Skip to content
2000
image of Emerging Potential of Ras-proximate-1 (Rap1) in Mediating Neurodegenerative Diseases

Abstract

Neurodegenerative diseases have posed a rising global threat to the aging population, presenting structural and functional impairments in the central nervous system. These progressive disorders, which affect the brain and spinal cord, develop due to the continuous loss of neurons and myelin sheaths. Such specific pathophysiological changes lead to neurological dysfunction in Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease, resulting in typical motor dysfunctions and cognitive disorders, as well as symptoms like behavioral abnormalities and personality changes. To date, despite various treatments attempting to manage these symptoms, patients’ quality of life remains severely deteriorated. A few effective therapeutics are available to mitigate the progression of neurodegenerative injuries. Increasing attention is now focused on molecular regulatory mechanisms, particularly the association between immune regulation and the neurovascular unit. A critical component in this process is Ras-proximate-1 (Rap1), a small Guanosine Triphosphatase (GTPase). Rap1 is determined to regulate glia-mediated immunoinflammatory responses, vascular endothelial function, and neuronal activity. It also modulates synaptic plasticity and mitochondrial function autophagy-dependent modulation, which are significantly impacted during neuronal degeneration. Additionally, signaling pathways, including PI3K/Akt and ERK, are identified as its downstream effectors. Furthermore, by mediating the permeability of the blood-brain barrier, Rap1 probably influences neuroimmune-vascular modulation throughout the development of neurological disorders. In this review, we investigate recent studies to explore the emerging therapeutic potential of Rap1 in the inflammation-related regulation within neurodegenerative diseases. We also discuss novel treatments and possible targets, including natural medicines and genetic modulation, to enhance therapeutic effects and improve prognosis.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X440842251020104840
2025-10-31
2025-12-15
Loading full text...

Full text loading...

/deliver/fulltext/cn/10.2174/011570159X440842251020104840/BMS-CN-2025-427.html?itemId=/content/journals/cn/10.2174/011570159X440842251020104840&mimeType=html&fmt=ahah

References

  1. Scheltens P. De Strooper B. Kivipelto M. Holstege H. Chételat G. Teunissen C.E. Cummings J. van der Flier W.M. Alzheimer’s disease. Lancet 2021 397 10284 1577 1590 10.1016/S0140‑6736(20)32205‑4 33667416
    [Google Scholar]
  2. Ben-Shlomo Y. Darweesh S. Llibre-Guerra J. Marras C. San Luciano M. Tanner C. The epidemiology of Parkinson’s disease. Lancet 2024 403 10423 283 292 10.1016/S0140‑6736(23)01419‑8 38245248
    [Google Scholar]
  3. Feldman E.L. Sattler R. Kiernan M.C. Goutman S.A. Chiò A. Al-Chalabi A. Transforming amyotrophic lateral sclerosis into a liveable disease. Lancet Neurol. 2025 24 2 100 101 10.1016/S1474‑4422(24)00523‑4 39862877
    [Google Scholar]
  4. Pisoni L. Donini L. Gagni P. Pennuto M. Ratti A. Verde F. Ticozzi N. Mandrioli J. Calvo A. Basso M. Barriers in the nervous system: Challenges and opportunities for novel biomarkers in amyotrophic lateral sclerosis. Cells 2025 14 11 848 10.3390/cells14110848 40498024
    [Google Scholar]
  5. Phillips M.C.L. Picard M. Neurodegenerative disorders, metabolic icebergs, and mitohormesis. Transl. Neurodegener. 2024 13 1 46 10.1186/s40035‑024‑00435‑8 39242576
    [Google Scholar]
  6. Ramos E.L.P. Sousa Neto I.V. Pinto A.P. Cintra D.E. Ropelle E.R. Pauli J.R. de Freitas E.C. Mineo T.W.P. da Silva A.S.R. Mechanisms underlying the interplay between autophagy and the inflammasome in age-related diseases: Implications for exercise immunology. Ageing Res. Rev. 2025 110 102821 10.1016/j.arr.2025.102821 40609647
    [Google Scholar]
  7. Spina E. Ferrari R.R. Pellegrini E. Colombo M. Poloni T.E. Guaita A. Davin A. Mitochondrial alterations, oxidative stress, and therapeutic implications in alzheimer’s disease: A narrative review. Cells 2025 14 3 229 10.3390/cells14030229 39937020
    [Google Scholar]
  8. Hakon J. Quattromani M.J. Sjölund C. Talhada D. Kim B. Moyanova S. Mastroiacovo F. Di Menna L. Olsson R. Englund E. Nicoletti F. Ruscher K. Bauer A.Q. Wieloch T. Inhibiting metabotropic glutamate receptor 5 after stroke restores brain function and connectivity. Brain 2024 147 1 186 200 10.1093/brain/awad293 37656990
    [Google Scholar]
  9. Temple S. Advancing cell therapy for neurodegenerative diseases. Cell Stem Cell 2023 30 5 512 529 10.1016/j.stem.2023.03.017 37084729
    [Google Scholar]
  10. Rupar M.J. Hanson H. Rogers S. Botlick B. Trimmer S. Hickman J.J. Modelling the innate immune system in microphysiological systems. Lab Chip 2024 24 15 3604 3625 10.1039/D3LC00812F 38957150
    [Google Scholar]
  11. Sarkar S.K. Gubert C. Hannan A.J. The microbiota-inflammasome-brain axis as a pathogenic mediator of neurodegenerative disorders. Neurosci. Biobehav. Rev. 2025 176 106276 10.1016/j.neubiorev.2025.106276 40614949
    [Google Scholar]
  12. Jin Y. Du Q. Song M. Kang R. Zhou J. Zhang H. Ding Y. Amyloid-β-targeting immunotherapies for Alzheimer’s disease. J. Control. Release 2024 375 346 365 10.1016/j.jconrel.2024.09.012 39271059
    [Google Scholar]
  13. Sharma M. Burré J. α-Synuclein in synaptic function and dysfunction. Trends Neurosci. 2023 46 2 153 166 10.1016/j.tins.2022.11.007 36567199
    [Google Scholar]
  14. Tansey M.G. Wallings R.L. Houser M.C. Herrick M.K. Keating C.E. Joers V. Inflammation and immune dysfunction in Parkinson disease. Nat. Rev. Immunol. 2022 22 11 657 673 10.1038/s41577‑022‑00684‑6 35246670
    [Google Scholar]
  15. Khalaf K. Tornese P. Cocco A. Albanese A. Tauroursodeoxycholic acid: A potential therapeutic tool in neurodegenerative diseases. Transl. Neurodegener. 2022 11 1 33 10.1186/s40035‑022‑00307‑z 35659112
    [Google Scholar]
  16. Tabrizi S.J. Estevez-Fraga C. van Roon-Mom W.M.C. Flower M.D. Scahill R.I. Wild E.J. Muñoz-Sanjuan I. Sampaio C. Rosser A.E. Leavitt B.R. Potential disease-modifying therapies for Huntington’s disease: Lessons learned and future opportunities. Lancet Neurol. 2022 21 7 645 658 10.1016/S1474‑4422(22)00121‑1 35716694
    [Google Scholar]
  17. Bahat A. Itzhaki E. Weiss B. Tolmasov M. Tsoory M. Kuperman Y. Brandis A. Shurrush K.A. Dikstein R. Lowering mutant huntingtin by small molecules relieves Huntington’s disease symptoms and progression. EMBO Mol. Med. 2024 16 3 523 546 10.1038/s44321‑023‑00020‑y 38374466
    [Google Scholar]
  18. Ko S. Liu X. Taniguchi Y. Ichihara G. Komuro J. Yamakawa H. Shirakawa K. Hashimoto H. Katsumata Y. Endo J. Hattori M. Minato N. Sano M. Anzai A. Ieda M. Sipa1 drives a maladaptive fibroblast-myeloid axis after myocardial infarction. Circ. Res. 2025 137 4 533 547 10.1161/CIRCRESAHA.124.326030 40567222
    [Google Scholar]
  19. Rodríguez-Blázquez A. Carabias A. Morán-Vaquero A. de Cima S. Luque-Ortega J.R. Alfonso C. Schuck P. Manso J.A. Macedo-Ribeiro S. Guerrero C. de Pereda J.M. Crk proteins activate the Rap1 guanine nucleotide exchange factor C3G by segregated adaptor-dependent and -independent mechanisms. Cell Commun. Signal. 2023 21 1 30 10.1186/s12964‑023‑01042‑2 36737758
    [Google Scholar]
  20. Azoulay-Alfaguter I. Strazza M. Mor A. Chaperone-mediated specificity in Ras and Rap signaling. Crit. Rev. Biochem. Mol. Biol. 2015 50 3 194 202 10.3109/10409238.2014.989308 25488471
    [Google Scholar]
  21. Xu W. Wittchen E.S. Hoopes S.L. Stefanini L. Burridge K. Caron K.M. Small GTPase Rap1A/B is required for lymphatic development and adrenomedullin-induced stabilization of lymphatic endothelial junctions. Arterioscler. Thromb. Vasc. Biol. 2018 38 10 2410 2422 10.1161/ATVBAHA.118.311645 30354217
    [Google Scholar]
  22. Tang S. Chen T. Yang M. Wang L. Yu Z. Xie B. Qian C. Xu S. Li N. Cao X. Wang J. Extracellular calcium elicits feedforward regulation of the Toll-like receptor-triggered innate immune response. Cell. Mol. Immunol. 2017 14 2 180 191 10.1038/cmi.2015.59 26277896
    [Google Scholar]
  23. Mele S. Devereux S. Pepper A.G. Infante E. Ridley A.J. Calcium-RasGRP2-Rap1 signaling mediates CD38-induced migration of chronic lymphocytic leukemia cells. Blood Adv. 2018 2 13 1551 1561 10.1182/bloodadvances.2017014506 29970392
    [Google Scholar]
  24. Robichaux W.G. Cheng X. Intracellular cAMP sensor EPAC: Physiology, pathophysiology, and therapeutics development. Physiol. Rev. 2018 98 2 919 1053 10.1152/physrev.00025.2017 29537337
    [Google Scholar]
  25. Guan T. Zhang W. Li M. Wang Q. Guo L. Guo B. Luo X. Li Z. Lu M. Dong Z. Xu M. Liu M. Liu Y. Feng J. D-Ala2-GIP (1-30) promotes angiogenesis by facilitating endothelial cell migration via the Epac/Rap1/Cdc42 signaling pathway. Cell. Signal. 2025 127 111615 10.1016/j.cellsig.2025.111615 39855534
    [Google Scholar]
  26. Jaśkiewicz A. Pająk B. Orzechowski A. The many faces of Rap1 GTPase. Int. J. Mol. Sci. 2018 19 10 2848 10.3390/ijms19102848 30241315
    [Google Scholar]
  27. Ding H. Bai F. Cao H. Xu J. Fang L. Wu J. Yuan Q. Zhou Y. Sun Q. He W. Dai C. Zen K. Jiang L. Yang J. PDE/cAMP/Epac/C/EBP-β signaling cascade regulates mitochondria biogenesis of tubular epithelial cells in renal fibrosis. Antioxid. Redox Signal. 2018 29 7 637 652 10.1089/ars.2017.7041 29216750
    [Google Scholar]
  28. Kim Y.D. Park H.G. Song S. Kim J. Lee B.J. Broadie K. Lee S. Presynaptic structural and functional plasticity are coupled by convergent Rap1 signaling. J. Cell Biol. 2024 223 7 202309095 10.1083/jcb.202309095 38748250
    [Google Scholar]
  29. Rothenberg K.E. Chen Y. McDonald J.A. Fernandez-Gonzalez R. Rap1 coordinates cell-cell adhesion and cytoskeletal reorganization to drive collective cell migration in vivo. Curr. Biol. 2023 33 13 2587 2601.e5 10.1016/j.cub.2023.05.009 37244252
    [Google Scholar]
  30. Yang L. Chen L. Li W. Zhang Y. Yang G. Huang B. Cen Y. Wang H. Yang X. Lin F. Pang Y. Qi G. METTL3-mediated m6A RNA methylation was involved in aluminum-induced neurotoxicity. Ecotoxicol. Environ. Saf. 2024 270 115878 10.1016/j.ecoenv.2023.115878 38150748
    [Google Scholar]
  31. Andres-Alonso M. Ammar M.R. Butnaru I. Gomes G.M. Acuña Sanhueza G. Raman R. Yuanxiang P. Borgmeyer M. Lopez-Rojas J. Raza S.A. Brice N. Hausrat T.J. Macharadze T. Diaz-Gonzalez S. Carlton M. Failla A.V. Stork O. Schweizer M. Gundelfinger E.D. Kneussel M. Spilker C. Karpova A. Kreutz M.R. SIPA1L2 controls trafficking and local signaling of TrkB-containing amphisomes at presynaptic terminals. Nat. Commun. 2019 10 1 5448 10.1038/s41467‑019‑13224‑z 31784514
    [Google Scholar]
  32. Sun X. Wang Y. Zhao Y. Xu X. Lu W. Li Y. Bian F. Xiang L. Zhou L. Activation of the Epac/Rap1 signaling pathway alleviates blood-brain barrier disruption and brain damage following cerebral ischemia/reperfusion injury. Int. Immunopharmacol. 2023 117 110014 10.1016/j.intimp.2023.110014 36931001
    [Google Scholar]
  33. DeSena A.D. Do T. Schulert G.S. Systemic autoinflammation with intractable epilepsy managed with interleukin-1 blockade. J. Neuroinflammation 2018 15 1 38 10.1186/s12974‑018‑1063‑2 29426321
    [Google Scholar]
  34. Ueda Y. Higasa K. Kamioka Y. Kondo N. Horitani S. Ikeda Y. Bergmeier W. Fukui Y. Kinashi T. Rap1 organizes lymphocyte front-back polarity via RhoA signaling and talin1. iScience 2023 26 8 107292 10.1016/j.isci.2023.107292 37520697
    [Google Scholar]
  35. Wu J.S. Lõhelaid H. Shih C.C. Liew H.K. Wang V. Hu W.F. Chen Y.H. Saarma M. Airavaara M. Tseng K.Y. Targeting Rap1b signaling cascades with CDNF: Mitigating platelet activation, plasma oxylipins and reperfusion injury in stroke. Mol. Ther. 2024 32 11 4021 4044 10.1016/j.ymthe.2024.09.005 39256999
    [Google Scholar]
  36. Kim J.J. Kim D.H. Lee J.Y. Lee B.C. Kang I. Kook M.G. Kong D. Choi S.W. Woo H.M. Kim D.I. Kang K.S. cAMP/EPAC signaling enables ETV2 to induce endothelial cells with high angiogenesis potential. Mol. Ther. 2020 28 2 466 478 10.1016/j.ymthe.2019.11.019 31864907
    [Google Scholar]
  37. Shin E. Kashiwagi Y. Kuriu T. Iwasaki H. Tanaka T. Koizumi H. Gleeson J.G. Okabe S. Doublecortin-like kinase enhances dendritic remodelling and negatively regulates synapse maturation. Nat. Commun. 2013 4 1 1440 10.1038/ncomms2443 23385585
    [Google Scholar]
  38. Goode D.J. Molliver D.C. Regulation of mitochondrial function by Epac2 contributes to acute inflammatory hyperalgesia. J. Neurosci. 2021 41 13 2883 2898 10.1523/JNEUROSCI.2368‑20.2021 33593853
    [Google Scholar]
  39. Cai Y. Liu H. Song E. Wang L. Xu J. He Y. Zhang D. Zhang L. Cheng K.K. Jin L. Wu M. Liu S. Qi D. Zhang L. Lopaschuk G.D. Wang S. Xu A. Xia Z. Deficiency of telomere-associated repressor activator protein 1 precipitates cardiac aging in mice via p53/PPARα signaling. Theranostics 2021 11 10 4710 4727 10.7150/thno.51739 33754023
    [Google Scholar]
  40. López-Menéndez C. Simón-García A. Gamir-Morralla A. Pose-Utrilla J. Luján R. Mochizuki N. Díaz-Guerra M. Iglesias T. Excitotoxic targeting of Kidins220 to the Golgi apparatus precedes calpain cleavage of Rap1-activation complexes. Cell Death Dis. 2019 10 7 535 10.1038/s41419‑019‑1766‑z 31296845
    [Google Scholar]
  41. Pan H.Q. Liu W.Z. Yang C.Z. Jiang S.Y. Zhang M.X. Hu P. Yang H.T. Wang Y.Y. Li Y.Q. Tu J.L. Chen W.B. Liu L. Pan B.X. Zhang W.H. Enhanced Rap1 small GTPase activity in the ventral hippocampus drives stress-induced anxiety. Sci. Adv. 2025 11 21 eadt3163 10.1126/sciadv.adt3163 40408487
    [Google Scholar]
  42. Choi H.S. Park H. Min H. Kim K.S. Kim S.M. Li J. Liu C. Ko H.W. Lee M.G. Song L. Zhao B. Bok J. SHANK2 establishes auditory hair bundle architecture essential for mammalian hearing. Proc. Natl. Acad. Sci. USA 2025 122 28 2426646122 10.1073/pnas.2426646122 40627398
    [Google Scholar]
  43. Kaneko K. Lu W. Xu Y. Morozov A. Fukuda M. The small GTPase Rap1 in POMC neurons regulates leptin actions and glucose metabolism. Mol. Metab. 2025 95 102117 10.1016/j.molmet.2025.102117 40024570
    [Google Scholar]
  44. Feng Y. Zhang S. Suo D. Fu T. Li Y. Li Z. Wang C. Fan X. Integrating metabolomics and transcriptomics to analyse and reveal the regulatory mechanisms of mung bean polyphenols on intestinal cell damage under different heat stress temperatures. Nutrients 2024 17 1 88 10.3390/nu17010088 39796522
    [Google Scholar]
  45. Johansen K.H. Golec D.P. Okkenhaug K. Schwartzberg P.L. Mind the GAP: RASA2 and RASA3 GTPase-activating proteins as gatekeepers of T cell activation and adhesion. Trends Immunol. 2023 44 11 917 931 10.1016/j.it.2023.09.002 37858490
    [Google Scholar]
  46. Ramshekar A. Wang H. Kunz E. Pappas C. Hageman G.S. Chaqour B. Sacks D.B. Hartnett M.E. Active Rap1‐mediated inhibition of choroidal neovascularization requires interactions with IQGAP1 in choroidal endothelial cells. FASEB J. 2021 35 7 21642 10.1096/fj.202100112R 34166557
    [Google Scholar]
  47. Mutvei A.P. Nagiec M.J. Hamann J.C. Kim S.G. Vincent C.T. Blenis J. Rap1-GTPases control mTORC1 activity by coordinating lysosome organization with amino acid availability. Nat. Commun. 2020 11 1 1416 10.1038/s41467‑020‑15156‑5 32184389
    [Google Scholar]
  48. Li X. Liu N. Wu D. Li S. Wang Q. Zhang D. Song L. Huang M. Chen X. Li W. Hippocampal transcriptomic analyses reveal the potential antiapoptotic mechanism of a novel anticonvulsant agent Q808 on pentylenetetrazol-induced epilepsy in rats. Biomed. Pharmacother. 2024 175 116746 10.1016/j.biopha.2024.116746 38739991
    [Google Scholar]
  49. Liu Y. Guo D. Yu B. Zeng T. Jiao F.L.I. Bi Y.M. The effects and mechanisms of modified Xiaoyaosan on chronic unpredictable mild stress (CUMS)-induced depressive mice based on network pharmacology. J. Ethnopharmacol. 2024 324 117754 10.1016/j.jep.2024.117754 38232859
    [Google Scholar]
  50. Li F. Eteleeb A.M. Buchser W. Sohn C. Wang G. Xiong C. Payne P.R. McDade E. Karch C.M. Harari O. Cruchaga C. Weakly activated core neuroinflammation pathways were identified as a central signaling mechanism contributing to the chronic neurodegeneration in Alzheimer’s disease. Front. Aging Neurosci. 2022 14 935279 10.3389/fnagi.2022.935279 36238934
    [Google Scholar]
  51. Dumbacher M. Van Dooren T. Princen K. De Witte K. Farinelli M. Lievens S. Tavernier J. Dehaen W. Wera S. Winderickx J. Allasia S. Kilonda A. Spieser S. Marchand A. Chaltin P. Hoogenraad C.C. Griffioen G. Modifying Rap1-signalling by targeting Pde6δ is neuroprotective in models of Alzheimer’s disease. Mol. Neurodegener. 2018 13 1 50 10.1186/s13024‑018‑0283‑3 30257685
    [Google Scholar]
  52. Reid K.M. Brown G.C. LRPAP1 is released from activated microglia and inhibits microglial phagocytosis and amyloid beta aggregation. Front. Immunol. 2023 14 1286474 10.3389/fimmu.2023.1286474 38035103
    [Google Scholar]
  53. Singh P.J. Verma B. Wells A. Mendes C.C. Dunn D. Chen Y.N. Oh J. Blincowe L. Wainwright S.M. Fischer R. Fan S.J. Harris A.L. Goberdhan D.C.I. Wilson C. Amyloid-β disrupts APP-regulated protein aggregation and dissociation from recycling endosomal membranes. EMBO J. 2025 44 16 4443 4472 10.1038/s44318‑025‑00497‑y 40676215
    [Google Scholar]
  54. Zhao J. Li Z. Zhang R. Yu H. Zhang L. Network pharmacology mechanism of Rosmarinus officinalis L.(Rosemary) to improve cell viability and reduces apoptosis in treating Alzheimer’s disease. BMC Complement. Med. Ther. 2025 25 1 94 10.1186/s12906‑025‑04771‑8 40055645
    [Google Scholar]
  55. Wang Z.H. Liu P. Liu X. Manfredsson F.P. Sandoval I.M. Yu S.P. Wang J.Z. Ye K. Delta-secretase phosphorylation by SRPK2 enhances its enzymatic activity, provoking pathogenesis in Alzheimer’s disease. Mol. Cell 2017 67 5 812 825.e5 10.1016/j.molcel.2017.07.018 28826672
    [Google Scholar]
  56. Zhang L. Zhang P. Wang G. Zhang H. Zhang Y. Yu Y. Zhang M. Xiao J. Crespo P. Hell J.W. Lin L. Huganir R.L. Zhu J.J. Ras and Rap signal bidirectional synaptic plasticity via distinct subcellular microdomains. Neuron 2018 98 4 783 800.e4 10.1016/j.neuron.2018.03.049 29706584
    [Google Scholar]
  57. Penzes P. Woolfrey K.M. Srivastava D.P. Epac2-mediated dendritic spine remodeling: Implications for disease. Mol. Cell. Neurosci. 2011 46 2 368 380 10.1016/j.mcn.2010.11.008 21115118
    [Google Scholar]
  58. Ou M. Wang S. Sun M. An J. Lv H. Zeng X. Hou S.X. Xie W. The PDZ-GEF Gef26 regulates synapse development and function via FasII and Rap1 at the Drosophila neuromuscular junction. Exp. Cell Res. 2019 374 2 342 352 10.1016/j.yexcr.2018.12.008 30553967
    [Google Scholar]
  59. Watson C.N. Begum G. Ashman E. Thorn D. Yakoub K.M. Hariri M.A. Nehme A. Mondello S. Kobeissy F. Belli A. Di Pietro V. Co-expression analysis of microRNAs and proteins in brain of Alzheimer’s disease patients. Cells 2022 11 1 163 10.3390/cells11010163 35011725
    [Google Scholar]
  60. Mercer A. Sancandi M. Maclatchy A. Lange S. Brain-region-specific differences in protein citrullination/deimination in a pre-motor parkinson’s disease rat model. Int. J. Mol. Sci. 2024 25 20 11168 10.3390/ijms252011168 39456949
    [Google Scholar]
  61. Zhang X. Nagai T. Ahammad R.U. Kuroda K. Nakamuta S. Nakano T. Yukinawa N. Funahashi Y. Yamahashi Y. Amano M. Yoshimoto J. Yamada K. Kaibuchi K. Balance between dopamine and adenosine signals regulates the PKA/Rap1 pathway in striatal medium spiny neurons. Neurochem. Int. 2019 122 8 18 10.1016/j.neuint.2018.10.008 30336179
    [Google Scholar]
  62. Kosuru R. Chrzanowska M. Integration of Rap1 and calcium signaling. Int. J. Mol. Sci. 2020 21 5 1616 10.3390/ijms21051616 32120817
    [Google Scholar]
  63. Heo K. Nahm M. Lee M.J. Kim Y.E. Ki C.S. Kim S.H. Lee S. The Rap activator Gef26 regulates synaptic growth and neuronal survival via inhibition of BMP signaling. Mol. Brain 2017 10 1 62 10.1186/s13041‑017‑0342‑7 29282074
    [Google Scholar]
  64. Bastioli G. Arnold J.C. Mancini M. Mar A.C. Gamallo-Lana B. Saadipour K. Chao M.V. Rice M.E. Voluntary exercise boosts striatal dopamine release: Evidence for the necessary and sufficient role of BDNF. J. Neurosci. 2022 42 23 4725 4736 10.1523/JNEUROSCI.2273‑21.2022 35577554
    [Google Scholar]
  65. Min S. Xu Q. Qin L. Li Y. Li Z. Chen C. Wu H. Han J. Zhu X. Jin P. Tang B. Altered hydroxymethylome in the substantia nigra of Parkinson’s disease. Hum. Mol. Genet. 2022 31 20 3494 3503 10.1093/hmg/ddac122 35661211
    [Google Scholar]
  66. Shan J. Mo J. An C. Xiang L. Qi J. β-Cyclocitral from Lavandula angustifolia Mill. Exerts anti-aging effects on yeasts and mammalian cells via telomere protection, antioxidative stress, and autophagy activation. Antioxidants 2024 13 6 715 10.3390/antiox13060715 38929154
    [Google Scholar]
  67. Moors T.E. Hoozemans J.J.M. Ingrassia A. Beccari T. Parnetti L. Chartier-Harlin M.C. van de Berg W.D.J. Therapeutic potential of autophagy-enhancing agents in Parkinson’s disease. Mol. Neurodegener. 2017 12 1 11 10.1186/s13024‑017‑0154‑3 28122627
    [Google Scholar]
  68. Ahmed Selim N. Wojtovich A.P. Mitochondrial membrane potential and compartmentalized signaling: Calcium, ROS, and beyond. Redox Biol. 2025 86 103859 10.1016/j.redox.2025.103859 40930031
    [Google Scholar]
  69. Riolo G. Ricci C. De Angelis N. Marzocchi C. Guerrera G. Borsellino G. Giannini F. Battistini S. BDNF and Pro-BDNF in amyotrophic lateral sclerosis: A new perspective for biomarkers of neurodegeneration. Brain Sci. 2022 12 5 617 10.3390/brainsci12050617 35625004
    [Google Scholar]
  70. Liu C. Xu Y. Yang H. Zhang J. Establishment of axon regeneration regulatory network and the role of low intensity pulsed ultrasound in the network. Saudi J. Biol. Sci. 2019 26 8 1922 1926 10.1016/j.sjbs.2019.07.007 31889775
    [Google Scholar]
  71. Liu X. Song L. Ma X. Liu Y. Huang H. Xu Y. Yan W. Overexpression of RAPGEF3 enhances the therapeutic effect of dezocine in treatment of neuropathic pain. Genet. Mol. Biol. 2021 44 4 20200463 10.1590/1678‑4685‑gmb‑2020‑0463 34807222
    [Google Scholar]
  72. Prudencio M. Belzil V.V. Batra R. Ross C.A. Gendron T.F. Pregent L.J. Murray M.E. Overstreet K.K. Piazza-Johnston A.E. Desaro P. Bieniek K.F. DeTure M. Lee W.C. Biendarra S.M. Davis M.D. Baker M.C. Perkerson R.B. van Blitterswijk M. Stetler C.T. Rademakers R. Link C.D. Dickson D.W. Boylan K.B. Li H. Petrucelli L. Distinct brain transcriptome profiles in C9orf72-associated and sporadic ALS. Nat. Neurosci. 2015 18 8 1175 1182 10.1038/nn.4065 26192745
    [Google Scholar]
  73. Calma A.D. Pavey N. Menon P. Vucic S. Neuroinflammation in amyotrophic lateral sclerosis: Pathogenic insights and therapeutic implications. Curr. Opin. Neurol. 2024 37 5 585 592 10.1097/WCO.0000000000001279 38775138
    [Google Scholar]
  74. Yang L. Liu C.C. Zheng H. Kanekiyo T. Atagi Y. Jia L. Wang D. N’songo A. Can D. Xu H. Chen X.F. Bu G. LRP1 modulates the microglial immune response via regulation of JNK and NF-κB signaling pathways. J. Neuroinflammation 2016 13 1 304 10.1186/s12974‑016‑0772‑7 27931217
    [Google Scholar]
  75. Wang K. Zhou H.J. Wang M. CCM3 and cerebral cavernous malformation disease. Stroke Vasc. Neurol. 2019 4 2 67 70 10.1136/svn‑2018‑000195 31338212
    [Google Scholar]
  76. Root J. Merino P. Nuckols A. Johnson M. Kukar T. Lysosome dysfunction as a cause of neurodegenerative diseases: Lessons from frontotemporal dementia and amyotrophic lateral sclerosis. Neurobiol. Dis. 2021 154 105360 10.1016/j.nbd.2021.105360 33812000
    [Google Scholar]
  77. Xue L. Xu J. Xiao P. Jiang Y. Lin Y. Feng C. Jin Y. Zhou Z. Wang G. Lu D. Perfluorooctane sulfonate (PFOS) induced bone loss by inhibiting FoxO1-mediated defense against oxidative stress in osteoblast. Ecotoxicol. Environ. Saf. 2025 290 117524 10.1016/j.ecoenv.2024.117524 39675079
    [Google Scholar]
  78. Che X. Wang X. Zhang J. Peng C. Zhen Y. Shao X. Zhang G. Dong L. Vitexin exerts cardioprotective effect on chronic myocardial ischemia/reperfusion injury in rats via inhibiting myocardial apoptosis and lipid peroxidation. Am. J. Transl. Res. 2016 8 8 3319 3328 [PMID: 27648122
    [Google Scholar]
  79. Yang Z. Kirton H.M. Al-Owais M. Thireau J. Richard S. Peers C. Steele D.S. Epac2-Rap1 signaling regulates reactive oxygen species production and susceptibility to cardiac arrhythmias. Antioxid. Redox Signal. 2017 27 3 117 132 10.1089/ars.2015.6485 27649969
    [Google Scholar]
  80. Laragione T. Harris C. Gulko P.S. Huntingtin-interacting protein 1-related (HIP1R) regulates rheumatoid arthritis synovial fibroblast invasiveness. Cells 2025 14 7 483 10.3390/cells14070483 40214437
    [Google Scholar]
  81. Wanker E.E. Ast A. Schindler F. Trepte P. Schnoegl S. The pathobiology of perturbed mutant huntingtin protein–protein interactions in Huntington’s disease. J. Neurochem. 2019 151 4 507 519 10.1111/jnc.14853 31418858
    [Google Scholar]
  82. Salomaa S.I. Miihkinen M. Kremneva E. Paatero I. Lilja J. Jacquemet G. Vuorio J. Antenucci L. Kogan K. Hassani Nia F. Hollos P. Isomursu A. Vattulainen I. Coffey E.T. Kreienkamp H.J. Lappalainen P. Ivaska J. SHANK3 conformation regulates direct actin binding and crosstalk with Rap1 signaling. Curr. Biol. 2021 31 22 4956 4970.e9 10.1016/j.cub.2021.09.022 34610274
    [Google Scholar]
  83. Wennagel D. Braz B.Y. Capizzi M. Barnat M. Humbert S. Huntingtin coordinates dendritic spine morphology and function through cofilin-mediated control of the actin cytoskeleton. Cell Rep. 2022 40 9 111261 10.1016/j.celrep.2022.111261 36044862
    [Google Scholar]
  84. Barry J. Bui M.T.N. Levine M.S. Cepeda C. Synaptic pathology in Huntington’s disease: Beyond the corticostriatal pathway. Neurobiol. Dis. 2022 162 105574 10.1016/j.nbd.2021.105574 34848336
    [Google Scholar]
  85. Dargaei Z. Bang J.Y. Mahadevan V. Khademullah C.S. Bedard S. Parfitt G.M. Kim J.C. Woodin M.A. Restoring GABAergic inhibition rescues memory deficits in a Huntington’s disease mouse model. Proc. Natl. Acad. Sci. USA 2018 115 7 E1618 E1626 10.1073/pnas.1716871115 29382760
    [Google Scholar]
  86. Funahashi Y. Ariza A. Emi R. Xu Y. Shan W. Suzuki K. Kozawa S. Ahammad R.U. Wu M. Takano T. Yura Y. Kuroda K. Nagai T. Amano M. Yamada K. Kaibuchi K. Phosphorylation of Npas4 by MAPK regulates reward-related gene expression and behaviors. Cell Rep. 2019 29 10 3235 3252.e9 10.1016/j.celrep.2019.10.116 31801086
    [Google Scholar]
  87. Cui Z. Zhao X. Amevor F.K. Du X. Wang Y. Li D. Shu G. Tian Y. Zhao X. Therapeutic application of quercetin in aging-related diseases: SIRT1 as a potential mechanism. Front. Immunol. 2022 13 943321 10.3389/fimmu.2022.943321 35935939
    [Google Scholar]
  88. Hong C.K.Y. Cohen B.A. Genomic environments scale the activities of diverse core promoters. Genome Res. 2022 32 1 85 96 10.1101/gr.276025.121 34961747
    [Google Scholar]
  89. Kamioka Y. Ueda Y. Kondo N. Tokuhiro K. Ikeda Y. Bergmeier W. Kinashi T. Distinct bidirectional regulation of LFA1 and α4β7 by Rap1 and integrin adaptors in T cells under shear flow. Cell Rep. 2023 42 6 112580 10.1016/j.celrep.2023.112580 37267105
    [Google Scholar]
  90. Sullivan D.P. Dalal P.J. Jaulin F. Sacks D.B. Kreitzer G. Muller W.A. Endothelial IQGAP1 regulates leukocyte transmigration by directing the LBRC to the site of diapedesis. J. Exp. Med. 2019 216 11 2582 2601 10.1084/jem.20190008 31395618
    [Google Scholar]
  91. Yang W. Mei F.C. Lin W. White M.A. Li L. Li Y. Pan S. Cheng X. Protein SUMOylation promotes cAMP-independent EPAC1 activation. Cell. Mol. Life Sci. 2024 81 1 283 10.1007/s00018‑024‑05315‑y 38963422
    [Google Scholar]
  92. Salinas G.F. Krausz S. Dontje W. Evavold B.D. Tak P.P. Baeten D.L. Reedquist K.A. Sustained Rap1 activation in autoantigen-specific T lymphocytes attenuates experimental autoimmune encephalomyelitis. J. Neuroimmunol. 2012 250 1-2 35 43 10.1016/j.jneuroim.2012.05.012 22688423
    [Google Scholar]
  93. Terrabuio E. Pietronigro E.C. Bani A. Della Bianca V. Laudanna C. Rossi B. Finotti G. Santos-Lima B. Zenaro E. Turano E. Tosadori G. Calgaro M. Vitulo N. Castellucci M. Cecconi D. Brandi J. Vareltzakis N. Mainieri F. Calore A. Angelini G. Bonetti B. Constantin G. CD103–CD8+ T cells promote neurotoxic inflammation in Alzheimer’s disease via granzyme K–PAR-1 signaling. Nat. Commun. 2025 16 1 8372 10.1038/s41467‑025‑62405‑6 40993111
    [Google Scholar]
  94. Carmona G. Göttig S. Orlandi A. Scheele J. Bäuerle T. Jugold M. Kiessling F. Henschler R. Zeiher A.M. Dimmeler S. Chavakis E. Role of the small GTPase Rap1 for integrin activity regulation in endothelial cells and angiogenesis. Blood 2009 113 2 488 497 10.1182/blood‑2008‑02‑138438 18805968
    [Google Scholar]
  95. Noda K. Zhang J. Fukuhara S. Kunimoto S. Yoshimura M. Mochizuki N. Vascular endothelial-cadherin stabilizes at cell-cell junctions by anchoring to circumferential actin bundles through alpha- and beta-catenins in cyclic AMP-Epac-Rap1 signal-activated endothelial cells. Mol. Biol. Cell 2010 21 4 584 596 10.1091/mbc.e09‑07‑0580 20032304
    [Google Scholar]
  96. Stokman G. Qin Y. Genieser H.G. Schwede F. de Heer E. Bos J.L. Bajema I.M. van de Water B. Price L.S. Epac-Rap signaling reduces cellular stress and ischemia-induced kidney failure. J. Am. Soc. Nephrol. 2011 22 5 859 872 10.1681/ASN.2010040423 21493776
    [Google Scholar]
  97. Yazbeck P. Cullere X. Bennett P. Yajnik V. Wang H. Kawada K. Davis V.M. Parikh A. Kuo A. Mysore V. Hla T. Milstone D.S. Mayadas T.N. DOCK4 regulation of Rho GTPases mediates pulmonary vascular barrier function. Arterioscler. Thromb. Vasc. Biol. 2022 42 7 886 902 10.1161/ATVBAHA.122.317565 35477279
    [Google Scholar]
  98. Kosuru R. Chrzanowska M. Divergent functions of Rap1A and Rap1B in endothelial biology and disease. Int. J. Mol. Sci. 2025 26 11 5372 10.3390/ijms26115372 40508181
    [Google Scholar]
  99. Ko J. Jang S. Jang S. Park S. Yi J. Choi D.K. Kim S. Kim M.O. Lim S.G. Ryoo Z.Y. Glucose-dependent insulinotropic polypeptide (GIP) alleviates ferroptosis in aging-induced brain damage through the Epac/Rap1 signaling pathway. BMB Rep. 2024 57 9 417 423 10.5483/BMBRep.2024‑0067 39219045
    [Google Scholar]
  100. Wang Z. Zhang H. Li S. Song X. Shi C. Zhang Y. Han F. An integrative study on the effects of Lingguizhugan decoction in treating Alzheimer’s disease rats through modulation of multiple pathways involving various components. Comput. Biol. Med. 2025 191 110149 10.1016/j.compbiomed.2025.110149 40228446
    [Google Scholar]
  101. Banerjee S. Saha D. Sharma R. Jaidee W. Puttarak P. Chaiyakunapruk N. Chaoroensup R. Phytocannabinoids in neuromodulation: From omics to epigenetics. J. Ethnopharmacol. 2024 330 118201 10.1016/j.jep.2024.118201 38677573
    [Google Scholar]
  102. Lim Y. Hwang W. Kim J.Y. Lee C.H. Kim Y.J. Lee D. Kwon O. Synergistic mechanisms of Sanghuang-Danshen phytochemicals on postprandial vascular dysfunction in healthy subjects: A network biology approach based on a clinical trial. Sci. Rep. 2019 9 1 9746 10.1038/s41598‑019‑46289‑3 31278329
    [Google Scholar]
  103. Upadhayay P. Sinha S.K. Kumar N. Singh S.K. Jain P. Panchawat S. Rai N. Identification of therapeutic potential of hydroxychavicol against Alzheimer’s disease: An integrated network pharmacology, molecular docking, and dynamic simulation study. J. Aging Res. 2025 2025 1 7062203 10.1155/jare/7062203 40170792
    [Google Scholar]
  104. Youn K. Ho C.T. Jun M. Investigating the potential anti-Alzheimer’s disease mechanism of marine polyphenols: Insights from network pharmacology and molecular docking. Mar. Drugs 2023 21 11 580 10.3390/md21110580 37999404
    [Google Scholar]
  105. Li F.G. Shi X.Y. Yang L. Lu X. Qi Y. Li P. Yang H. Gao W. Quantitative proteomics based bioactive proteins discovery and quality control of medicinal leeches. J. Ethnopharmacol. 2024 319 Pt 1 117117 10.1016/j.jep.2023.117117 37659761
    [Google Scholar]
  106. Liu X. Huang Y. Mu L. Friedman V. Kelly T.J. Hu Y. Yuan D. Liu Q. Epac2-mediated synaptic insertion of Ca2+-permeable AMPARs in the nucleus accumbens contributes to incubation of cocaine craving. Neuropsychopharmacology 2025 50 4 620 629 10.1038/s41386‑024‑02030‑x 39702576
    [Google Scholar]
  107. Miyata M. Rikitake Y. Takahashi M. Nagamatsu Y. Yamauchi Y. Ogita H. Hirata K. Takai Y. Regulation by afadin of cyclical activation and inactivation of Rap1, Rac1, and RhoA small G proteins at leading edges of moving NIH3T3 cells. J. Biol. Chem. 2009 284 36 24595 24609 10.1074/jbc.M109.016436 19589776
    [Google Scholar]
/content/journals/cn/10.2174/011570159X440842251020104840
Loading
/content/journals/cn/10.2174/011570159X440842251020104840
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test