Skip to content
2000
image of Resveratrol Supplementation Modulates Endothelial Dysfunction in Alzheimer’s Disease (AD): In Vitro Effects on Human Aortic Endothelial Cells Exposed to AD Plasma

Abstract

Introduction

Increasing evidence indicates a connection between Alzheimer’s disease (AD) and endothelial dysfunction. Given the lack of a definitive cure for AD, the purpose of this research was to explore the impact of a short incubation with plasma samples obtained from 30 patients with sporadic AD and 21 age- and sex-matched control subjects on cultured human aortic endothelial cells (HAECs), as well as to assess the effects of resveratrol (RSV) supplementation to the plasma.

Methods

Specifically, the study analyzed: the production of nitric oxide (NO) and peroxynitrite; the activities of superoxide dismutase (SOD) and Na+/K+-ATPase; membrane fluidity; and levels of thiobarbituric acid-reactive substances (TBARS).

Results

When incubated with AD plasma, cells showed a decrease in NO levels, enzymatic activities, and membrane fluidity, as well as an increase in peroxynitrite and TBARS production, compared to those exposed to plasma from healthy controls. In contrast, supplementation with RSV-enriched plasma, reduced reactive oxygen species (ROS) levels, and enhanced SOD activity. RSV also improved endothelial function, by increasing membrane fluidity, Na+/K+-ATPase activity, and enhancing NO production and bioavailability, potentially benefiting cerebral perfusion.

Discussion

Though preliminary, our findings highlight the critical role played by vascular health in Alzheimer’s disease, and the potential impact of resveratrol in maintaining the endothelial integrity, thus mitigating the progression of AD .

Conclusion

In conclusion, our study supports the use of dietary natural compounds to reduce oxidative stress and prevent or reverse vascular endothelial dysfunction associated with AD.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X382096250914055513
2025-10-06
2025-12-15
Loading full text...

Full text loading...

References

  1. Kamatham P.T. Shukla R. Khatri D.K. Vora L.K. Pathogenesis, diagnostics, and therapeutics for Alzheimer’s disease: Breaking the memory barrier. Ageing Res. Rev. 2024 101 102481 10.1016/j.arr.2024.102481 39236855
    [Google Scholar]
  2. Crous-Bou M. Minguillón C. Gramunt N. Molinuevo J.L. Alzheimer’s disease prevention: From risk factors to early intervention. Alzheimers Res. Ther. 2017 9 1 71 79 10.1186/s13195‑017‑0297‑z 28899416
    [Google Scholar]
  3. Wang J. Gu B.J. Masters C.L. Wang Y.J. A systemic view of Alzheimer disease — insights from amyloid-β metabolism beyond the brain. Nat. Rev. Neurol. 2017 13 10 612 623 10.1038/nrneurol.2017.111 28960209
    [Google Scholar]
  4. Di Marco L.Y. Venneri A. Farkas E. Evans P.C. Marzo A. Frangi A.F. Vascular dysfunction in the pathogenesis of Alzheimer’s disease — A review of endothelium-mediated mechanisms and ensuing vicious circles. Neurobiol. Dis. 2015 82 593 606 10.1016/j.nbd.2015.08.014 26311408
    [Google Scholar]
  5. Kelleher R.J. Soiza R.L. Evidence of endothelial dysfunction in the development of Alzheimer’s disease: Is Alzheimer’s a vascular disorder? Am. J. Cardiovasc. Dis. 2013 3 4 197 226 24224133
    [Google Scholar]
  6. de la Torre J.C. Stefano G.B. Evidence that Alzheimer’s disease is a microvascular disorder: The role of constitutive nitric oxide. Brain Res. Brain Res. Rev. 2000 34 3 119 136 10.1016/S0165‑0173(00)00043‑6 11113503
    [Google Scholar]
  7. Kalaria R.N. Hedera P. Differential degeneration of the cerebral microvasculature in Alzheimerʼs disease. Neuroreport 1995 6 3 477 480 10.1097/00001756‑199502000‑00018 7766847
    [Google Scholar]
  8. Moncada S. Nitric oxide: Discovery and impact on clinical medicine. J. R. Soc. Med. 1999 92 4 164 169 10.1177/014107689909200402 10450191
    [Google Scholar]
  9. Gentile M.T. Vecchione C. Maffei A. Aretini A. Marino G. Poulet R. Capobianco L. Selvetella G. Lembo G. Mechanisms of soluble β-amyloid impairment of endothelial function. J. Biol. Chem. 2004 279 46 48135 48142 10.1074/jbc.M407358200 15319431
    [Google Scholar]
  10. Zhu X. Smith M.A. Honda K. Aliev G. Moreira P.I. Nunomura A. Casadesus G. Harris P.L.R. Siedlak S.L. Perry G. Vascular oxidative stress in Alzheimer disease. J. Neurol. Sci. 2007 257 1-2 240 246 10.1016/j.jns.2007.01.039 17337008
    [Google Scholar]
  11. Mikkelsen R.B. Wardman P. Biological chemistry of reactive oxygen and nitrogen and radiation-induced signal transduction mechanisms. Oncogene 2003 22 37 5734 5754 10.1038/sj.onc.1206663 12947383
    [Google Scholar]
  12. Aliev G. Smith M.A. Seyidova D. Neal M.L. Lamb B.T. Nunomura A. Gasimov E.K. Vinters H.V. Perry G. LaManna J.C. Friedland R.P. The role of oxidative stress in the pathophysiology of cerebrovascular lesions in Alzheimer’s disease. Brain Pathol. 2002 12 1 21 35 10.1111/j.1750‑3639.2002.tb00419.x 11770899
    [Google Scholar]
  13. Puertas M.C. Martínez-Martos J.M. Cobo M.P. Carrera M.P. Mayas M.D. Ramírez-Expósito M.J. Plasma oxidative stress parameters in men and women with early stage Alzheimer type dementia. Exp. Gerontol. 2012 47 8 625 630 10.1016/j.exger.2012.05.019 22664577
    [Google Scholar]
  14. Wang X. Wang W. Li L. Perry G. Lee H. Zhu X. Oxidative stress and mitochondrial dysfunction in Alzheimer’s disease. Biochim. Biophys. Acta Mol. Basis Dis. 2014 1842 8 1240 1247 10.1016/j.bbadis.2013.10.015 24189435
    [Google Scholar]
  15. Li H. Förstermann U. Uncoupling of endothelial NO synthase in atherosclerosis and vascular disease. Curr. Opin. Pharmacol. 2013 13 2 161 167 10.1016/j.coph.2013.01.006 23395155
    [Google Scholar]
  16. Hollán S. Membrane fluidity of blood cells. Haematologia 1996 27 3 109 127 14653448
    [Google Scholar]
  17. Wu-Hsiung H. Yahong W. Askari A. (Na+ +K+)-ATPase: Inactivation and degradation induced by oxygen radicals. Int. J. Biochem. 1992 24 4 621 626 10.1016/0020‑711X(92)90337‑Z 1325381
    [Google Scholar]
  18. Salvolini E. Vignini A. Nanetti L. Luzzi S. Provinciali L. Di Primio R. Mazzanti L. Effects of plasma from patients affected by mild cognitive impairment and Alzheimer’s disease on cultured endothelial cells. Eur. J. Inflamm. 2013 11 2 469 477 10.1177/1721727X1301100216
    [Google Scholar]
  19. Baur J.A. Sinclair D.A. Therapeutic potential of resveratrol: The in vivo evidence. Nat. Rev. Drug Discov. 2006 5 6 493 506 10.1038/nrd2060 16732220
    [Google Scholar]
  20. Tellone E. Galtieri A. Russo A. Giardina B. Ficarra S. Resveratrol: A focus on several neurodegenerative diseases. Oxid. Med. Cell. Longev. 2015 2015 1 14 10.1155/2015/392169 26180587
    [Google Scholar]
  21. Gambini J. Inglés M. Olaso G. Lopez-Grueso R. Bonet-Costa V. Gimeno-Mallench L. Mas-Bargues C. Abdelaziz K.M. Gomez-Cabrera M.C. Vina J. Borras C. Properties of resveratrol: In vitro and in vivo studies about metabolism, bioavailability, and biological effects in animal models and humans. Oxid. Med. Cell. Longev. 2015 2015 1 13 10.1155/2015/837042 26221416
    [Google Scholar]
  22. Gomes B.A.Q. Silva J.P.B. Romeiro C.F.R. dos Santos S.M. Rodrigues C.A. Gonçalves P.R. Sakai J.T. Mendes P.F.S. Varela E.L.P. Monteiro M.C. Neuroprotective mechanisms of resveratrol in Alzheimer’s disease: Role of SIRT1. Oxid. Med. Cell. Longev. 2018 2018 1 8152373 10.1155/2018/8152373 30510627
    [Google Scholar]
  23. Zhao Y.N. Li W.F. Li F. Zhang Z. Dai Y.D. Xu A.L. Qi C. Gao J.M. Gao J. Resveratrol improves learning and memory in normally aged mice through microRNA-CREB pathway. Biochem. Biophys. Res. Commun. 2013 435 4 597 602 10.1016/j.bbrc.2013.05.025 23685142
    [Google Scholar]
  24. McKhann G.M. Knopman D.S. Chertkow H. Hyman B.T. Jack C.R. Kawas C.H. Klunk W.E. Koroshetz W.J. Manly J.J. Mayeux R. Mohs R.C. Morris J.C. Rossor M.N. Scheltens P. Carrillo M.C. Thies B. Weintraub S. Phelps C.H. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging‐Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011 7 3 263 269 10.1016/j.jalz.2011.03.005 21514250
    [Google Scholar]
  25. Raffaelli F. Vignini A. Giulietti A. Alidori A. Borroni F. Sforza G. Faloia E. Mazzanti L. Nanetti L. In vitro effects of resveratrol on oxidative stress in diabetic platelets. Acta Diabetol. 2014 51 1 61 69 10.1007/s00592‑013‑0480‑z 23669883
    [Google Scholar]
  26. Kooy N.W. Royall J.A. Ischlropoulos H. Oxidation of 2′,7′-dichlorofluorescin by peroxynitrite. Free Radic. Res. 1997 27 3 245 254 10.3109/10715769709065763 9350429
    [Google Scholar]
  27. Boulos C. Jiang H. Balazy M. Diffusion of peroxynitrite into the human platelet inhibits cyclooxygenase via nitration of tyrosine residues. J. Pharmacol. Exp. Ther. 2000 293 1 222 229 10.1016/S0022‑3565(24)39223‑7 10734173
    [Google Scholar]
  28. Kitao T. Hattori K. Inhibition of erythrocyte ATPase activity by aclacinomycin and reverse effects of ascorbate on ATPase activity. Experientia 1983 39 12 1362 1364 10.1007/BF01990105 6317432
    [Google Scholar]
  29. Vignini A. Giusti L. Raffaelli F. Giulietti A. Salvolini E. Luzzi S. Provinciali L. Mazzanti L. Nanetti L. Impact of gender on platelet membrane functions of Alzheimer’s disease patients. Exp. Gerontol. 2013 48 3 319 325 10.1016/j.exger.2012.11.015 23228953
    [Google Scholar]
  30. Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976 72 1-2 248 254 10.1016/0003‑2697(76)90527‑3 942051
    [Google Scholar]
  31. Eisenmenger L.B. Peret A. Famakin B.M. Spahic A. Roberts G.S. Bockholt J.H. Johnson K.M. Paulsen J.S. Vascular contributions to Alzheimer’s disease. Transl. Res. 2023 254 41 53 10.1016/j.trsl.2022.12.003 36529160
    [Google Scholar]
  32. Sweeney M.D. Sagare A.P. Zlokovic B.V. Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat. Rev. Neurol. 2018 14 3 133 150 10.1038/nrneurol.2017.188 29377008
    [Google Scholar]
  33. Thomas T. Thomas G. McLendon C. Sutton T. Mullan M. β-Amyloid-mediated vasoactivity and vascular endothelial damage. Nature 1996 380 6570 168 171 10.1038/380168a0 8600393
    [Google Scholar]
  34. Sutton E.T. Hellermann G.R. Thomas T. beta-amyloid-induced endothelial necrosis and inhibition of nitric oxide production. Exp. Cell Res. 1997 230 2 368 376 10.1006/excr.1996.3440 9024796
    [Google Scholar]
  35. Crawford F. Suo Z. Fang C. Mullan M. Characteristics of the in vitro vasoactivity of beta-amyloid peptides. Exp. Neurol. 1998 150 1 159 168 10.1006/exnr.1997.6743 9514824
    [Google Scholar]
  36. Asiimwe N. Yeo S.G. Kim M.S. Jung J. Jeong N.Y. Nitric oxide: Exploring the contextual link with Alzheimer’s disease. Oxid. Med. Cell. Longev. 2016 2016 1 7205747 10.1155/2016/7205747 28096943
    [Google Scholar]
  37. Tinajero-Trejo M. Jesse H.E. Poole R.K. Gasotransmitters, poisons, and antimicrobials: It’s a gas, gas, gas! F1000Prime Rep. 2013 5 28 10.12703/P5‑28 23967379
    [Google Scholar]
  38. Xia N. Förstermann U. Li H. Resveratrol and endothelial nitric oxide. Molecules 2014 19 10 16102 16121 10.3390/molecules191016102 25302702
    [Google Scholar]
  39. Park L. Anrather J. Forster C. Kazama K. Carlson G.A. Iadecola C. Abeta-induced vascular oxidative stress and attenuation of functional hyperemia in mouse somatosensory cortex. J. Cereb. Blood Flow Metab. 2004 24 3 334 342 10.1097/01.WCB.0000105800.49957.1E 15091114
    [Google Scholar]
  40. Padurariu M. Ciobica A. Hritcu L. Stoica B. Bild W. Stefanescu C. Changes of some oxidative stress markers in the serum of patients with mild cognitive impairment and Alzheimer’s disease. Neurosci. Lett. 2010 469 1 6 10 10.1016/j.neulet.2009.11.033 19914330
    [Google Scholar]
  41. Vignini A. Nanetti L. Moroni C. Tanase L. Bartolini M. Luzzi S. Provinciali L. Mazzanti L. Modifications of platelet from Alzheimer disease patients: A possible relation between membrane properties and NO metabolites. Neurobiol. Aging 2007 28 7 987 994 10.1016/j.neurobiolaging.2006.05.010 16815594
    [Google Scholar]
  42. Hattori N. Kitagawa K. Higashida T. Yagyu K. Shimohama S. Wataya T. Perry G. Smith M.A. Inagaki C. Cl−-ATPase and Na+/K+-ATPase activities in Alzheimer’s disease brains. Neurosci. Lett. 1998 254 3 141 144 10.1016/S0304‑3940(98)00654‑5 10214977
    [Google Scholar]
  43. Smith M.A. Rottkamp C.A. Nunomura A. Raina A.K. Perry G. Oxidative stress in Alzheimer’s disease. Biochim. Biophys. Acta Mol. Basis Dis. 2000 1502 1 139 144 10.1016/S0925‑4439(00)00040‑5 10899439
    [Google Scholar]
  44. Cervellati C. Romani A. Seripa D. Cremonini E. Bosi C. Magon S. Bergamini C.M. Valacchi G. Pilotto A. Zuliani G. Systemic oxidative stress and conversion to dementia of elderly patients with mild cognitive impairment. BioMed Res. Int. 2014 2014 1 7 10.1155/2014/309507 24524075
    [Google Scholar]
  45. Eckert G.P. Wood W.G. Müller W.E. Lipid membranes and beta-amyloid: A harmful connection. Curr. Protein Pept. Sci. 2010 11 5 319 325 10.2174/138920310791330668 20423299
    [Google Scholar]
  46. Vignini A. Alia S. Pugnaloni S. Giulietti A. Bacchetti T. Mazzanti L. Luzzi S. Fiorini R. Erythrocyte membrane fluidity in mild cognitive impairment and Alzheimer’s disease patients. Exp. Gerontol. 2019 128 110754 10.1016/j.exger.2019.110754 31648010
    [Google Scholar]
  47. Citron M. Alzheimer’s disease: Strategies for disease modification. Nat. Rev. Drug Discov. 2010 9 5 387 398 10.1038/nrd2896 20431570
    [Google Scholar]
/content/journals/cn/10.2174/011570159X382096250914055513
Loading
/content/journals/cn/10.2174/011570159X382096250914055513
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test