Skip to content
2000
Volume 9, Issue 1
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

A growing body of evidence suggests that oxidative stress-mediated cell death signaling mechanisms may exert neurotoxic effects of methamphetamine (MA)-induced dopaminergic neuronal loss. However, the means by which oxidative stress induced by MA causes neurodegeneration remains unclear. In recent years, resveratrol has garnered considerable attention owing to its antioxidant, anti-inflammatory, anti-aging, and neuroprotective properties. In the present study, we sought to investigate the neuroprotective effects of resveratrol against apoptotic cell death in a mesencephalic dopaminergic neuronal cell culture model of MA neurotoxicity. MA treatment in the N27 dopaminergic neuronal cell model produced a time-dependent activation of the apoptotic cascade involving caspase-3 and DNA fragmentation. We found that the caspase-3 activation preceded DNA fragmentation. Notably, treatment with resveratrol almost completely attenuated MA-induced caspase-3 activity, but only partially reduced apoptotic cell death. We conclude that the neuroprotective effect of resveratrol is at least in part mediated by suppression of caspase-3 dependent cell death pathways. Collectively, our results demonstrate that resveratrol can attenuate MA-induced apoptotic cell death and suggest that resveratrol or its analogs may have therapeutic benefits in mitigating MA-induced dopaminergic neurodegeneration.

Loading

Article metrics loading...

/content/journals/cn/10.2174/157015911795017353
2011-03-01
2025-09-15
Loading full text...

Full text loading...

/content/journals/cn/10.2174/157015911795017353
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test