. Blanco-LópezM.C. Stability of non-ionic surfactant vesicles loaded with rifamycin S.Pharmaceutics20221412262610.3390/pharmaceutics14122626 36559121
    [Google Scholar]
  48. FloA. CambrasT. Díez-NogueraA. CalpenaA. Melatonin pharmacokinetics after transdermal administration changes according to the time of the day.Eur. J. Pharm. Sci.20179616417010.1016/j.ejps.2016.09.020 27644893
    [Google Scholar]
  49. ElshallA.A. GhoneimA.M. Abdel-MageedH.M. OsmanR. ShakerD.S. Ex vivo permeation parameters and skin deposition of melatonin-loaded microemulsion for treatment of alopecia.Future J. Pharm. Sci.2022812810.1186/s43094‑022‑00418‑4
    [Google Scholar]
  50. Üstündağ OkurN. ÇağlarE.Ş. ArpaM.D. KarasuluH.Y. Preparation and evaluation of novel microemulsion-based hydrogels for dermal delivery of benzocaine.Pharm. Dev. Technol.201722450051010.3109/10837450.2015.1131716 26738443
    [Google Scholar]
  51. ŠpaglováM. ČuchorováM. ČiernaM. PoništS. BauerováK. Microemulsions as solubilizers and penetration enhancers for minoxidil release from gels.Gels2021712610.3390/gels7010026 33802416
    [Google Scholar]
  52. HuQ. FuX.L. DongY.Y. MaJ. HuaJ. LiJ.T. LiuK.X. YangJ. YuC.X. D-Optimal design and development of a koumine-loaded microemulsion for rheumatoid arthritis treatment: In vivo and in vitro evaluation.Int. J. Nanomedicine2023182973298810.2147/IJN.S406641 37304972
    [Google Scholar]
  53. ChenY. WangS. HuQ. ZhouL. Self-emulsifying system co-loaded with paclitaxel and coix seed oil deeply penetrated to enhance efficacy in cervical cancer.Curr. Drug Deliv.202320791992610.2174/1567201819666220628094239 35762559
    [Google Scholar]
  54. NegiP. SinghB. SharmaG. BegS. RazaK. KatareO.P. Phospholipid microemulsion-based hydrogel for enhanced topical delivery of lidocaine and prilocaine: QbD-based development and evaluation.Drug Deliv.201623394195710.3109/10717544.2014.923067 24892623
    [Google Scholar]
  55. MaulviF.A. DesaiA.R. ChoksiH.H. PatilR.J. RanchK.M. VyasB.A. ShahD.O. Effect of surfactant chain length on drug release kinetics from microemulsion-laden contact lenses.Int. J. Pharm.20175241-219320410.1016/j.ijpharm.2017.03.083 28366804
    [Google Scholar]
  56. YilmazZ. DoganA.L. OzdemirO. SerperA. Evaluation of the cytotoxicity of different root canal sealers on L929 cell line by MTT assay.Dent. Mater. J.20123161028103210.4012/dmj.2012‑172 23207211
    [Google Scholar]
  57. Moalla RekikD. Ben KhedirS. Ksouda MoallaK. KammounN.G. RebaiT. SahnounZ. Evaluation of wound healing properties of grape seed, sesame, and fenugreek oils.Evid. Based Complement. Alternat. Med.2016201611210.1155/2016/7965689 27990170
    [Google Scholar]
  58. Al-SaediZ.H.F. SalihZ.T. AhmedK.K. AhmedR.A. JasimS.A. Formulation and characterization of oleogel as a topical carrier of azithromycin.AAPS PharmSciTech20222411710.1208/s12249‑022‑02481‑9 36522608
    [Google Scholar]
  59. LiuW. YuM. XieD. WangL. YeC. ZhuQ. LiuF. YangL. Melatonin-stimulated MSC-derived exosomes improve diabetic wound healing through regulating macrophage M1 and M2 polarization by targeting the PTEN/AKT pathway.Stem Cell Res. Ther.202011125910.1186/s13287‑020‑01756‑x 32600435
    [Google Scholar]
  60. PugazhenthiK. KapoorM. ClarksonA.N. HallI. AppletonI. Melatonin accelerates the process of wound repair in full‐thickness incisional wounds.J. Pineal Res.200844438739610.1111/j.1600‑079X.2007.00541.x 18205728
    [Google Scholar]
  61. CorreaL.R.V. MartinsS.J. Ribeiro de SouzaT. de CastroN.R.G. MiguelP.M. de MenezesB.L. AmaralC.A. Melatonin loaded lecithin-chitosan nanoparticles improved the wound healing in diabetic rats.Int. J. Biol. Macromol.20201621465147510.1016/j.ijbiomac.2020.08.027 32781118
    [Google Scholar]
  62. BlaževićF. MilekićT. RomićM.D. JuretićM. PepićI. Filipović-GrčićJ. LovrićJ. HafnerA. Nanoparticle-mediated interplay of chitosan and melatonin for improved wound epithelialisation.Carbohydr. Polym.201614644545410.1016/j.carbpol.2016.03.074 27112895
    [Google Scholar]
  63. BhubhanilS. TalodthaisongC. KhongkowM. NamdeeK. WongchitratP. YingmemaW. HutchisonJ.A. LapmaneeS. KulchatS. Enhanced wound healing properties of guar gum/curcumin-stabilized silver nanoparticle hydrogels.Sci. Rep.20211112183610.1038/s41598‑021‑01262‑x 34750447
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137290869240307105633
Loading
/content/journals/cnano/10.2174/0115734137290869240307105633
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test