Skip to content
2000
image of Global Emerging Trends of Neural Regeneration Knowledge Structures Using Bibliometrics and Visual Analytics based on 3941 Studies from 2015 to 2024

Abstract

Introduction

Neural regeneration remains a highly debated topic, yet it lacks a systematic bibliometric analysis. The objective of this study is to utilize bibliometric methods to identify research trends and significant topics within this domain, thereby providing a comprehensive overview of the current state of knowledge in this field.

Methods

The Web of Science Core Collection (January 1, 2015 to October 3, 2024) served as the basis for analyzing 3,941 documents using CiteSpace and VOSviewer. The analysis focused on country/institution collaboration networks, keyword co-occurrence, and hotspot evolution.

Results

Between 2015 and 2024, the number of publications in this field demonstrated an upward trend, characterised by fluctuations. China and the United States were the leading contributors to global research output, with China contributing 1,387 papers, accounting for 35.19% of the total, and boasting an H-index of 62. In contrast, the United States contributed 1,047 papers, with an h-index of 74. In recent years, research has been concentrated on four major technological directions, including neural electrical stimulation, biomaterial scaffolds, gene editing, and neural modulation.

Discussion

This transformation in scholarly focus reflects the convergence of multiple catalytic factors, which have enabled the sophisticated simulation of neural systems, provided unprecedented analytical tools for neuroscience inquiry, and intensified societal demands for artificial intelligence applications and neurotechnology innovations, thereby stimulating accelerated research investment.

Conclusion

Over the past decade, researchers worldwide have focused on neural regeneration. Bibliometric analyses have assessed scholarship, identified research hotspots, summarized core concepts, and provided valuable insights for future research in this field.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X394299251006114128
2025-10-28
2025-12-15
Loading full text...

Full text loading...

/deliver/fulltext/cn/10.2174/011570159X394299251006114128/BMS-CN-2025-HT17-7009-1.html?itemId=/content/journals/cn/10.2174/011570159X394299251006114128&mimeType=html&fmt=ahah

References

  1. Steward M.M. Sridhar A. Meyer J.S. Neural regeneration. Curr. Top. Microbiol. Immunol. 2012 367 163 191 10.1007/82_2012_302 23292211
    [Google Scholar]
  2. Nimgampalle M. Chakravarthy H. Sharma S. Shree S. Bhat A.R. Pradeepkiran J.A. Devanathan V. Neurotransmitter systems in the etiology of major neurological disorders: Emerging insights and therapeutic implications. Ageing Res. Rev. 2023 89 101994 10.1016/j.arr.2023.101994 37385351
    [Google Scholar]
  3. Pena S.A. Iyengar R. Eshraghi R.S. Bencie N. Mittal J. Aljohani A. Mittal R. Eshraghi A.A. Gene therapy for neurological disorders: Challenges and recent advancements. J. Drug Target. 2020 28 2 111 128 10.1080/1061186X.2019.1630415 31195838
    [Google Scholar]
  4. Todd L. Inducing neural regeneration from glia using proneural bhlh transcription factors. Adv. Exp. Med. Biol. 2023 1415 577 582 10.1007/978‑3‑031‑27681‑1_84 37440089
    [Google Scholar]
  5. De I. Sharma P. Singh M. Emerging approaches of neural regeneration using physical stimulations solely or coupled with smart piezoelectric nano-biomaterials. Eur. J. Pharm. Biopharm. 2022 173 73 91 10.1016/j.ejpb.2022.02.016 35227856
    [Google Scholar]
  6. Pinho T.S. Cunha C.B. Lanceros-Méndez S. Salgado A.J. Electroactive smart materials for neural tissue regeneration. ACS Appl. Bio Mater. 2021 4 9 6604 6618 10.1021/acsabm.1c00567 35006964
    [Google Scholar]
  7. Hu X. Xu W. Ren Y. Wang Z. He X. Huang R. Ma B. Zhao J. Zhu R. Cheng L. Spinal cord injury: Molecular mechanisms and therapeutic interventions. Signal Transduct. Target. Ther. 2023 8 1 245 10.1038/s41392‑023‑01477‑6 37357239
    [Google Scholar]
  8. Uyeda A. Muramatsu R. Molecular mechanisms of central nervous system axonal regeneration and remyelination: A review. Int. J. Mol. Sci. 2020 21 21 8116 10.3390/ijms21218116 33143194
    [Google Scholar]
  9. Schaeffer J. Vilallongue N. Decourt C. Blot B. El Bakdouri N. Plissonnier E. Excoffier B. Paccard A. Diaz J.J. Humbert S. Catez F. Saudou F. Nawabi H. Belin S. Customization of the translational complex regulates mRNA-specific translation to control CNS regeneration. Neuron 2023 111 18 2881 2898.e12 10.1016/j.neuron.2023.06.005 37442131
    [Google Scholar]
  10. Hilton B.J. Husch A. Schaffran B. Lin T. Burnside E.R. Dupraz S. Schelski M. Kim J. Müller J.A. Schoch S. Imig C. Brose N. Bradke F. An active vesicle priming machinery suppresses axon regeneration upon adult CNS injury. Neuron 2022 110 1 51 69.e7 10.1016/j.neuron.2021.10.007 34706221
    [Google Scholar]
  11. Clifford T. Finkel Z. Rodriguez B. Joseph A. Cai L. Current advancements in spinal cord injury research—glial scar formation and neural regeneration. Cells 2023 12 6 853 10.3390/cells12060853 36980193
    [Google Scholar]
  12. Tian F. Cheng Y. Zhou S. Wang Q. Monavarfeshani A. Gao K. Jiang W. Kawaguchi R. Wang Q. Tang M. Donahue R. Meng H. Zhang Y. Jacobi A. Yan W. Yin J. Cai X. Yang Z. Hegarty S. Stanicka J. Dmitriev P. Taub D. Zhu J. Woolf C.J. Sanes J.R. Geschwind D.H. He Z. Core transcription programs controlling injury-induced neurodegeneration of retinal ganglion cells. Neuron 2024 112 14 2453 2456 10.1016/j.neuron.2024.06.009 39029995
    [Google Scholar]
  13. Li Y. He X. Kawaguchi R. Zhang Y. Wang Q. Monavarfeshani A. Yang Z. Chen B. Shi Z. Meng H. Zhou S. Zhu J. Jacobi A. Swarup V. Popovich P.G. Geschwind D.H. He Z. Microglia-organized scar-free spinal cord repair in neonatal mice. Nature 2020 587 7835 613 618 10.1038/s41586‑020‑2795‑6 33029008
    [Google Scholar]
  14. Liu X. Ding Z. Li X. Xue Z. Research progress, hotspots, and trends of using bim to reduce building energy consumption: Visual analysis based on wos database. Int. J. Environ. Res. Public Health 2023 20 4 3083 10.3390/ijerph20043083 36833778
    [Google Scholar]
  15. Zhu Z. Harowicz M. Zhang J. Saha A. Grimm L.J. Hwang E.S. Mazurowski M.A. Deep learning analysis of breast MRIs for prediction of occult invasive disease in ductal carcinoma in situ. Comput. Biol. Med. 2019 115 103498 10.1016/j.compbiomed.2019.103498 31698241
    [Google Scholar]
  16. Chen C. Hu Z. Liu S. Tseng H. Emerging trends in regenerative medicine: A scientometric analysis in CiteSpace. Expert Opin. Biol. Ther. 2012 12 5 593 608 10.1517/14712598.2012.674507 22443895
    [Google Scholar]
  17. Li X. Tan L. Chen Y. Qin Y. Fan Z. Global trends and hotspots in pediatric anesthetic neurotoxicity research: A bibliometric analysis from 2000 to 2023. Cureus 2024 16 4 58490 10.7759/cureus.58490 38765384
    [Google Scholar]
  18. Arroyo-Machado W. Torres-Salinas D. Herrera-Viedma E. Romero-Frías E. Science through Wikipedia: A novel representation of open knowledge through co-citation networks. PLoS One 2020 15 2 0228713 10.1371/journal.pone.0228713 32040488
    [Google Scholar]
  19. Moffatt D.C. Shah P. Wright A.E. Zon K. Pine H.S. An otolaryngologist's guide to understanding the h-index and how it could affect your future career. OTO Open 2022 6 2 2473974X221099499 10.1177/2473974X221099499
    [Google Scholar]
  20. Ali M.J. Forewarned is forearmed: The h-index as a scientometric. Semin. Ophthalmol. 2021 36 1-2 1 10.1080/08820538.2021.1894889 33734008
    [Google Scholar]
  21. González-Alcaide G. Calafat A. Becoña E. Thijs B. Glänzel W. Co-citation analysis of articles published in substance abuse journals: Intellectual structure and research fields (2001–2012). J. Stud. Alcohol Drugs 2016 77 5 710 722 10.15288/jsad.2016.77.710 27588529
    [Google Scholar]
  22. Garfield E. Citation indexes for science. A new dimension in documentation through association of ideas. Int. J. Epidemiol. 2006 35 5 1123 1127 10.1093/ije/dyl189 16987841
    [Google Scholar]
  23. Wu H. Li Y. Tong L. Wang Y. Sun Z. Worldwide research tendency and hotspots on hip fracture: A 20-year bibliometric analysis. Arch. Osteoporos. 2021 16 1 73 10.1007/s11657‑021‑00929‑2 33866438
    [Google Scholar]
/content/journals/cn/10.2174/011570159X394299251006114128
Loading
/content/journals/cn/10.2174/011570159X394299251006114128
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test