Skip to content
2000
image of Non-anesthetic Effects of Anesthetics and Organ Protection

Abstract

Ischaemia reperfusion (I/R) injury is a physiological phenomenon whereby hypoxic tissue damage can be perpetuated by tissue reperfusion; this can occur in the setting of pathology or as a surgical complication. Naturally, tissues sensitive to hypoxic episodes such as the brain, heart, kidney, liver and lung tissue are most often affected. Current treatments for I/R injury focus of limiting the pathological response to reperfusion through ischemic preconditioning (IPC) and medications that mimic the IPC response. Anesthetic preconditioning (APC) and anesthetic postconditioning (APoC) can produce protective responses similar to IPC, thus modulating the effects of I/R injury, with a far longer impact on organ systems than their sedative or analgesic effects. The pathological process and molecular mechanism of I/R injury involve calcium overload, mitochondrial dysfunction, oxidative stress, inflammation, autophagy, and other key signaling pathways. However, how anesthetics are involved remains to be further investigated. Elucidating its underlying mechanism is vital to prevent perioperative I/R injury and benefit our patients. Importantly, the protective mechanisms differ between the types of anesthetics and between types of tissue. Understanding the differences can lead to more informed clinical decisions. Here, we systematically review and compare the molecular mechanisms that can explain how inhalational and intravenous anesthesia regulate I/R injury and provide a comprehensive analysis of recent basic clinical studies for APC and APoC in the context of different organ I/R injury.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X359884250714172718
2026-01-08
2026-01-27
Loading full text...

Full text loading...

References

  1. The top 10 causes of death. Available from: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death 2022
  2. Debel W. Ramadhan A. Vanpeteghem C. Forsyth R.G. Does the choice of anaesthesia affect cancer? a molecular crosstalk between theory and practice. Cancers 2022 15 1 209 10.3390/cancers15010209 36612205
    [Google Scholar]
  3. Belrose J.C. Noppens R.R. Anesthesiology and cognitive impairment: A narrative review of current clinical literature. BMC Anesthesiol. 2019 19 1 241 10.1186/s12871‑019‑0903‑7 31881996
    [Google Scholar]
  4. Loveridge R. Schroeder F. Anaesthetic preconditioning. Contin. Educ. Anaesth. Crit. Care Pain 2010 10 2 38 42 10.1093/bjaceaccp/mkq005
    [Google Scholar]
  5. Murry C.E. Jennings R.B. Reimer K.A. Preconditioning with ischemia: A delay of lethal cell injury in ischemic myocardium. Circulation 1986 74 5 1124 1136 10.1161/01.CIR.74.5.1124 3769170
    [Google Scholar]
  6. Davis R.F. Sidi A. Effect of isoflurane on the extent of myocardial necrosis and on systemic hemodynamics, regional myocardial blood flow, and regional myocardial metabolism in dogs after coronary artery occlusion. Anesth. Analg. 1989 69 5 575 586 10.1213/00000539‑198911000‑00005 2802193
    [Google Scholar]
  7. Kalogeris T. Baines C.P. Krenz M. Korthuis R.J. Cell. Biology of Ischemia/Reperfusion Injury. Elsevier eBooks Netherlands 2012 229 317
    [Google Scholar]
  8. Cowled, Prue; Fitridge, Robert Pathophysiology of reperfusion injury. Mechanisms of Vascular Disease: A Reference Book for Vascular Specialists. Fitridge Robert Adelaide, South Australia University of Adelaide Press 2011
    [Google Scholar]
  9. Wu M.Y. Yiang G.T. Liao W.T. Tsai A.P.Y. Cheng Y.L. Cheng P.W. Li C.Y. Li C.J. Current mechanistic concepts in ischemia and reperfusion injury. Cell. Physiol. Biochem. 2018 46 4 1650 1667 10.1159/000489241 29694958
    [Google Scholar]
  10. Xia Z. Li H. Irwin M.G. Myocardial ischaemia reperfusion injury: The challenge of translating ischaemic and anaesthetic protection from animal models to humans. Br. J. Anaesth. 2016 117 Suppl. 2 ii44 ii62 10.1093/bja/aew267 27566808
    [Google Scholar]
  11. Bolli R. Li Q.H. Tang X.L. Guo Y. Xuan Y.T. Rokosh G. Dawn B. The late phase of preconditioning and its natural clinical application—gene therapy. Heart Fail. Rev. 2007 12 3-4 189 199 10.1007/s10741‑007‑9031‑4 17541820
    [Google Scholar]
  12. Qiu Y. Tang X.L. Park S.W. Sun J.Z. Kalya A. Bolli R. The early and late phases of ischemic preconditioning: A comparative analysis of their effects on infarct size, myocardial stunning, and arrhythmias in conscious pigs undergoing a 40-minute coronary occlusion. Circ. Res. 1997 80 5 730 742 10.1161/01.RES.80.5.730 9130454
    [Google Scholar]
  13. Carden D.L. Granger D.N. Pathophysiology of ischaemia-reperfusion injury. J. Pathol. 2000 190 3 255 266 10.1002/(SICI)1096‑9896(200002)190:3<255::AID‑PATH526>3.0.CO;2‑6 10685060
    [Google Scholar]
  14. Cassavaugh J. Lounsbury K.M. Hypoxia‐mediated biological control. J. Cell. Biochem. 2011 112 3 735 744 10.1002/jcb.22956 21328446
    [Google Scholar]
  15. Zhao H. Iwasaki M. Yang J. Savage S. Ma D. Hypoxia-inducible factor-1: A possible link between inhalational anesthetics and tumor progression? Acta. Anaesthesiol. Taiwan. 2014 52 2 70 76 10.1016/j.aat.2014.05.008 25016511
    [Google Scholar]
  16. Takabuchi S. Hirota K. Nishi K. Oda S. Oda T. Shingu K. Takabayashi A. Adachi T. Semenza G.L. Fukuda K. The intravenous anesthetic propofol inhibits hypoxia‐inducible factor 1 activity in an oxygen tension‐dependent manner. FEBS Lett. 2004 577 3 434 438 10.1016/j.febslet.2004.10.042 15556623
    [Google Scholar]
  17. Sharp F.R. Bernaudin M. HIF1 and oxygen sensing in the brain. Nat. Rev. Neurosci. 2004 5 6 437 448 10.1038/nrn1408 15152194
    [Google Scholar]
  18. Sheldon R.A. Lee C.L. Jiang X. Knox R.N. Ferriero D.M. Hypoxic preconditioning protection is eliminated in HIF-1α knockout mice subjected to neonatal hypoxia–ischemia. Pediatr. Res. 2014 76 1 46 53 10.1038/pr.2014.53 24713818
    [Google Scholar]
  19. Knudsen A.R. Kannerup A.S. Grønbæk H. Andersen K.J. Funch-Jensen P. Frystyk J. Flyvbjerg A. Mortensen F.V. Effects of ischemic pre- and postconditioning on HIF-1α, VEGF and TGF-β expression after warm ischemia and reperfusion in the rat liver. Comp. Hepatol. 2011 10 1 3 10.1186/1476‑5926‑10‑3 21771288
    [Google Scholar]
  20. Conde E. Alegre L. Blanco-Sánchez I. Sáenz-Morales D. Aguado-Fraile E. Ponte B. Ramos E. Sáiz A. Jiménez C. Ordoñez A. López-Cabrera M. Peso L. de Landázuri M.O. Liaño F. Selgas R. Sanchez-Tomero J.A. García-Bermejo M.L. Hypoxia inducible factor 1-alpha (HIF-1 alpha) is induced during reperfusion after renal ischemia and is critical for proximal tubule cell survival. PLoS One 2012 7 3 e33258 e33258 10.1371/journal.pone.0033258 22432008
    [Google Scholar]
  21. Jones N.M. Bergeron M. Hypoxic preconditioning induces changes in HIF-1 target genes in neonatal rat brain. J. Cereb. Blood Flow Metab. 2001 21 9 1105 1114 10.1097/00004647‑200109000‑00008 11524615
    [Google Scholar]
  22. Cai Z. Luo W. Zhan H. Semenza G.L. Hypoxia-inducible factor 1 is required for remote ischemic preconditioning of the heart. Proc. Natl. Acad. Sci. USA 2013 110 43 17462 17467 10.1073/pnas.1317158110 24101519
    [Google Scholar]
  23. Hieber S. Huhn R. Hollmann M.W. Weber N.C. Preckel B. Hypoxia-inducible factor 1 and related gene products in anaesthetic-induced preconditioning. Eur. J. Anaesthesiol. 2009 26 3 201 206 10.1097/EJA.0b013e3283212cbb 19244689
    [Google Scholar]
  24. Itoh T. Namba T. Fukuda K. Semenza G.L. Hirota K. Reversible inhibition of hypoxia‐inducible factor 1 activation by exposure of hypoxic cells to the volatile anesthetic halothane. FEBS Lett. 2001 509 2 225 229 10.1016/S0014‑5793(01)03119‑2 11741593
    [Google Scholar]
  25. Ishikawa M. Iwasaki M. Zhao H. Saito J. Hu C. Sun Q. Sakamoto A. Ma D. Sevoflurane and desflurane exposure enhanced cell proliferation and migration in ovarian cancer cells via miR-210 and miR-138 downregulation. Int. J. Mol. Sci. 2021 22 4 1826 10.3390/ijms22041826 33673181
    [Google Scholar]
  26. Sakamoto A. Imai J. Nishikawa A. Honma R. Ito E. Yanagisawa Y. Kawamura M. Ogawa R. Watanabe S. Influence of inhalation anesthesia assessed by comprehensive gene expression profiling. Gene 2005 356 39 48 10.1016/j.gene.2005.03.022 15967596
    [Google Scholar]
  27. Ma D. Lim T. Xu J. Tang H. Wan Y. Zhao H. Hossain M. Maxwell P.H. Maze M. Xenon preconditioning protects against renal ischemic-reperfusion injury via HIF-1α activation. J. Am. Soc. Nephrol. 2009 20 4 713 720 10.1681/ASN.2008070712 19144758
    [Google Scholar]
  28. Li Q. Zhu Y. Jiang H. Isoflurane preconditioning activates HIF-1α, iNOS and Erk1/2 and protects against oxygen–glucose deprivation neuronal injury. Brain Res. 2008 1245 26 35 10.1016/j.brainres.2008.09.069 18930717
    [Google Scholar]
  29. Hou T. Ma H. Wang H. Chen C. Ye J. Ahmed A.M. Zheng H. Sevoflurane preconditioning attenuates hypoxia/reoxygenation injury of H9c2 cardiomyocytes by activation of the HIF-1/PDK-1 pathway. PeerJ 2020 8 10603 10.7717/peerj.10603 33391885
    [Google Scholar]
  30. Ziello J.E. Jovin I.S. Huang Y. Hypoxia-inducible factor (HIF)-1 regulatory pathway and its potential for therapeutic intervention in malignancy and ischemia. Yale J. Biol. Med. 2007 80 2 51 60 18160990
    [Google Scholar]
  31. Chen S. Lotz C. Roewer N. Broscheit J.A. Comparison of volatile anesthetic-induced preconditioning in cardiac and cerebral system: Molecular mechanisms and clinical aspects. Eur. J. Med. Res. 2018 23 1 10 10.1186/s40001‑018‑0308‑y 29458412
    [Google Scholar]
  32. Galluzzi L. Vitale I. Aaronson S.A. Abrams J.M. Adam D. Agostinis P. Alnemri E.S. Altucci L. Amelio I. Andrews D.W. Annicchiarico-Petruzzelli M. Antonov A.V. Arama E. Baehrecke E.H. Barlev N.A. Bazan N.G. Bernassola F. Bertrand M.J.M. Bianchi K. Blagosklonny M.V. Blomgren K. Borner C. Boya P. Brenner C. Campanella M. Candi E. Carmona-Gutierrez D. Cecconi F. Chan F.K.M. Chandel N.S. Cheng E.H. Chipuk J.E. Cidlowski J.A. Ciechanover A. Cohen G.M. Conrad M. Cubillos-Ruiz J.R. Czabotar P.E. D’Angiolella V. Dawson T.M. Dawson V.L. De Laurenzi V. De Maria R. Debatin K.M. DeBerardinis R.J. Deshmukh M. Di Daniele N. Di Virgilio F. Dixit V.M. Dixon S.J. Duckett C.S. Dynlacht B.D. El-Deiry W.S. Elrod J.W. Fimia G.M. Fulda S. García-Sáez A.J. Garg A.D. Garrido C. Gavathiotis E. Golstein P. Gottlieb E. Green D.R. Greene L.A. Gronemeyer H. Gross A. Hajnoczky G. Hardwick J.M. Harris I.S. Hengartner M.O. Hetz C. Ichijo H. Jäättelä M. Joseph B. Jost P.J. Juin P.P. Kaiser W.J. Karin M. Kaufmann T. Kepp O. Kimchi A. Kitsis R.N. Klionsky D.J. Knight R.A. Kumar S. Lee S.W. Lemasters J.J. Levine B. Linkermann A. Lipton S.A. Lockshin R.A. López-Otín C. Lowe S.W. Luedde T. Lugli E. MacFarlane M. Madeo F. Malewicz M. Malorni W. Manic G. Marine J.C. Martin S.J. Martinou J.C. Medema J.P. Mehlen P. Meier P. Melino S. Miao E.A. Molkentin J.D. Moll U.M. Muñoz-Pinedo C. Nagata S. Nuñez G. Oberst A. Oren M. Overholtzer M. Pagano M. Panaretakis T. Pasparakis M. Penninger J.M. Pereira D.M. Pervaiz S. Peter M.E. Piacentini M. Pinton P. Prehn J.H.M. Puthalakath H. Rabinovich G.A. Rehm M. Rizzuto R. Rodrigues C.M.P. Rubinsztein D.C. Rudel T. Ryan K.M. Sayan E. Scorrano L. Shao F. Shi Y. Silke J. Simon H.U. Sistigu A. Stockwell B.R. Strasser A. Szabadkai G. Tait S.W.G. Tang D. Tavernarakis N. Thorburn A. Tsujimoto Y. Turk B. Vanden Berghe T. Vandenabeele P. Vander Heiden M.G. Villunger A. Virgin H.W. Vousden K.H. Vucic D. Wagner E.F. Walczak H. Wallach D. Wang Y. Wells J.A. Wood W. Yuan J. Zakeri Z. Zhivotovsky B. Zitvogel L. Melino G. Kroemer G. Molecular mechanisms of cell death: Recommendations of the Nomenclature Committee on Cell Death 2018. Cell. Death Differ. 2018 25 3 486 541 10.1038/s41418‑017‑0012‑4 29362479
    [Google Scholar]
  33. Mizushima N. Komatsu M. Autophagy: Renovation of cells and tissues. Cell. 2011 147 4 728 741 10.1016/j.cell.2011.10.026 22078875
    [Google Scholar]
  34. Zuo Z. Ye F. Anesthetic effects on autophagy. Med. Gas Res. 2017 7 3 204 211 10.4103/2045‑9912.215751 29152214
    [Google Scholar]
  35. Glick D. Barth S. Macleod K.F. Autophagy: Cellular and molecular mechanisms. J. Pathol. 2010 221 1 3 12 10.1002/path.2697 20225336
    [Google Scholar]
  36. Shiomi M. Miyamae M. Takemura G. Kaneda K. Inamura Y. Onishi A. Koshinuma S. Momota Y. Minami T. Figueredo V.M. Sevoflurane induces cardioprotection through reactive oxygen species-mediated upregulation of autophagy in isolated guinea pig hearts. J. Anesth. 2014 28 4 593 600 10.1007/s00540‑013‑1755‑9 24337890
    [Google Scholar]
  37. Deng L. Jiang L. Wei N. Zhang J. Wu X. Anesthetic sevoflurane simultaneously regulates autophagic flux and pyroptotic cell death-associated cellular inflammation in the hypoxic/re-oxygenated cardiomyocytes: Identification of sevoflurane as putative drug for the treatment of myocardial ischemia-reperfusion injury. Eur. J. Pharmacol. 2022 936 175363 10.1016/j.ejphar.2022.175363 36343694
    [Google Scholar]
  38. Sheng R. Zhang T.T. Felice V.D. Qin T. Qin Z.H. Smith C.D. Sapp E. Difiglia M. Waeber C. Preconditioning stimuli induce autophagy via sphingosine kinase 2 in mouse cortical neurons. J. Biol. Chem. 2014 289 30 20845 20857 10.1074/jbc.M114.578120 24928515
    [Google Scholar]
  39. Xie H. Liu Q. Qiao S. Jiang X. Wang C. Delayed cardioprotection by sevoflurane preconditioning: A novel mechanism via inhibiting Beclin 1-mediated autophagic cell death in cardiac myocytes exposed to hypoxia/reoxygenation injury. Int. J. Clin. Exp. Pathol. 2015 8 1 217 226 25755708
    [Google Scholar]
  40. Guo X.N. Ma X. The effects of propofol on autophagy. DNA Cell. Biol. 2020 39 2 197 209 10.1089/dna.2019.4745 31880481
    [Google Scholar]
  41. Noh H.S. Shin I.W. Ha J.H. Hah Y.S. Baek S.M. Kim D.R. Propofol protects the autophagic cell death induced by the ischemia/reperfusion injury in rats. Mol. Cells 2010 30 5 455 460 10.1007/s10059‑010‑0130‑z 20821058
    [Google Scholar]
  42. Wang C. Xie H. Liu X. Qin Q. Wu X. Liu H. Liu C. Role of nuclear factor-κB in volatile anaesthetic preconditioning with sevoflurane during myocardial ischaemia/reperfusion. Eur. J. Anaesthesiol. 2010 27 8 747 756 10.1097/EJA.0b013e32833bb3ba 20601888
    [Google Scholar]
  43. Misra A. Haudek S.B. Knuefermann P. Vallejo J.G. Chen Z.J. Michael L.H. Nuclear factor-kappaB protects the adult cardiac myocyte against ischemia-induced apoptosis in a murine model of acute myocardial infarction. Circulation 2003 108 25 3075 3078 10.1161/01.CIR.0000108929.93074.0B
    [Google Scholar]
  44. Raphael J. Zuo Z. Abedat S. Beeri R. Gozal Y. Isoflurane preconditioning decreases myocardial infarction in rabbits via up-regulation of hypoxia inducible factor 1 that is mediated by mammalian target of rapamycin. Anesthesiology 2008 108 3 415 425 10.1097/ALN.0b013e318164cab1 18292679
    [Google Scholar]
  45. Oshima Y. Otsuki A. Endo R. Nakasone M. Harada T. Takahashi S. Inagaki Y. The effects of volatile anesthetics on lung ischemia-reperfusion injury: Basic to clinical studies. J. Surg. Res. 2021 260 325 344 10.1016/j.jss.2020.11.042 33373852
    [Google Scholar]
  46. Xie Z. Dong Y. Maeda U. Alfille P. Culley D.J. Crosby G. Tanzi R.E. The common inhalation anesthetic isoflurane induces apoptosis and increases amyloid β protein levels. Anesthesiology 2006 104 5 988 994 10.1097/00000542‑200605000‑00015 16645451
    [Google Scholar]
  47. Dong Y. Zhang G. Zhang B. Moir R.D. Xia W. Marcantonio E.R. Culley D.J. Crosby G. Tanzi R.E. Xie Z. The common inhalational anesthetic sevoflurane induces apoptosis and increases β-amyloid protein levels. Arch. Neurol. 2009 66 5 620 631 10.1001/archneurol.2009.48 19433662
    [Google Scholar]
  48. Neag M.A. Mitre A.O. Catinean A. Mitre C.I. An overview on the mechanisms of neuroprotection and neurotoxicity of isoflurane and sevoflurane in experimental studies. Brain Res. Bull. 2020 165 281 289 10.1016/j.brainresbull.2020.10.011 33080307
    [Google Scholar]
  49. Yang M. Wei H. Anesthetic neurotoxicity: Apoptosis and autophagic cell death mediated by calcium dysregulation. Neurotoxicol. Teratol. 2017 60 59 62 10.1016/j.ntt.2016.11.004 27856359
    [Google Scholar]
  50. Chen L. Xue Z. Jiang H. Effect of propofol on pathologic time‐course and apoptosis after cerebral ischemia–reperfusion injury. Acta. Anaesthesiol. Scand. 2008 52 3 413 419 10.1111/j.1399‑6576.2007.01560.x 18269391
    [Google Scholar]
  51. Xi H. Zhang T. Tao T. Song C. Lu S. Cui X. Yue Z. Propofol improved neurobehavioral outcome of cerebral ischemia–reperfusion rats by regulating Bcl-2 and Bax expression. Brain Res. 2011 1410 24 32 10.1016/j.brainres.2011.06.060 21783180
    [Google Scholar]
  52. Jin Y.C. Kim W. Ha Y.M. Shin I.W. Sohn J.T. Kim H.J. Seo H.G. Lee J.H. Chang K.C. Propofol limits rat myocardial ischemia and reperfusion injury with an associated reduction in apoptotic cell death in vivo. Vascul. Pharmacol. 2009 50 1-2 71 77 10.1016/j.vph.2008.10.002 18996224
    [Google Scholar]
  53. Tao T. Li C. Yang W. Zeng X. Song C. Yue Z. Dong H. Qian H. Protective effects of propofol against whole cerebral ischemia/reperfusion injury in rats through the inhibition of the apoptosis-inducing factor pathway. Brain Res. 2016 1644 9 14 10.1016/j.brainres.2016.05.006 27163721
    [Google Scholar]
  54. Tian Y. Guo S. Guo Y. Jian L. Anesthetic propofol attenuates apoptosis, aβ accumulation, and inflammation induced by sevoflurane through NF-κB pathway in human neuroglioma cells. Cell. Mol. Neurobiol. 2015 35 6 891 898 10.1007/s10571‑015‑0184‑8 25809614
    [Google Scholar]
  55. Chan K.C. Lin C.J. Lee P.H. Chen C.F. Lai Y.L. Sun W.Z. Cheng Y.J. Propofol attenuates the decrease of dynamic compliance and water content in the lung by decreasing oxidative radicals released from the reperfused liver. Anesth. Analg. 2008 107 4 1284 1289 10.1213/ane.0b013e318181f4e6 18806041
    [Google Scholar]
  56. Tanaka K. Kersten J. Riess M. Opioid-induced cardioprotection. Curr. Pharm. Des. 2014 20 36 5696 5705 10.2174/1381612820666140204120311 24502571
    [Google Scholar]
  57. Park S.W. Yi J.W. Kim Y.M. Kang J.M. Kim D.O. Shin M.S. Kim C.J. Lee D.I. Kim D.H. Lee B.J. Remifentanil alleviates transient cerebral ischemia-induced memory impairment through suppression of apoptotic neuronal cell death in gerbils. Korean J. Anesthesiol. 2011 61 1 63 68 10.4097/kjae.2011.61.1.63 21860753
    [Google Scholar]
  58. Cho S.S.C. Rudloff I. Berger P.J. Irwin M.G. Nold M.F. Cheng W. Nold-Petry C.A. Remifentanil ameliorates intestinal ischemia-reperfusion injury. BMC Gastroenterol. 2013 13 1 69 69 10.1186/1471‑230X‑13‑69 23607370
    [Google Scholar]
  59. Okubo S. Tanabe Y. Takeda K. Kitayama M. Kanemitsu S. Kukreja R.C. Takekoshi N. Ischemic preconditioning and morphine attenuate myocardial apoptosis and infarction after ischemia-reperfusion in rabbits: Role of δ-opioid receptor. Am. J. Physiol. Heart Circ. Physiol. 2004 287 4 H1786 H1791 10.1152/ajpheart.01143.2003 15231506
    [Google Scholar]
  60. Choi I.Y. Hwang L. Jin J.J. Ko I.G. Kim S.E. Shin M.S. Shin K.M. Kim C.J. Park S.W. Han J.H. Yi J.W. Dexmedetomidine alleviates cerebral ischemia-induced short-term memory impairment by inhibiting the expression of apoptosis-related molecules in the hippocampus of gerbils. Exp. Ther. Med. 2017 13 1 107 116 10.3892/etm.2016.3956 28123477
    [Google Scholar]
  61. Li J. Chen Q. He X. Alam A. Ning J. Yi B. Lu K. Gu J. Dexmedetomidine attenuates lung apoptosis induced by renal ischemia–reperfusion injury through α2AR/PI3K/Akt pathway. J. Transl. Med. 2018 16 1 78 10.1186/s12967‑018‑1455‑1 29566706
    [Google Scholar]
  62. Wang T. Li Z. Xia S. Xu Z. Chen X. Sun H. Dexmedetomidine promotes cell proliferation and inhibits cell apoptosis by regulating LINC00982 and activating the phosphoinositide-3-kinase (PI3K)/protein kinase B (AKT) signaling in hypoxia/reoxy-genation-induced H9c2 cells. Bioengineered 2022 13 4 10159 10167 10.1080/21655979.2022.2060900 35466860
    [Google Scholar]
  63. Peng K. Chen W. Xia F. Liu H. Meng X. Zhang J. Liu H. Xia Z. Ji F. Dexmedetomidine post‐treatment attenuates cardiac ischaemia/reperfusion injury by inhibiting apoptosis through HIF‐1α signalling. J. Cell. Mol. Med. 2020 24 1 850 861 10.1111/jcmm.14795 31680420
    [Google Scholar]
  64. Algoet M. Janssens S. Himmelreich U. Gsell W. Pusovnik M. Van den Eynde J. Oosterlinck W. Myocardial ischemia-reperfusion injury and the influence of inflammation. Trends Cardiovasc. Med. 2023 33 6 357 366 10.1016/j.tcm.2022.02.005 35181472
    [Google Scholar]
  65. Cruz F.F. Rocco P.R.M. Pelosi P. Anti-inflammatory properties of anesthetic agents. Crit. Care 2017 21 1 67 67 10.1186/s13054‑017‑1645‑x 28320449
    [Google Scholar]
  66. Zhang M. Liu Q. Meng H. Duan H. Liu X. Wu J. Gao F. Wang S. Tan R. Yuan J. Ischemia-reperfusion injury: Molecular mechanisms and therapeutic targets. Signal. Transduct. Target. Ther. 2024 9 1 12 10.1038/s41392‑023‑01688‑x 38185705
    [Google Scholar]
  67. Barry M.C. Kelly C. Burke P. Sheehan S. Redmond H.P. Bouchier-Hayes D. Immunological and physiological responses to aortic surgery: Effect of reperfusion on neutrophil and monocyte activation and pulmonary function. Br. J. Surg. 1997 84 4 513 519 10.1046/j.1365‑2168.1997.02518.x 9112905
    [Google Scholar]
  68. Konia M.R. Schaefer S. Liu H. Nuclear factor-κB inhibition provides additional protection against ischaemia/reperfusion injury in delayed sevoflurane preconditioning. Eur. J. Anaesthesiol. 2009 26 6 496 503 10.1097/EJA.0b013e328324ed2e 19445059
    [Google Scholar]
  69. Lee H.T. Ota-Setlik A. Fu Y. Nasr S.H. Emala C.W. Differential protective effects of volatile anesthetics against renal ischemia-reperfusion injury in vivo. Anesthesiology 2004 101 6 1313 1324 10.1097/00000542‑200412000‑00011 15564938
    [Google Scholar]
  70. Hou Y. Xiao X. Yu W. Qi S. Propofol suppresses microglia inflammation by targeting TGM2/NF-κB signaling. J. Immunol. Res. 2021 2021 1 12 10.1155/2021/4754454 34485533
    [Google Scholar]
  71. Peng X. Li C. Yu W. Liu S. Cong Y. Fan G. Qi S. Propofol attenuates hypoxia‐induced inflammation in bv2 microglia by inhibiting oxidative stress and NF‐ κ B/Hif‐1 α signaling. BioMed Res. Int. 2020 2020 1 8978704 8978711 10.1155/2020/8978704 32420378
    [Google Scholar]
  72. Liu Y. Du X. Zhang S. Liu X. Xu G. Propofol alleviates hepatic ischemia/reperfusion injury via the activation of the Sirt1 pathway. Int. J. Clin. Exp. Pathol. 2017 10 11 10959 10968 31966440
    [Google Scholar]
  73. Ichiyama T. Nishikawa M. Lipton J.M. Matsubara T. Takashi H. Furukawa S. Thiopental inhibits NF-κB activation in human glioma cells and experimental brain inflammation. Brain Res. 2001 911 1 56 61 10.1016/S0006‑8993(01)02672‑5 11489444
    [Google Scholar]
  74. Welters I.D. Menzebach A. Goumon Y. Cadet P. Menges T. Hughes T.K. Hempelmann G. Stefano G.B. Morphine inhibits NF-kappaB nuclear binding in human neutrophils and monocytes by a nitric oxide-dependent mechanism. Anesthesiology 2000 92 6 1677 1684 10.1097/00000542‑200006000‑00027 10839919
    [Google Scholar]
  75. Schneemilch C.E. Schilling T. Bank U. Effects of general anaesthesia on inflammation. Baillieres. Best Pract. Res. Clin. Anaesthesiol. 2004 18 3 493 507 10.1016/j.bpa.2004.01.002 15212341
    [Google Scholar]
  76. Edgington T.L. Muco E. Maani C.V. Sevoflurane. Treasure Island, FL StatPearls Publishing 2023
    [Google Scholar]
  77. Li Y. Liang Z. Lei S. Wu X. Yuan T. Ma K. Chi K. Sevoflurane preconditioning downregulates gria1 expression to attenuate cerebral ischemia–reperfusion-induced neuronal injury. Neurotox. Res. 2023 41 1 29 40 10.1007/s12640‑022‑00620‑5 36595163
    [Google Scholar]
  78. Wang Z.G. Cheng Y. Yu X.C. Ye L.B. Xia Q.H. Johnson N.R. Wei X. Chen D.Q. Cao G. Fu X.B. Li X.K. Zhang H.Y. Xiao J. bFGF protects against blood-brain barrier damage through junction protein regulation via PI3K-Akt-Rac1 pathway following traumatic brain injury. Mol. Neurobiol. 2016 53 10 7298 7311 10.1007/s12035‑015‑9583‑6 26687235
    [Google Scholar]
  79. Wang Z. Wang Z. Wang A. Li J. Wang J. Yuan J. Wei X. Xing F. Zhang W. Xing N. The neuroprotective mechanism of sevoflurane in rats with traumatic brain injury via FGF2. J. Neuroinflammation 2022 19 1 51 10.1186/s12974‑021‑02348‑z 35177106
    [Google Scholar]
  80. Xue H. Xu Y. Wang S. Wu Z.Y. Li X.Y. Zhang Y.H. Niu J.Y. Gao Q.S. Zhao P. Sevoflurane post-conditioning alleviates neonatal rat hypoxic-ischemic cerebral injury via Ezh2-regulated autophagy. Drug Des. Devel. Ther. 2019 13 1691 1706 10.2147/DDDT.S197325 31190748
    [Google Scholar]
  81. Xiong J. Quan J. Qin C. Wang X. Dong Q. Zhang B. Remifentanil pretreatment attenuates brain nerve injury in response to cardiopulmonary bypass by blocking AKT/NRF2 signal pathway. Immunopharmacol. Immunotoxicol. 2022 44 4 574 585 10.1080/08923973.2022.2069577 35485905
    [Google Scholar]
  82. Su L.J. Zhang J.H. Gomez H. Murugan R. Hong X. Xu D. Jiang F. Peng Z.Y. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxid. Med. Cell. Longev. 2019 2019 1 13 10.1155/2019/5080843 31737171
    [Google Scholar]
  83. Zhou Y. Yang Y. Yi L. Pan M. Tang W. Duan H. Propofol mitigates sepsis-induced brain injury by inhibiting ferroptosis via activation of the Nrf2/HO-1axis. Neurochem. Res. 2024 49 8 2131 2147 10.1007/s11064‑024‑04163‑3 38822984
    [Google Scholar]
  84. Li H. Wang T. Wu L. Xue F. Zhang G. Yan T. Role of Keap1-Nrf2/ARE signal transduction pathway in protection of dexmedetomidine preconditioning against myocardial ischemia/reperfusion injury. Biosci. Rep. 2022 42 9 BSR20221306 10.1042/BSR20221306 35959640
    [Google Scholar]
  85. Huang G. Hao F. Hu X. Downregulation of microRNA‐155 stimulates sevoflurane‐mediated cardioprotection against myocardial ischemia/reperfusion injury by binding to SIRT1 in mice. J. Cell. Biochem. 2019 120 9 15494 15505 10.1002/jcb.28816 31099069
    [Google Scholar]
  86. Xue R.Q. Sun L. Yu X.J. Li D.L. Zang W.J. Vagal nerve stimulation improves mitochondrial dynamics via an M 3 receptor/Ca MKK β/AMPK pathway in isoproterenol‐induced myocardial ischaemia. J. Cell. Mol. Med. 2017 21 1 58 71 10.1111/jcmm.12938 27491814
    [Google Scholar]
  87. Yang Y. Li Y. Wang J. Hong L. Qiao S. Wang C. An J. Cholinergic receptors play a role in the cardioprotective effects of anesthetic preconditioning: Roles of nitric oxide and the CaMKKβ/AMPK pathway. Exp. Ther. Med. 2020 21 2 137 10.3892/etm.2020.9569 33456504
    [Google Scholar]
  88. Zhang Y.Q. Li R. Tian S.Y. Lv J.P. Yang B.Z. Wang J. Wang L. Bai X.J. Wang C.H. Wang Q. Sevoflurane preconditioning protects against acute MI/R injury via enhancing AdipoR1-Cav3 interaction and alleviating endoplasmic reticulum stress. Exp. Cell. Res. 2022 417 1 113217 10.1016/j.yexcr.2022.113217 35598654
    [Google Scholar]
  89. Zhao J. Wang F. Zhang Y. Jiao L. Lau W.B. Wang L. Sevoflurane preconditioning attenuates myocardial ischemia/reperfusion injury via caveolin-3-dependent cyclooxygenase-2 inhibition. Circulation 2013 128 11 Suppl 1 S121 S129 10.1161/CIRCULATIONAHA.112.000045
    [Google Scholar]
  90. Sheng H. Xiong J. Yang D. Protective effect of sevoflurane preconditioning on cardiomyocytes against hypoxia/reoxygenation injury by modulating iron homeostasis and ferroptosis. Cardiovasc. Toxicol. 2023 23 2 86 92 10.1007/s12012‑023‑09782‑w 36800141
    [Google Scholar]
  91. Li J. Cao F. Yin H. Huang Z. Lin Z. Mao N. Sun B. Wang G. Ferroptosis: Past, present and future. Cell. Death Dis. 2020 11 2 88 10.1038/s41419‑020‑2298‑2 32015325
    [Google Scholar]
  92. Nakamura M. Wang N.P. Zhao Z.Q. Wilcox J.N. Thourani V. Guyton R.A. Vinten-Johansen J. Preconditioning decreases Bax expression, PMN accumulation and apoptosis in reperfused rat heart. Cardiovasc. Res. 2000 45 3 661 670 10.1016/S0008‑6363(99)00393‑4 10728387
    [Google Scholar]
  93. Wang L. Liu J. Wang Z. Qian X. Zhao Y. Wang Q. Dai N. Xie Y. Zeng W. Yang W. Bai X. Yang Y. Qian J. Dexmedetomidine abates myocardial ischemia reperfusion injury through inhibition of pyroptosis via regulation of miR-665/] MEF2D/Nrf2 axis. Biomed. Pharmacother. 2023 165 115255 10.1016/j.biopha.2023.115255 37549462
    [Google Scholar]
  94. Xiong W. Zhou R. Qu Y. Yang Y. Wang Z. Song N. Liang R. Qian J. Dexmedetomidine preconditioning mitigates myocardial ischemia/reperfusion injury via inhibition of mast cell degranulation. Biomed. Pharmacother. 2021 141 111853 10.1016/j.biopha.2021.111853 34237593
    [Google Scholar]
  95. Landoni G. Greco T. Biondi-Zoccai G. Nigro Neto C. Febres D. Pintaudi M. Pasin L. Cabrini L. Finco G. Zangrillo A. Anaesthetic drugs and survival: A Bayesian network meta-analysis of randomized trials in cardiac surgery. Br. J. Anaesth. 2013 111 6 886 896 10.1093/bja/aet231 23852263
    [Google Scholar]
  96. Dharmalingam S.K. Amirtharaj G.J. Ramachandran A. Korula M. Volatile anesthetic preconditioning modulates oxidative stress and nitric oxide in patients undergoing coronary artery bypass grafting. Ann. Card. Anaesth. 2021 24 3 319 326 10.4103/aca.ACA_130_20 34269262
    [Google Scholar]
  97. Xu X. Deng R. Zou L. Pan X. Sheng Z. Xu D. Sevoflurane participates in the protection of rat renal ischemia-reperfusion injury by down-regulating the expression of TRPM7. Immunity, Inflamm. Dis. 2023 11 1 e753 10.1002/iid3.753
    [Google Scholar]
  98. Yu Y. Chen S. Xiao C. Jia Y. Guo J. Jiang J. Liu P. TRPM7 is involved in angiotensin II induced cardiac fibrosis development by mediating calcium and magnesium influx. Cell. Calcium 2014 55 5 252 260 10.1016/j.ceca.2014.02.019 24680379
    [Google Scholar]
  99. Sun Y. Kamat A. Singh B.B. Isoproterenol-Dependent Activation of TRPM7 Protects Against Neurotoxin-Induced Loss of Neuroblastoma Cells. Front. Physiol. 2020 11 305 10.3389/fphys.2020.00305 32390858
    [Google Scholar]
  100. Visser D. Middelbeek J. van Leeuwen F.N. Jalink K. Function and regulation of the channel-kinase TRPM7 in health and disease. Eur. J. Cell. Biol. 2014 93 10-12 455 465 10.1016/j.ejcb.2014.07.001 25073440
    [Google Scholar]
  101. Macfarlane L.A. Murphy P.R. MicroRNA: Biogenesis, function and role in cancer. Curr. Genomics 2010 11 7 537 561 10.2174/138920210793175895 21532838
    [Google Scholar]
  102. Yamamoto M. Morita T. Ishikawa M. Sakamoto A. Specific microRNAs are involved in the reno protective effects of sevoflurane preconditioning and ischemic preconditioning against ischemia reperfusion injury in rats. Int. J. Mol. Med. 2020 45 4 1141 1149 10.3892/ijmm.2020.4477 31985019
    [Google Scholar]
  103. Wang W.X. Zhao Z.R. Bai Y. Li Y.X. Gao X.N. Zhang S. Sun Y.B. Sevoflurane preconditioning prevents acute renal injury caused by ischemia reperfusion in mice via activation of the Nrf2 signaling pathway. Exp. Ther. Med. 2022 23 4 303 10.3892/etm.2022.11232 35340877
    [Google Scholar]
  104. Zheng Y. Lu H. Huang H. Desflurane preconditioning protects against renal ischemia–reperfusion injury and inhibits inflammation and oxidative stress in rats through regulating the Nrf2-Keap1-ARE signaling pathway. Drug Des. Devel. Ther. 2020 14 1351 1362 10.2147/DDDT.S223742 32308368
    [Google Scholar]
  105. Echavarría R. Garcia D. Figueroa F. Franco-Acevedo A. Palomino J. Portilla-Debuen E. Anesthetic preconditioning increases sirtuin 2 gene expression in a renal ischemia reperfusion injury model. Minerva Urol. Nefrol. 2020 72 2 243 249 10.23736/S0393‑2249.19.03361‑7
    [Google Scholar]
  106. Guerrero Orriach J.L. Malo-Manso A. Nuñez Galo M. Bellido Estevez I. Ruiz Salas A. Cruz Mañas J. Garrido-Sanchez L. Gonzalez-Alvarez L. Comparison of the use of desflurane vs. propofol in aortic valve replacement surgery: Differences in nephroprotection: An explorative and hypothesis-generating study. Life. 2022 12 8 1172 10.3390/life12081172 36013350
    [Google Scholar]
  107. Guerrero Orriach J.L. Galán Ortega M. Ramirez Fernandez A. Ramirez Aliaga M. Moreno Cortes M.I. Ariza Villanueva D. Florez Vela A. Alcaide Torres J. Santiago Fernandez C. Matute Gonzalez E. Alsina Marcos E. Escalona Belmonte J.J. Rubio Navarro M. Garrido Sanchez L. Cruz Mañas J. Cardioprotective efficacy of sevoflurane vs. propofol during induction and/or maintenance in patients undergoing coronary artery revascularization surgery without pump: A randomized trial. Int. J. Cardiol. 2017 243 73 80 10.1016/j.ijcard.2017.04.105 28506550
    [Google Scholar]
  108. Wang H. Xi Z. Deng L. Pan Y. He K. Xia Q. Macrophage polarization and liver ischemia-reperfusion injury. Int. J. Med. Sci. 2021 18 5 1104 1113 10.7150/ijms.52691 33526969
    [Google Scholar]
  109. Li Y. Gao W. Lei S. Wu X. Yuan T. Ma K Sevoflurane blocks KLF5-mediated transcriptional activation of ITGB2 to inhibit macrophage infiltration in hepatic ischemia/reperfusion injury. J. Gene Med. 2024 26 5 e3692 10.1002/jgm.3692
    [Google Scholar]
  110. Liu L. Zhao Q. Kong M. Mao L. Yang Y. Xu Y. Myocardin-related transcription factor A regulates integrin beta 2 transcription to promote macrophage infiltration and cardiac hypertrophy in mice. Cardiovasc. Res. 2022 118 3 844 858 10.1093/cvr/cvab110 33752236
    [Google Scholar]
  111. Yang Y. Chen C. Cui C. Jiao Y. Li P. Zhu L. Yu W. Xia Q. Wen D. Yang L. Indispensable role of β-arrestin2 in the protection of remifentanil preconditioning against hepatic ischemic reperfusion injury. Sci. Rep. 2019 9 1 2087 10.1038/s41598‑018‑38456‑9 30765766
    [Google Scholar]
  112. Li H. Hu D. Fan H. Zhang Y. LeSage G.D. Caudle Y. Stuart C. Liu Z. Yin D. β-Arrestin 2 negatively regulates Toll-like receptor 4 (TLR4)-triggered inflammatory signaling via targeting p38 MAPK and interleukin 10. J. Biol. Chem. 2014 289 33 23075 23085 10.1074/jbc.M114.591495 25012660
    [Google Scholar]
  113. Ji H. Li H. Zhang H. Cheng Z. Role of microRNA 218 5p in sevoflurane induced protective effects in hepatic ischemia/] reperfusion injury mice by regulating GAB2/PI3K/AKT pathway. Mol. Med. Rep. 2021 25 1 1 10.3892/mmr.2021.12517 34726254
    [Google Scholar]
  114. Xiao X. Liu D. Chen S. Li X. Ge M. Huang W. Sevoflurane preconditioning activates HGF/Met-mediated autophagy to attenuate hepatic ischemia-reperfusion injury in mice. Cell. Signal. 2021 82 109966 10.1016/j.cellsig.2021.109966 33639217
    [Google Scholar]
  115. Dieu A. Benoit L. Dupont C. de Magnée C. Reding R. Pirotte T. Steyaert A. Sevoflurane preconditioning in living liver donation is associated with better initial graft function after pediatric transplantation: A retrospective study. Perioper. Med. 2024 13 1 11 10.1186/s13741‑024‑00367‑x 38419073
    [Google Scholar]
  116. Jowkar S. Khosravi M.B. Sahmeddini M.A. Eghbal M.H. Samadi K. Preconditioning effect of remifentanil versus fentanyl in prevalence of early graft dysfunction in patients after liver transplant: A randomized clinical trial. Exp. Clin. Transplant. 2020 18 5 598 604 10.6002/ect.2019.0014 32635883
    [Google Scholar]
  117. Bertani A. Miceli V. De Monte L. Occhipinti G. Pagano V. Liotta R. Badami E. Tuzzolino F. Arcadipane A. Donor preconditioning with inhaled sevoflurane mitigates the effects of ischemia‐reperfusion injury in a swine model of lung transplantation. BioMed Res. Int. 2021 2021 1 6625955 11 10.1155/2021/6625955 33506025
    [Google Scholar]
  118. Hong H. Huang Q. Cai Y. Lin T. Xia F. Jin Z. Dexmedetomidine preconditioning ameliorates lung injury induced by pulmonary ischemia/reperfusion by upregulating promoter histone H3K4me3 modification of KGF-2. Exp. Cell. Res. 2021 406 2 112762 10.1016/j.yexcr.2021.112762 34352276
    [Google Scholar]
  119. Fang X. Wang L. Shi L. Chen C. Wang Q. Bai C. Wang X. Protective effects of keratinocyte growth factor-2 on ischemia-reperfusion-induced lung injury in rats. Am. J. Respir. Cell. Mol. Biol. 2014 50 6 1156 1165 10.1165/rcmb.2013‑0268OC 24450501
    [Google Scholar]
/content/journals/cn/10.2174/011570159X359884250714172718
Loading
/content/journals/cn/10.2174/011570159X359884250714172718
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: organ protection ; cell death ; pharmacology ; anesthesia ; inflammation ; Organ injury
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test