Current Neuropharmacology - Volume 9, Issue 1, 2011
Volume 9, Issue 1, 2011
-
-
Preface (New Research Frontiers and Advances in Drug Addiction)
Authors: Syed F. Ali, Emmanuel Onaivi, Hyoung-Chun Kim, Michael J. Kuhar and George KoobThis volume contains a reviewed selection papers presented at the 2nd International Drug of Abuse Research Society (IDARS) Meeting, a satellite meeting of the International Society for Neurochemistry (ISN) in Association with Korean Drug Abuse Research Society (KDARS). The IDARS/ISN satellite/KDARS meeting entitled “New Research Frontiers and Advances in Drug Addiction” was held on August 14-17, 2009 at the Grand Hyatt Hotel, Seoul, S. Korea. The atmosphere of the meeting especially the surroundings were just magnificent. Over 120 participants from 15 different countries attended the meeting. Owing to a relatively small number of participants, every one enjoyed the scientific exchange in a very relaxing and informal atmosphere. This conference was planned in a way that only one session was held at a time, so no-one missed anything. There was plenty of time allowed for questions and informal discussions. The major goal of the conference was to understand the cellular and molecular mechanisms of drugs of abuse, such as cocaine, substituted amphetamines (d-amphetamine, methamphetamine, and MDMA), alcohol, marijuana, nicotine, opiates, GHB and organic solvents. Separate sessions were devoted to the underlying mechanisms of drug addiction such as genes and drugs of abuse; gene behavior and psychostimulants; substituted amphetamine neurotoxicity; novel neurobiological targets for the treatment of alcoholism, psychostimulants and opiates addiction. Another feature of this conference was that each session included both clinical and basic research scientists working in the same area of research. Several scientists presented clinical and basic studies aimed at understanding the addictive effects of drugs of abuse as well as developing new strategies to treat drug addiction. Although a tremendous body of data has been gathered on the molecular genetics of abused drugs, the molecular mechanisms responsible for addiction and toxicity induced by exposure to these drugs remain to be fully elucidated. The informal atmosphere of the meeting allowed connections and potential collaborations to be established. This occurred especially during the poster session, which was extremely productive. At the end of the conference, there was a panel discussion and open forum, during which a summary of the conference was made and future recommendations voiced. The conference achieved its main goal of bringing together clinical and basic scientists from around the world in a multidisciplinary forum to exchange ideas and data relevant to the expanding field of drug addiction. We express our gratitude to the organizations and the government agencies that supported this meeting. All papers included in this issue were reviewed by at least one referee, and we would like to thank them all for their valuable time and efforts. We also thank Professor Tom Salt, Editor-in-chief, Current Neuropharmacology for publishing these manuscripts. Last, but not least, we want to thank many of our colleagues who helped us in the organizing of this satellite meeting. The 3rd IDARS/ISNsponsored satellite meeting dealing with the same topic will be held on August 23 - 26, 2011, at Grand Hyatt Hotel in Istanbul, Turkey.
-
-
-
Understanding the Global Problem of Drug Addiction is a Challenge for IDARS Scientists
Authors: S. F. Ali, E. S. Onaivi, P. R. Dodd, J. L. Cadet, S. Schenk, M. J. Kuhar and G. F. KoobIDARS is an acronym for the International Drug Abuse Research Society. Apart from our scientific and educational purposes, we communicate information to the general and scientific community about substance abuse and addiction science and treatment potential. Members of IDARS are research scientists and clinicians from around the world, with scheduled meetings across the globe. IDARS is developing a vibrant and exciting international mechanism not only for scientific interactions in the domain of addiction between countries but also ultimately as a resource for informing public policy across nations. Nonetheless, a lot more research needs to be done to better understand the neurobiological basis of drug addiction - A challenge for IDARS scientists.
-
-
-
Exploring Mechanisms Underlying Extinction of Cue-Elicited Cocaine Seeking
More LessA prominent feature of drug addiction is that drug-associated cues can elicit drug-seeking behaviors and contribute significantly to the high propensity to relapse. We have been investigating the notion that the dopamine D1 receptor and the immediate early gene product c-Fos expressed in D1 receptor-bearing neurons mediate the development of persistent neuroadaptation in the brain dopamine system by regulating cell signaling and gene expression. We generated and analyzed genetically engineered mouse models and found that the D1 receptor and c-Fos expressed in D1 receptor- bearing neurons mediate the locomotor sensitization and reinforcing effects of cocaine. Moreover, these molecules regulate cocaine-induced dendritic remodeling, electrophysiological responses, and changes in cell signaling and gene expression in the brain. Notably, a lack of Fos expression in D1 receptor-bearing neurons in mice results in no change in the induction but a significantly delayed extinction of cocaine-induced conditioned place preference. These findings suggest that D1 receptor-mediated and c-Fos-regulated changes in cell signaling and gene expression may play key roles in the extinction process, and they provide a foundation for further exploring mechanisms underlying extinction of cue-elicited cocaine seeking.
-
-
-
CART Peptides Regulate Psychostimulants and May be Endogenous Antidepressants
Authors: M. O. Job, I. M. McNamara and M. J. KuharCART peptides are endogenous neurotransmitters that are involved in a variety of physiologic functions. Injection of CART 55-102 into the nucleus accumbens produces no effect, but when co-administered with cocaine, it reduces the locomotor and rewarding properties of cocaine. In a human study, subjects carrying a missense mutation of the CART gene exhibited increased anxiety and depression. Also, several animal studies support the idea that CART is involved in anxiety and depression, and they also suggest several possible mechanisms by which this may occur. Thus, there is interesting evidence that CART peptides play a role in anxiety and depression, and that CART peptides may be endogenous antidepressants.
-
-
-
Parthenolide Blocks Cocaine's Effect on Spontaneous Firing Activity of Dopaminergic Neurons in the Ventral Tegmental Area
Authors: David Schwarz, Damaris Bloom, Rocio Castro, One R. Pagan and C. A. Jimenez-RiveraChronic cocaine administration leads to catecholamine reuptake inhibition which enhances reward and motivational behaviors. Ventral Tegmental Area dopaminergic (VTA DA) neuronal firing is associated with changes in reward predictive signals. Acute cocaine injections inhibit putative VTA DA cell firing in vertebrates. Parthenolide, a compound isolated from the feverfew plant (Tanacetum parthenium), has been shown to substantially inhibit cocaine's locomotion effects in a planarian animal model (Pagan et al., 2008). Here we investigated the effects of parthenolide on the spontaneous firing activity of putative VTA DA neurons in anesthetized male rats (250-300g). Single-unit recordings were analyzed after intravenous (i.v.) parthenolide administration followed by 1mg/kg i.v. cocaine injection. Results showed that parthenolide at 0.125 mg/kg and 0.250mg/kg significantly blocked cocaine's inhibitory effect on DA neuronal firing rate and bursting activity (p< 0.05, two way ANOVA). We propose that parthenolide might inhibit cocaine's effects on VTA DA neurons via its interaction with a common binding site at monoamine transporters. It is suggested that parthenolide could have a potential use as an overdose antidote or therapeutic agent to cocaine intoxication.
-
-
-
The Inhibition of Histone Deacetylases Reduces the Reinstatement of Cocaine-Seeking Behavior in Rats
Authors: Pascal Romieu, Elodie Deschatrettes, Lionel Host, Serge Gobaille, Guy Sandner and Jean ZwillerDrug addiction is a chronic brain disease characterized by a persistent risk of relapse, even after a long period of abstinence. A current hypothesis states that relapse results from lasting neuroadaptations that are induced in response to repeated drug administration. The adaptations require gene expression, some of which being under the control of stable epigenetic regulations. We have previously demonstrated that pretreatment with histone deacetylase (HDAC) inhibitors reduces the cocaine reinforcing properties as well as the motivation of rats for cocaine. We show here that the same HDAC inhibitors, trichostatin A and phenylbutyrate, significantly reduced the cocaine-seeking behavior induced by the combination of a cocaine injection together with the exposure to a light cue previously associated with cocaine taking. Reinstatement of drug-seeking behavior was carried out after a 3-week withdrawal period, which came after ten daily sessions of cocaine intravenous self-administration. Our results suggest that pharmacological treatment aimed at modulating epigenetic regulation, and particularly treatment that would inhibit HDAC activity, could reduce the risk of relapse, a major drawback in the treatment of drug addiction.
-
-
-
Gastrodia Elata Bl Attenuates Cocaine-Induced Conditioned Place Preference and Convulsion, but not Behavioral Sensitization in Mice: Importance of GABAA Receptors
Authors: E.-J. Shin, J.-H. Bach, T.-T. L. Nguyen, B.-D. Jung, K.-W. Oh, M. J. Kim, C. G. Jang, S. F. Ali, S. K. Ko, C. H. Yang and H.-C. KimIt has been suggested that GABAergic neurotransmission can modulate cocaine dependence and seizure activity. Since Gastrodia elata Bl (GE), an oriental herb agent, has been shown to enhance GABAergic transmission, we examined whether GE affects cocaine-induced seizures, conditioned place preference (CPP), and behavioral sensitization in mice. Treatment with GE (500 or 1000 mg/kg, p.o.) significantly delayed seizure onset time and significantly shortened seizure duration induced by cocaine (90 mg/kg, i.p.). In addition, cocaine (15 mg/kg, i.p.)-induced CPP was significantly attenuated by GE in a dose-dependent manner. However, GE did not significantly alter behavioral sensitization induced by cocaine (15 mg/kg, i.p.). In order to understand whether GABAergic receptors are implicated in GE-mediated pharmacological action in response to cocaine, GABAA receptor antagonist bicuculline and GABAB receptor antagonist SCH 50911 were employed in the present study. GE-mediated attenuations on the cocaine-induced seizures and CPP were significantly reversed by bicuculline (0.25 or 0.5 mg/kg, i.p.), but not by SCH 50911 (1.5 or 3.0 mg/kg, i.p.). Therefore, our results suggest that GE attenuates cocaine-induced seizures and CPP via, at least in part, GABAA receptor activation.
-
-
-
Liquiritigenin Decreases Selective Molecular and Behavioral Effects of Cocaine in Rodents
Authors: E. Y. Jang, M. Hwang, S. S. Yoon, J. R. Lee, K. J. Kim, H.-C. Kim and C. H. YangCocaine, as an indirect dopamine agonist, induces selective behavioral and physiological events such as hyperlocomotion and dopamine release. These changes are considered as consequences of cocaine-induced molecular adaptation such as CREB and c-Fos. Recently, methanolic extracts from licorice was reported to decrease cocaine-induced dopamine release and c-Fos expression in the nucleus accumbens. In the present study, we investigated the effects of liquiritigenin (LQ), a main compound of licorice, on acute cocaine-induced behavioral and molecular changes in rats. LQ attenuated acute cocaine-induced hyperlocomotion in dose-dependent manner. In addition, LQ inhibited CREB phosphorylation and c-Fos expression in the striatum and the nucleus accumbens induced by acute cocaine. Results provide strong evidence that LQ effectively attenuates the acute behavioral effects of cocaine exposure and prevents the induction of selective neuroadaptive changes in dopaminergic signaling pathways. Further investigation of LQ from licorice extract might provide a novel therapeutic strategy for the treatment of cocaine addiction.
-
-
-
Long-Term Protective Effects of Methamphetamine Preconditioning Against Single-Day Methamphetamine Toxic Challenges
Authors: A. B. Hodges, B. Ladenheim, M. T. McCoy, G. Beauvais, N. Cai, I. N. Krasnova and J. L. CadetMethamphetamine (METH) use is associated with neurotoxic effects which include decreased levels of dopamine (DA), serotonin (5-HT) and their metabolites in the brain. We have shown that escalating METH dosing can protect against METH induced neurotoxicity in rats sacrificed within 24 hours after a toxic METH challenge. The purpose of the current study was to investigate if the protective effects of METH persisted for a long period of time. We also tested if a second challenge with a toxic dose of METH would cause further damage to monoaminergic terminals. Saline-pretreated rats showed significant METH-induced decreases in striatal DA and 5-HT levels in rats sacrificed 2 weeks after the challenge. Rats that received two METH challenges showed no further decreases in striatal DA or 5-HT levels in comparison to the single METH challenge. In contrast, METH-pretreated rats showed significant protection against METH-induced striatal DA and 5-HT depletion. In addition, the METH challenge causes substantial decreases in cortical 5-HT levels which were not further potentiated by a second drug challenge. METH preconditioning provided almost complete protection against METH -induced 5-HT depletion. These results are consistent with the idea that METH pretreatment renders the brain refractory to METH-induced degeneration of brain monoaminergic systems.
-
-
-
Markers Associated with Sex Differences in Methamphetamine-Induced Striatal Dopamine Neurotoxicity
Authors: D. E. Dluzen, J. L. McDermott, M. Bourque, T. Di Paolo, A. S. Darvesh, A. B. Buletko and N. J. LapingThree different approaches were employed to assess various markers associated with sex differences in responses to methamphetamine (MA). Bioassay measures reveal that MA treatment results in significantly greater reductions in body weight and increases in body temperature in male mice. Protein and mRNA determinations show significant increases in Bcl-2 and PAI-1 in male mice, while females show significant increases in GFAP and decreases in IGF-1R following treatment with MA. In mice with a heterozygous mutation of their dopamine transporter (+/- DAT), only female mice show significant differences in dopamine transporter binding and mRNA and associated reductions in striatal dopamine content along with increases in MA-evoked striatal dopamine output. The identification of these sex-dependent differences in markers provides a foundation for more exhaustive evaluation of their impact upon, and treatment of, disorders/neurotoxicity of the nigrostriatal dopaminergic system and the bases for the differences that exist between females and males.
-
-
-
May Exercise Prevent Addiction?
Authors: C. A. Fontes-Ribeiro, E. Marques, F. C. Pereira, A. P. Silva and T. R. A. MacedoAmphetamines exert their persistent addictive effects by activating brain's reward pathways, perhaps through the release of dopamine in the nucleus accumbens (and/or in other places). On the other hand, there is a relationship between dopamine and all behavioural aspects that involve motor activity and it has been demonstrated that exercise leads to an increase in the synthesis and release of dopamine, stimulates neuroplasticity and promotes feelings of well-being. Moreover, exercise and drugs of abuse activate overlapping neural systems. Thus, our aim was to study the influence of chronic exercise in the mechanism of addiction using an amphetamine-induced conditioned-place-preference in rats. Adult male Sprague-Dawley rats were randomly separated in groups with and without chronic exercise. Chronic exercise consisted in a 8 week treadmill running program, with increasing intensity. The conditioned place preference test was performed in both groups using a procedure and apparatus previously established. A 2 mg.kg-1 amphetamine or saline solution was administered intraperitonially according to the schedule of the conditioned place preference. Before conditioning none of the animals showed preference for a specific compartment of the apparatus. The used amphetamine dose in the conditioning phase was able to produce a marked preference towards the drug-associated compartment in the group without exercise. In the animals with exercise a significant preference by the compartment associated with saline was observed. These results lead us to conclude that a previous practice of regular physical activity may help preventing amphetamine addiction in the conditions used in this test.
-
-
-
Neuroprotective Effect of Resveratrol Against Methamphetamine-Induced Dopaminergic Apoptotic Cell Death in a Cell Culture Model of Neurotoxicity
A growing body of evidence suggests that oxidative stress-mediated cell death signaling mechanisms may exert neurotoxic effects of methamphetamine (MA)-induced dopaminergic neuronal loss. However, the means by which oxidative stress induced by MA causes neurodegeneration remains unclear. In recent years, resveratrol has garnered considerable attention owing to its antioxidant, anti-inflammatory, anti-aging, and neuroprotective properties. In the present study, we sought to investigate the neuroprotective effects of resveratrol against apoptotic cell death in a mesencephalic dopaminergic neuronal cell culture model of MA neurotoxicity. MA treatment in the N27 dopaminergic neuronal cell model produced a time-dependent activation of the apoptotic cascade involving caspase-3 and DNA fragmentation. We found that the caspase-3 activation preceded DNA fragmentation. Notably, treatment with resveratrol almost completely attenuated MA-induced caspase-3 activity, but only partially reduced apoptotic cell death. We conclude that the neuroprotective effect of resveratrol is at least in part mediated by suppression of caspase-3 dependent cell death pathways. Collectively, our results demonstrate that resveratrol can attenuate MA-induced apoptotic cell death and suggest that resveratrol or its analogs may have therapeutic benefits in mitigating MA-induced dopaminergic neurodegeneration.
-
-
-
Role of Sigma Receptors in Methamphetamine-Induced Neurotoxicity
Authors: Nidhi Kaushal and Rae R. MatsumotoMethamphetamine (METH) is a widely abused substance world over. Currently, there is no effective pharma- cotherapy to treat its effects. This necessitates identification of potential novel therapeutic targets. METH interacts with sigma (σ) receptors at physiologically relevant micromolar concentrations. In addition, σ receptors are present in organs like the brain, heart, and lungs at which METH acts. Additionally, σ receptors have been implicated in various acute and subchronic effects like locomotor stimulation, development of sensitization and neurotoxicity, where σ receptor antagonists attenuate these effects. σ Receptors may also have a role in METH-induced psychiatric complications such as depression, psychosis, cognitive and motor deficits. The neurotoxic effects of METH, which are cause for concern, can be prevented by σ receptor antagonists in mice. Mechanistically, METH-induced neurotoxicity involves factors like dopamine release, oxidative stress, endoplasmic reticulum stress, activation of mitochondrial death cascades, glutamate release, apoptosis, microglial activation, and hyperthermia. This review compiles studies from the literature that suggests an important role for σ receptors in many of the mechanisms of METH-induced neurotoxicity.
-
-
-
Methylone and Monoamine Transporters: Correlation with Toxicity
Methylone (2-methylamino-1-[3,4-methylenedioxyphenyl]propane-1-one) is a synthetic hallucinogenic amphetamine analog, like MDMA (3,4-methylenedioxy- methamphetamine), considered to act on monoaminergic systems. However, the psychopharmacological profile of its cytotoxicity as a consequence of monoaminergic deficits remains unclear. We examined here the effects of methylone on the transporters for dopamine (DAT), norepinephrine (NET), and serotonin (SERT), using a heterologous expression system in CHO cells, in association with its cytotoxicity. Methylone inhibited the activities of DAT, NET, and SERT, but not GABA transporter-1 (GAT1), in a concentrationdependent fashion with a rank order of NET > DAT > SERT. Methylone was less effective at inhibiting DAT and NET, but more effective against SERT, than was methamphetamine. Methylone alone was not toxic to cells except at high concentrations, but in combination with methamphetamine had a synergistic effect in CHO cells expressing the monoamine transporters but not in control CHO cells or cells expressing GAT1. The ability of methylone to inhibit monoamine transporter function, probably by acting as a transportable substrate, underlies the synergistic effect of methylone and methamphetamine.
-
-
-
Decreases in Brain Reward Function Reflect Nicotine- and Methamphetamine-Withdrawal Aversion in Rats
Authors: Hisatsugu Miyata, Michio Itasaka, Naofumi Kimura and Kazuhiko NakayamaThe purpose of the present study was to investigate whether brain reward function decreases during withdrawal from nicotine and methamphetamine, and whether decreased reward function is related to aversion during withdrawal from these drugs. For that purpose, male Sprague-Dawley rats were chronically infused subcutaneously with 9 mg/kg per day nicotine, or with 6 mg/kg per day methamphetamine using osmotic minipumps. In an intracranial self-stimulation (ICSS) paradigm, chronic infusion of nicotine and methamphetamine decreased the thresholds for lateral hypothalamic ICSS, whereas their antagonists, mecamylamine and haloperidol increased the ICSS thresholds in the rats treated with nicotine and methamphetamine, respectively. In a conditioned place aversion paradigm, mecamylamine and haloperidol produced place aversion in nicotine- and methamphetamine-infused rats, respectively. Interestingly, elevations in ICSS reward thresholds and place aversion during mecamylamine-precipitated nicotine withdrawal were almost the same in magnitude as those observed during haloperidol-precipitated methamphetamine withdrawal. The present study indicates that 1) brain reward function decreased during nicotine and methamphetamine withdrawal, and 2) a decrease in reward function may reflect the negative affective state (aversion) during withdrawal from nicotine and methamphetamine.
-
-
-
The Selective Serotonin Reuptake Inhibitor Paroxetine, but not Fluvoxamine, Decreases Methamphetamine Conditioned Place Preference in Mice
Authors: Y. Takamatsu, H. Yamamoto, Y. Hagino, A. Markou and K. IkedaMonoamine transporters are the main targets of methamphetamine (METH). Recently, we showed that fluoxetine, a selective serotonin reuptake inhibitor (SSRI), decreased METH conditioned place preference (CPP), suggesting that serotonin transporter (SERT) inhibition reduces the rewarding effects of METH. To further test this hypothesis, in the present study we investigated the effects of additional SSRIs, paroxetine and fluvoxamine, on METH CPP in C57BL/6J mice. In the CPP test, pretreatment with 20 mg/kg paroxetine abolished the CPP for METH, whereas pretreatment with 100 mg/kg fluvoxamine prior to administration of METH failed to inhibit METH CPP. These results suggest that paroxetine, a medication widely used to treat depression, may be a useful tool for treating METH dependence. Further, these data suggest that molecules other than the SERT [such as G protein-activated inwardly rectifying K+ (GIRK) channels] whose activities are modulated by paroxetine and fluoxetine, but not by fluvoxamine, are involved in reducing METH CPP by paroxetine and fluoxetine.
-
-
-
MOP Reduction During Long-Term Methamphetamine Withdrawal was Restored by Chronic Post-Treatment with Fluoxetine
Authors: H. Yamamoto, Y. Takamatsu, K. Imai, E. Kamegaya, Y. Hagino, M. Watanabe, T. Yamamoto, I. Sora, H. Koga and K. IkedaPreviously, we found fluoxetine reduces methamphetamine preference in mice. However, effects of fluoxetine on developed methamphetamine preference and on methamphetamine induced gene expression changes have been largely unknown. The present study investigates effects of post-treatment with fluoxetine on methamphetamine dependence and on gene expressions after long-term withdrawal in mice. First, we examined whether chronic post-treatment with fluoxetine attenuated methamphetamine-conditioned place preference. Next, we examined the changes in gene expression levels after long-term withdrawal (with saline or fluoxetine treatment) following chronic methamphetamine treatment. Using mRNA from the pooled frontal cortices of 10 mice per group, gene expression analyses were performed using a customdeveloped cDNA array and a real-time quantitative reverse transcription-PCR. Chronic post-treatments with fluoxetine abolished the conditioned place preference developed by methamphetamine administrations. Even after long-term withdrawal from repeated methamphetamine administration, μ-opioid receptor (MOP) gene expression was significantly reduced in the frontal cortex. The reduced MOP gene expression in the frontal cortex was restored by chronic administration with fluoxetine. These changes were confirmed by Western blot analyses. These findings suggest that the chronic posttreatments with fluoxetine might be effective for restoring the reduction of MOP levels in the frontal cortex following long-term abstinence from methamphetamine.
-
-
-
Methamphetamine Induces Striatal Cell Death Followed by the Generation of New Cells and a Second Round of Cell Death in Mice
Authors: I. K. Tulloch, L. Afanador, J. Zhu and J. A. AnguloOur laboratory has been investigating the impact of a neurotoxic exposure to methamphetamine (METH) on cellular components of the striatum post-synaptic to the dopaminergic terminals. A systemic bolus injection of METH (30 mg/kg, ip) induces the production of new cells in the striatum during a period lasting from 24-48 hours after METH. The newly generated cells arise from dormant striatal progenitors and not from the subventricular zone. The newly generated cells display glial phenotypes and begin to die 24 hours after birth, or 2.5 days post-METH. The protracted phase of cell death lasts for at least three months post-METH at which time the bulk of the newly generated cells have disappeared. The METH-induced production of new cells is associated with enlarged striatal volume (up to 50% larger than controls in some animals). As the newly generated cells die over a period of three months, the enlarged striatal volume normalizes. In conclusion, a neurotoxic dose of METH induces the generation of new cells in the striatum associated with enlarged striatal volume. The new cells die over three months post-METH and the enlarged striatal volume returns to control levels. This observation is significant because studies involving METH users show striatal enlargement and the normalization of striatal volume in METH users who have been abstinent for up to 20 months.
-
-
-
The Nature of 3, 4-Methylenedioxymethamphetamine (MDMA)-Induced Serotonergic Dysfunction: Evidence for and Against the Neurodegeneration Hypothesis
Authors: Dominik K. Biezonski and Jerrold S. MeyerHigh doses of the recreational drug 3,4-methylenedioxymethamphetamine (MDMA, “Ecstasy”) have been well-documented to reduce the expression of serotonergic markers in several forebrain regions of rats and nonhuman primates. Neuroimaging studies further suggest that at least one of these markers, the plasma membrane serotonin transporter (SERT), may also be reduced in heavy Ecstasy users. Such effects, particularly when observed in experimental animal models, have generally been interpreted as reflecting a loss of serotonergic fibers and terminals following MDMA exposure. This view has been challenged, however, based on the finding that MDMA usually does not elicit glial cell reactions known to occur in response to central nervous system (CNS) damage. The aim of this review is to address both sides of the MDMA-neurotoxicity controversy, including recent findings from our laboratory regarding the potential of MDMA to induce serotonergic damage in a rat binge model. Our data add to the growing literature implicating neuroregulatory mechanisms underlying MDMA-induced serotonergic dysfunction and questioning the need to invoke a degenerative response to explain such dysfunction.
-
-
-
Effects of MDMA on Extracellular Dopamine and Serotonin Levels in Mice Lacking Dopamine and/or Serotonin Transporters
Authors: Y. Hagino, Y. Takamatsu, H. Yamamoto, T. Iwamura, D. L. Murphy, G. R. Uhl, I. Sora and K. Ikeda3,4-Methylendioxymethamphetamine (MDMA) has both stimulatory and hallucinogenic properties which make its psychoactive effects unique and different from those of typical psychostimulant and hallucinogenic agents. The present study investigated the effects of MDMA on extracellular dopamine (DAex) and serotonin (5-HTex) levels in the striatum and prefrontal cortex (PFC) using in vivo microdialysis techniques in mice lacking DA transporters (DAT) and/or 5-HT transporters (SERT). Subcutaneous injection of MDMA (3, 10 mg/kg) significantly increased striatal DAex in wildtype mice, SERT knockout mice, and DAT knockout mice, but not in DAT/SERT double-knockout mice. The MDMAinduced increase in striatal DAex in SERT knockout mice was significantly less than in wildtype mice. In the PFC, MDMA dose-dependently increased DAex levels in wildtype, DAT knockout, SERT knockout and DAT/SERT doubleknockout mice to a similar extent. In contrast, MDMA markedly increased 5-HTex in wildtype and DAT knockout mice and slightly increased 5-HTex in SERT-KO and DAT/SERT double-knockout mice. The results confirm that MDMA acts at both DAT and SERT and increases DAex and 5-HTex.
-
Volumes & issues
-
Volume 23 (2025)
-
Volume 22 (2024)
-
Volume 21 (2023)
-
Volume 20 (2022)
-
Volume 19 (2021)
-
Volume 18 (2020)
-
Volume 17 (2019)
-
Volume 16 (2018)
-
Volume 15 (2017)
-
Volume 14 (2016)
-
Volume 13 (2015)
-
Volume 12 (2014)
-
Volume 11 (2013)
-
Volume 10 (2012)
-
Volume 9 (2011)
-
Volume 8 (2010)
-
Volume 7 (2009)
-
Volume 6 (2008)
-
Volume 5 (2007)
-
Volume 4 (2006)
-
Volume 3 (2005)
-
Volume 2 (2004)
-
Volume 1 (2003)
Most Read This Month
