Skip to content
2000
image of Astrocytes in Neurofluid Drainage and Brain Disorders: Mechanisms and Therapeutic Implications

Abstract

Over the past decade, increasing attention has been paid to neurofluid (NF) drainage in the brain, particularly to the glymphatic system and intramural periarterial drainage (IPAD) pathway, which are responsible for substance transport in the brain and are highly dependent on astrocyte function. The dysfunction of these drainage pathways can lead to the accumulation of toxic substances and fluids, and contribute to various brain diseases, such as stroke and Alzheimer’s disease. Since astrocytes in the brain closely connect to the microvascular system with their endfeet, in this work, the roles of astrocytes in regulating the glymphatic system and IPAD pathway and their dysfunction in neurodegenerative diseases have been comprehensively reviewed. Additionally, the effects of aquaporin 4, a water channel protein located on astrocytic endfeet, on these two pathways are explored. Furthermore, the possible therapeutic strategies for brain diseases targeting the NF drainage systems have also been proposed and thoroughly discussed.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X406243251030105102
2026-01-05
2026-01-11
Loading full text...

Full text loading...

References

  1. Lan Y.L. Wang H. Chen A. Zhang J. Update on the current knowledge of lymphatic drainage system and its emerging roles in glioma management. Immunology 2023 168 2 233 247 10.1111/imm.13517 35719015
    [Google Scholar]
  2. Szczygielski J. Kopańska M. Wysocka A. Oertel J. Cerebral microcirculation, perivascular unit, and glymphatic system: Role of aquaporin-4 as the gatekeeper for water homeostasis. Front. Neurol. 2021 12 767470 10.3389/fneur.2021.767470 34966347
    [Google Scholar]
  3. Benveniste H. Liu X. Koundal S. Sanggaard S. Lee H. Wardlaw J. The glymphatic system and waste clearance with brain aging: A review. Gerontology 2019 65 2 106 119 10.1159/000490349 29996134
    [Google Scholar]
  4. Lynch M. Pham W. Sinclair B. O’Brien T.J. Law M. Vivash L. Perivascular spaces as a potential biomarker of Alzheimer’s disease. Front. Neurosci. 2022 16 1021131 10.3389/fnins.2022.1021131
    [Google Scholar]
  5. Iliff J.J. Wang M. Liao Y. Plogg B.A. Peng W. Gundersen G.A. Benveniste H. Vates G.E. Deane R. Goldman S.A. Nagelhus E.A. Nedergaard M. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci. Transl. Med. 2012 4 147 147ra111 10.1126/scitranslmed.3003748 22896675
    [Google Scholar]
  6. Carare R.O. Bernardes-Silva M. Newman T.A. Page A.M. Nicoll J.A.R. Perry V.H. Weller R.O. Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries: Significance for cerebral amyloid angiopathy and neuroimmunology. Neuropathol. Appl. Neurobiol. 2008 34 2 131 144 10.1111/j.1365‑2990.2007.00926.x 18208483
    [Google Scholar]
  7. Maloveská M. Humeník F. Vikartovská Z. Hudáková N. Almášiová V. Krešáková L. Čížková D. Brain fluid channels for metabolite removal. Physiol. Res. 2022 71 2 199 208 10.33549/physiolres.934802 35344669
    [Google Scholar]
  8. Sun L. Zhang Y. Liu E. Ma Q. Anatol M. Han H. Yan J. The roles of astrocyte in the brain pathologies following ischemic stroke. Brain Inj. 2019 33 6 712 716 10.1080/02699052.2018.1531311 30335519
    [Google Scholar]
  9. Hladky S.B. Barrand M.A. The glymphatic hypothesis: The theory and the evidence. Fluids Barriers CNS 2022 19 1 9 10.1186/s12987‑021‑00282‑z 35115036
    [Google Scholar]
  10. Cousins O. Hodges A. Schubert J. Veronese M. Turkheimer F. Miyan J. Engelhardt B. Roncaroli F. The blood-CSF-brain route of neurological disease: The indirect pathway into the brain. Neuropathol. Appl. Neurobiol. 2022 48 4 12789 10.1111/nan.12789 34935179
    [Google Scholar]
  11. Gouveia-Freitas K. Bastos-Leite A.J. Perivascular spaces and brain waste clearance systems: Relevance for neurodegenerative and cerebrovascular pathology. Neuroradiology 2021 63 10 1581 1597 10.1007/s00234‑021‑02718‑7 34019111
    [Google Scholar]
  12. Smith A.J. Akdemir G. Wadhwa M. Song D. Verkman A.S. Application of fluorescent dextrans to the brain surface under constant pressure reveals AQP4-independent solute uptake. J. Gen. Physiol. 2021 153 8 202112898 10.1085/jgp.202112898 34128962
    [Google Scholar]
  13. Rasmussen M.K. Mestre H. Nedergaard M. Fluid transport in the brain. Physiol. Rev. 2022 102 2 1025 1151 10.1152/physrev.00031.2020 33949874
    [Google Scholar]
  14. Wardlaw J.M. Benveniste H. Nedergaard M. Zlokovic B.V. Mestre H. Lee H. Doubal F.N. Brown R. Ramirez J. MacIntosh B.J. Tannenbaum A. Ballerini L. Rungta R.L. Boido D. Sweeney M. Montagne A. Charpak S. Joutel A. Smith K.J. Black S.E. Perivascular spaces in the brain: Anatomy, physiology and pathology. Nat. Rev. Neurol. 2020 16 3 137 153 10.1038/s41582‑020‑0312‑z 32094487
    [Google Scholar]
  15. Yu L. Hu X. Li H. Zhao Y. Perivascular spaces, glymphatic system and MR. Front. Neurol. 2022 13 844938 10.3389/fneur.2022.844938 35592469
    [Google Scholar]
  16. Iliff J.J. Wang M. Zeppenfeld D.M. Venkataraman A. Plog B.A. Liao Y. Deane R. Nedergaard M. Cerebral arterial pulsation drives paravascular CSF-interstitial fluid exchange in the murine brain. J. Neurosci. 2013 33 46 18190 18199 10.1523/JNEUROSCI.1592‑13.2013 24227727
    [Google Scholar]
  17. Rowsthorn E. Pham W. Nazem-Zadeh M.R. Law M. Pase M.P. Harding I.H. Imaging the neurovascular unit in health and neurodegeneration: A scoping review of interdependencies between MRI measures. Fluids Barriers CNS 2023 20 1 97 10.1186/s12987‑023‑00499‑0
    [Google Scholar]
  18. Nagelhus E.A. Ottersen O.P. Physiological roles of aquaporin-4 in brain. Physiol. Rev. 2013 93 4 1543 1562 10.1152/physrev.00011.2013 24137016
    [Google Scholar]
  19. Tani K. Mitsuma T. Hiroaki Y. Kamegawa A. Nishikawa K. Tanimura Y. Fujiyoshi Y. Mechanism of aquaporin-4's fast and highly selective water conduction and proton exclusion. J. Mol. Biol. 2009 389 4 694 706 10.1016/j.jmb.2009.04.049 19406128
    [Google Scholar]
  20. Hablitz L.M. Nedergaard M. The glymphatic system: A novel component of fundamental neurobiology. J. Neurosci. 2021 41 37 7698 7711 10.1523/JNEUROSCI.0619‑21.2021 34526407
    [Google Scholar]
  21. Xu Y. Cheng L. Yuan L. Yi Q. Xiao L. Chen H. Progress on brain and ocular lymphatic system. BioMed Res. Int. 2022 2022 1 6413553 10.1155/2022/6413553 36425338
    [Google Scholar]
  22. Ashok K.S. Gabriele Z. The interstitial system of the brain in health and disease. Aging Dis. 2020 11 1 200 211 10.14336/AD.2020.0103 32010493
    [Google Scholar]
  23. Mogensen F.L.H. Delle C. Nedergaard M. The glymphatic system (En)during inflammation. Int. J. Mol. Sci. 2021 22 14 7491 10.3390/ijms22147491
    [Google Scholar]
  24. Feng D.Y. Liu T. Zhang X.J. Xiang T.T. Su W.Q. Quan W. Jiang R.C. Fingolimod improves diffuse brain injury by promoting AQP4 polarization and functional recovery of the glymphatic system. CNS Neurosci. Ther. 2024 30 3 14669 10.1111/cns.14669
    [Google Scholar]
  25. Hauglund N.L. Kusk P. Kornum B.R. Nedergaard M. Meningeal lymphangiogenesis and enhanced glymphatic activity in mice with chronically implanted EEG electrodes. J. Neurosci. 2020 40 11 2371 2380 10.1523/JNEUROSCI.2223‑19.2020 32047056
    [Google Scholar]
  26. Hablitz L.M. Plá V. Giannetto M. Vinitsky H.S. Stæger F.F. Metcalfe T. Nguyen R. Benrais A. Nedergaard M. Circadian control of brain glymphatic and lymphatic fluid flow. Nat. Commun. 2020 11 1 4411 10.1038/s41467‑020‑18115‑2 32879313
    [Google Scholar]
  27. Owasil R. O’Neill R. Keable A. Nimmo J. MacGregor Sharp M. Kelly L. Saito S. Simpson J.E. Weller R.O. Smith C. Attems J. Wharton S.B. Yuen H.M. Carare R.O. The pattern of AQP4 expression in the ageing human brain and in cerebral amyloid angiopathy. Int. J. Mol. Sci. 2020 21 4 1225 10.3390/ijms21041225 32059400
    [Google Scholar]
  28. Reeves B.C. Karimy J.K. Kundishora A.J. Mestre H. Cerci H.M. Matouk C. Alper S.L. Lundgaard I. Nedergaard M. Kahle K.T. Glymphatic system impairment in Alzheimer’s disease and idiopathic normal pressure hydrocephalus. Trends Mol. Med. 2020 26 3 285 295 10.1016/j.molmed.2019.11.008 31959516
    [Google Scholar]
  29. Tan E.K. Chao Y.X. West A. Chan L.L. Poewe W. Jankovic J. Parkinson disease and the immune system — associations, mechanisms and therapeutics. Nat. Rev. Neurol. 2020 16 6 303 318 10.1038/s41582‑020‑0344‑4 32332985
    [Google Scholar]
  30. Smith A.J. Yao X. Dix J.A. Jin B.J. Verkman A.S. Test of the ‘glymphatic’ hypothesis demonstrates diffusive and aquaporin-4-independent solute transport in rodent brain parenchyma. eLife 2017 6 27679 10.7554/eLife.27679 28826498
    [Google Scholar]
  31. Hablitz L.M. Vinitsky H.S. Sun Q. Stæger F.F. Sigurdsson B. Mortensen K.N. Lilius T.O. Nedergaard M. Increased glymphatic influx is correlated with high EEG delta power and low heart rate in mice under anesthesia. Sci. Adv. 2019 5 2 eaav5447 10.1126/sciadv.aav5447
    [Google Scholar]
  32. Walch E. Murphy T.R. Cuvelier N. Aldoghmi M. Morozova C. Donohue J. Young G. Samant A. Garcia S. Alvarez C. Astrocyte-selective volume increase in elevated extracellular potassium conditions is mediated by the Na+/K+ atpase and occurs independently of aquaporin 4. ASN Neuro 2020 12 1759091420967152 10.1177/1759091420967152 33092407
    [Google Scholar]
  33. Tice C. McDevitt J. Langford D. Astrocytes, HIV and the glymphatic system: A disease of disrupted waste management? Front. Cell. Infect. Microbiol. 2020 10 523379 10.3389/fcimb.2020.523379 33134185
    [Google Scholar]
  34. Cohen J. Torres C. Astrocyte senescence: Evidence and significance. Aging Cell 2019 18 3 12937 10.1111/acel.12937 30815970
    [Google Scholar]
  35. Clark D.P.Q. Perreau V.M. Shultz S.R. Brady R.D. Lei E. Dixit S. Taylor J.M. Beart P.M. Boon W.C. Inflammation in traumatic brain injury: Roles for toxic A1 astrocytes and microglial-astrocytic crosstalk. Neurochem. Res. 2019 44 6 1410 1424 10.1007/s11064‑019‑02721‑8 30661228
    [Google Scholar]
  36. Matias I. Morgado J. Gomes F.C.A. Astrocyte heterogeneity: Impact to brain aging and disease. Front. Aging Neurosci. 2019 11 59 10.3389/fnagi.2019.00059 30941031
    [Google Scholar]
  37. Liu X. Wu G. Tang N. Li L. Liu C. Wang F. Ke S. Glymphatic drainage blocking aggravates brain edema, neuroinflammation via modulating TNF-α, IL-10, and AQP4 after intracerebral hemorrhage in rats. Front. Cell. Neurosci. 2021 15 784154 10.3389/fncel.2021.784154 34975411
    [Google Scholar]
  38. Diem A.K. Sharp M.M. Gatherer M. Bressloff N.W. Carare R.O. Richardson G. Arterial pulsations cannot drive intramural periarterial drainage: Significance for aβ drainage. Front. Neurosci. 2017 11 475 10.3389/fnins.2017.00475
    [Google Scholar]
  39. Aldea R. Weller R.O. Wilcock D.M. Carare R.O. Richardson G. Cerebrovascular smooth muscle cells as the drivers of intramural periarterial drainage of the brain. Front. Aging Neurosci. 2019 11 1 10.3389/fnagi.2019.00001
    [Google Scholar]
  40. Albargothy N.J. Johnston D.A. MacGregor-Sharp M. Weller R.O. Verma A. Hawkes C.A. Carare R.O. Convective influx/glymphatic system: Tracers injected into the CSF enter and leave the brain along separate periarterial basement membrane pathways. Acta Neuropathol. 2018 136 1 139 152 10.1007/s00401‑018‑1862‑7 29754206
    [Google Scholar]
  41. Diem A.K. Carare R.O. Weller R.O. Bressloff N.W. A control mechanism for intra-mural peri-arterial drainage via astrocytes: How neuronal activity could improve waste clearance from the brain. PLoS One 2018 13 10 0205276 10.1371/journal.pone.0205276 30286191
    [Google Scholar]
  42. Sun Y. Liu E. Pei Y. Yao Q. Ma H. Mu Y. Wang Y. Zhang Y. Yang X. Wang X. Xue J. Zhai J. Carare R.O. Qin L. Yan J. The impairment of intramural periarterial drainage in brain after subarachnoid hemorrhage. Acta Neuropathol. Commun. 2022 10 1 187 10.1186/s40478‑022‑01492‑8 36529767
    [Google Scholar]
  43. Iadecola C. The neurovascular unit coming of age: A journey through neurovascular coupling in health and disease. Neuron 2017 96 1 17 42 10.1016/j.neuron.2017.07.030 28957666
    [Google Scholar]
  44. Sanicola H.W. Stewart C.E. Luther P. Yabut K. Guthikonda B. Jordan J.D. Alexander J.S. Pathophysiology, management, and therapeutics in subarachnoid hemorrhage and delayed cerebral ischemia: An overview. Pathophysiology 2023 30 3 420 442 10.3390/pathophysiology30030032 37755398
    [Google Scholar]
  45. Marina N. Christie I.N. Korsak A. Doronin M. Brazhe A. Hosford P.S. Wells J.A. Sheikhbahaei S. Humoud I. Paton J.F.R. Lythgoe M.F. Semyanov A. Kasparov S. Gourine A.V. Astrocytes monitor cerebral perfusion and control systemic circulation to maintain brain blood flow. Nat. Commun. 2020 11 1 131 10.1038/s41467‑019‑13956‑y 31919423
    [Google Scholar]
  46. Drew P.J. Neurovascular coupling: Motive unknown. Trends Neurosci. 2022 45 11 809 819 10.1016/j.tins.2022.08.004 35995628
    [Google Scholar]
  47. Tarasoff-Conway J.M. Carare R.O. Osorio R.S. Glodzik L. Butler T. Fieremans E. Axel L. Rusinek H. Nicholson C. Zlokovic B.V. Frangione B. Blennow K. Ménard J. Zetterberg H. Wisniewski T. de Leon M.J. Clearance systems in the brain—implications for Alzheimer disease. Nat. Rev. Neurol. 2015 11 8 457 470 10.1038/nrneurol.2015.119 26195256
    [Google Scholar]
  48. Silvestri V.L. Tran A.D. Chung M. Chung N. Gril B. Robinson C. Difilippantonio S. Wei D. Kruhlak M.J. Peer C.J. Figg W.D. Khan I. Steeg P.S. Distinct uptake and elimination profiles for trastuzumab, human IgG, and biocytin-TMR in experimental HER2+ brain metastases of breast cancer. Neuro-oncol. 2024 26 6 1067 1082 10.1093/neuonc/noae025 38363979
    [Google Scholar]
  49. Dewing J.M. Keable A. Laslo A. Chinezu L. Ivanescu A. Ratnayaka J.A. Kalaria R. Slevin M. Verma A. Carare R.O. Proportions of basement membrane proteins in cerebrovascular smooth muscle cells after exposure to hypercapnia and amyloid beta. Cells 2025 14 8 614 10.3390/cells14080614 40277938
    [Google Scholar]
  50. Gama Sosa M.A. De Gasperi R. Lind R.H. Pryor D. Vargas D.C. Perez Garcia G.S. Perez G.M. Abutarboush R. Kawoos U. Sowa A. Zhu C.W. Janssen W.G.M. Hof P.R. Ahlers S.T. Elder G.A. Intramural hematomas and astrocytic infiltration precede perivascular inflammation in a rat model of repetitive low-level blast injury. J. Neuropathol. Exp. Neurol. 2025 84 4 337 352 10.1093/jnen/nlaf003 39868756
    [Google Scholar]
  51. Hilkens N.A. Casolla B. Leung T.W. de Leeuw F-E. Stroke. Lancet 2024 403 10446 2820 2836 10.1016/S0140‑6736(24)00642‑1
    [Google Scholar]
  52. Peters M.E. Lyketsos C.G. The glymphatic system’s role in traumatic brain injury-related neurodegeneration. Mol. Psychiatry 2023 28 7 2707 2715 10.1038/s41380‑023‑02070‑7 37185960
    [Google Scholar]
  53. Manley G.T. Fujimura M. Ma T. Noshita N. Filiz F. Bollen A.W. Chan P. Verkman A.S. Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat. Med. 2000 6 2 159 163 10.1038/72256 10655103
    [Google Scholar]
  54. Datta A. Sarmah D. Kaur H. Chaudhary A. Mounica K.L. Kalia K. Borah A. Yavagal D.R. Bhattacharya P. Post-stroke impairment of the blood-brain barrier and perifocal vasogenic edema is alleviated by endovascular mesenchymal stem cell administration: Modulation of the PKCδ/MMP9/AQP4-mediated pathway. Mol. Neurobiol. 2022 59 5 2758 2775 10.1007/s12035‑022‑02761‑2 35187613
    [Google Scholar]
  55. Peng S. Liu J. Liang C. Yang L. Wang G. Aquaporin-4 in glymphatic system, and its implication for central nervous system disorders. Neurobiol. Dis. 2023 179 106035 10.1016/j.nbd.2023.106035 36796590
    [Google Scholar]
  56. Gono R. Sugimoto K. Yang C. Murata Y. Nomura R. Shirazaki M. Harada K. Harada T. Miyashita Y. Higashisaka K. Katada R. Matsumoto H. Molecular mechanism of cerebral edema improvement via IL-1RA released from the stroke-unaffected hindlimb by treadmill exercise after cerebral infarction in rats. J. Cereb. Blood Flow Metab. 2023 43 5 812 827 10.1177/0271678X231151569 36651110
    [Google Scholar]
  57. Yang J. Cao C. Liu J.L. Liu Y.Y. Lu J.X. Yu H.Y. Li X. Wu J. Yu Z.Q. Li H.Y. Dystrophin 71 deficiency causes impaired aquaporin-4 polarization contributing to glymphatic dysfunction and brain edema in cerebral ischemia. Neurobiol. Dis. 2024 199 106586 10.1016/j.nbd.2024.106586
    [Google Scholar]
  58. Li X. Xie Z. Zhou Q. Tan X. Meng W. Pang Y. Huang L. Ding Z. Hu Y. Li R. Huang G. Li H. TGN-020 alleviate inflammation and apoptosis after cerebral ischemia-reperfusion injury in mice through glymphatic and ERK1/2 signaling pathway. Mol. Neurobiol. 2024 61 2 1175 1186 10.1007/s12035‑023‑03636‑w 37695472
    [Google Scholar]
  59. Mhaske A. Shukla S. Ahirwar K. Singh K.K. Shukla R. Receptor-assisted nanotherapeutics for overcoming the blood-brain barrier. Mol. Neurobiol. 2024 61 11 8702 8738 10.1007/s12035‑024‑04015‑9 38558360
    [Google Scholar]
  60. He T. Yang G.Y. Zhang Z. Crosstalk of astrocytes and other cells during ischemic stroke. Life 2022 12 6 910 10.3390/life12060910 35743941
    [Google Scholar]
  61. Chen Y.X. Liang N. Li X.L. Yang S.H. Wang Y.P. Shi N.N. Diagnosis and treatment for mild cognitive impairment: A systematic review of clinical practice guidelines and consensus statements. Front. Neurol. 2021 12 719849 10.3389/fneur.2021.719849 34712197
    [Google Scholar]
  62. Verghese J.P. Terry A. de Natale E.R. Politis M. Research evidence of the role of the glymphatic system and its potential pharmacological modulation in neurodegenerative diseases. J. Clin. Med. 2022 11 23 6964 10.3390/jcm11236964
    [Google Scholar]
  63. Buccellato F.R. D’Anca M. Serpente M. Arighi A. Galimberti D. The role of glymphatic system in Alzheimer’s and parkinson’s disease pathogenesis. Biomedicines 2022 10 9 2261 10.3390/biomedicines10092261 36140362
    [Google Scholar]
  64. Murdock M.H. Yang C.Y. Sun N. Pao P.C. Blanco-Duque C. Kahn M.C. Kim T. Lavoie N.S. Victor M.B. Islam M.R. Galiana F. Leary N. Wang S. Bubnys A. Ma E. Akay L.A. Sneve M. Qian Y. Lai C. McCarthy M.M. Kopell N. Kellis M. Piatkevich K.D. Boyden E.S. Tsai L.H. Multisensory gamma stimulation promotes glymphatic clearance of amyloid. Nature 2024 627 8002 149 156 10.1038/s41586‑024‑07132‑6 38418876
    [Google Scholar]
  65. Mestre H. Kostrikov S. Mehta R.I. Nedergaard M. Perivascular spaces, glymphatic dysfunction, and small vessel disease. Clin. Sci. 2017 131 17 2257 2274 10.1042/CS20160381 28798076
    [Google Scholar]
  66. Yang J. Lunde L.K. Nuntagij P. Oguchi T. Camassa L.M.A. Nilsson L.N.G. Lannfelt L. Xu Y. Amiry-Moghaddam M. Ottersen O.P. Torp R. Loss of astrocyte polarization in the tg-ArcSwe mouse model of Alzheimer’s disease. J. Alzheimers Dis. 2011 27 4 711 722 10.3233/JAD‑2011‑110725 21891870
    [Google Scholar]
  67. Zeppenfeld D.M. Simon M. Haswell J.D. D’Abreo D. Murchison C. Quinn J.F. Grafe M.R. Woltjer R.L. Kaye J. Iliff J.J. Association of perivascular localization of aquaporin-4 with cognition and alzheimer disease in aging brains. JAMA Neurol. 2017 74 1 91 99 10.1001/jamaneurol.2016.4370 27893874
    [Google Scholar]
  68. Municio C. Carrero L. Antequera D. Carro E. Choroid plexus aquaporins in csf homeostasis and the glymphatic system: Their relevance for alzheimer’s disease. Int. J. Mol. Sci. 2023 24 1 878 10.3390/ijms24010878 36614315
    [Google Scholar]
  69. Xie L. Kang H. Xu Q. Chen M.J. Liao Y. Thiyagarajan M. O’Donnell J. Christensen D.J. Nicholson C. Iliff J.J. Takano T. Deane R. Nedergaard M. Sleep drives metabolite clearance from the adult brain. Science 2013 342 6156 373 377 10.1126/science.1241224 24136970
    [Google Scholar]
  70. Zhang D.J. Li X.Y. Li B.M. Glymphatic system dysfunction in central nervous system diseases and mood disorders. Front. Aging Neurosci. 2022 14 873697 10.3389/fnagi.2022.873697
    [Google Scholar]
  71. Ju Y.E.S. Lucey B.P. Holtzman D.M. Sleep and Alzheimer disease pathology—a bidirectional relationship. Nat. Rev. Neurol. 2014 10 2 115 119 10.1038/nrneurol.2013.269 24366271
    [Google Scholar]
  72. Lucey B.P. Hicks T.J. McLeland J.S. Toedebusch C.D. Boyd J. Elbert D.L. Patterson B.W. Baty J. Morris J.C. Ovod V. Mawuenyega K.G. Bateman R.J. Effect of sleep on overnight cerebrospinal fluid amyloid β kinetics. Ann. Neurol. 2018 83 1 197 204 10.1002/ana.25117 29220873
    [Google Scholar]
  73. Lohela T.J. Lilius T.O. Nedergaard M. The glymphatic system: Implications for drugs for central nervous system diseases. Nat. Rev. Drug Discov. 2022 21 10 763 779 10.1038/s41573‑022‑00500‑9 35948785
    [Google Scholar]
  74. Xie Q. Louveau A. Pandey S. Zeng W. Chen W.F. Rewiring the brain: The next frontier in supermicrosurgery. Plast. Reconstr. Surg. 2024 153 2 494e 495e 10.1097/PRS.0000000000010933 37467388
    [Google Scholar]
  75. Fang R. Jin L. Lu H. Xie Q. Yang X. Kueckelhaus M. Microsurgical cervical lymphaticovenous anastomosis: A novel mouse model for brain lymphatic outflow. bioRxiv 2025 2025.2003.2015.643475 10.1101/2025.03.15.643475
    [Google Scholar]
  76. Li X. Zhang C. Fang Y. Xin M. Shi J. Zhang Z. Wang Z. Ren Z. Promising outcomes 5 weeks after a surgical cervical shunting procedure to unclog cerebral lymphatic systems in a patient with Alzheimer’s disease. Gen. Psychiatr. 2024 37 3 101641 10.1136/gpsych‑2024‑101641 39816183
    [Google Scholar]
  77. Wang H. Levey A. Wang G. Lymphatic-venous anastomosis surgery for Alzheimer’s disease. Gen. Psychiatr. 2025 38 3 102062 10.1136/gpsych‑2025‑102062 40444027
    [Google Scholar]
  78. Ma Y. Wang Z. Tang W. Deep cervical lymphaticovenous anastomosis in Alzheimer’s disease: A promising frontier or premature enthusiasm? Biosci. Trends 2025 19 2 144 149 10.5582/bst.2025.01108 40240169
    [Google Scholar]
/content/journals/cn/10.2174/011570159X406243251030105102
Loading
/content/journals/cn/10.2174/011570159X406243251030105102
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test