Skip to content
2000
image of Advances in the Mechanism of ceRNA Regulation in Postoperative

Abstract

Postoperative cognitive dysfunction (POCD) is a common central nervous system complication in elderly patients after surgery, characterized by cognitive changes, including impaired learning and memory, reduced attention, and mental disorders and personality changes in severe cases. Despite extensive research, effective targeted therapies remain elusive, underscoring the urgent need to elucidate their molecular mechanisms and identify novel therapeutic targets. Non-coding RNAs (ncRNAs), major transcription products of the human genome, are highly expressed in the central nervous system and play critical roles in regulating neuronal and synaptic complexity through interactions with other biomolecules. Notably, certain ncRNAs modulate gene expression networks by regulating miRNAs, a phenomenon known as the competing endogenous RNA (ceRNA) mechanism. In this review, we summarized and analyzed emerging evidence on ceRNA-mediated regulatory mechanisms in POCD pathogenesis, aiming to establish a foundation for future mechanistic exploration and therapeutic development.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X391415250707115740
2025-09-11
2025-09-13
Loading full text...

Full text loading...

References

  1. Suwanabol P.A. Li Y. Abrahamse P. De Roo A.C. Vu J.V. Silveira M.J. Mody L. Dimick J.B. Functional and cognitive decline among older adults after high-risk surgery. Ann. Surg. 2022 275 1 e132 e139 10.1097/SLA.0000000000003950 32404660
    [Google Scholar]
  2. Bhushan S. Li Y. Huang X. Cheng H. Gao K. Xiao Z. Progress of research in postoperative cognitive dysfunction in cardiac surgery patients: A review article. Int. J. Surg. 2021 95 106163 10.1016/j.ijsu.2021.106163 34743049
    [Google Scholar]
  3. Dilmen O.K. Meco B.C. Evered L.A. Radtke F.M. Postoperative neurocognitive disorders: A clinical guide. J. Clin. Anesth. 2024 92 111320 10.1016/j.jclinane.2023.111320 37944401
    [Google Scholar]
  4. Monk T.G. Weldon B.C. Garvan C.W. Dede D.E. van der Aa M.T. Heilman K.M. Gravenstein J.S. Predictors of cognitive dysfunction after major noncardiac surgery. Anesthesiology 2008 108 1 18 30 10.1097/01.anes.0000296071.19434.1e 18156878
    [Google Scholar]
  5. Tang V.L. Jing B. Boscardin J. Ngo S. Silvestrini M. Finlayson E. Covinsky K.E. Association of functional, cognitive, and psychological measures with 1-year mortality in patients undergoing major surgery. JAMA Surg. 2020 155 5 412 418 10.1001/jamasurg.2020.0091 32159753
    [Google Scholar]
  6. Boone M.D. Sites B. von Recklinghausen F.M. Mueller A. Taenzer A.H. Shaefi S. Economic burden of postoperative neurocognitive disorders among us medicare patients. JAMA Netw. Open 2020 3 7 208931 10.1001/jamanetworkopen.2020.8931 32735336
    [Google Scholar]
  7. Chen Y. Zhang P. Lin X. Zhang H. Miao J. Zhou Y. Chen G. Mitophagy impairment is involved in sevoflurane-induced cognitive dysfunction in aged rats. Aging 2020 12 17 17235 17256 10.18632/aging.103673 32903215
    [Google Scholar]
  8. Danielson M. Wiklund A. Granath F. Blennow K. Mkrtchian S. Nellgård B. Oras J. Jonsson Fagerlund M. Granström A. Schening A. Rasmussen L.S. Erlandsson Harris H. Zetterberg H. Ricksten S.E. Eriksson L.I. Neuroinflammatory markers associate with cognitive decline after major surgery: Findings of an explorative study. Ann. Neurol. 2020 87 3 370 382 10.1002/ana.25678 31930549
    [Google Scholar]
  9. Wu J. Yang J.J. Cao Y. Li H. Zhao H. Yang S. Li K. Iron overload contributes to general anaesthesia-induced neurotoxicity and cognitive deficits. J. Neuroinflammation 2020 17 1 110 10.1186/s12974‑020‑01777‑6 32276637
    [Google Scholar]
  10. Yang T. Velagapudi R. Terrando N. Neuroinflammation after surgery: From mechanisms to therapeutic targets. Nat. Immunol. 2020 21 11 1319 1326 10.1038/s41590‑020‑00812‑1 33077953
    [Google Scholar]
  11. McDonagh D.L. Mathew J.P. White W.D. Phillips-Bute B. Laskowitz D.T. Podgoreanu M.V. Newman M.F. Cognitive function after major noncardiac surgery, apolipoprotein E4 genotype, and biomarkers of brain injury. Anesthesiology 2010 112 4 852 859 10.1097/ALN.0b013e3181d31fd7 20216394
    [Google Scholar]
  12. Evered L. Silbert B. Scott D.A. Ames D. Maruff P. Blennow K. Cerebrospinal fluid biomarker for Alzheimer disease predicts postoperative cognitive dysfunction. Anesthesiology 2016 124 2 353 361 10.1097/ALN.0000000000000953 26580833
    [Google Scholar]
  13. Wang X. Tang X. Zhu P. Hua D. Xie Z. Guo M. Que M. Yan J. Li X. Xia Q. Luo X. Bi J. Zhao Y. Zhou Z. Li S. Luo A. CircAKT3 alleviates postoperative cognitive dysfunction by stabilizing the feedback cycle of miR-106a-5p/HDAC4/MEF2C axis in hippocampi of aged mice. Cell. Mol. Life Sci. 2024 81 1 138 10.1007/s00018‑024‑05156‑9 38478029
    [Google Scholar]
  14. Wang G. Shen J. Guan Q. Lin Y. Zhai L. Shen H. LncRNA-AC020978 promotes metabolic reprogramming in m1 microglial cells in postoperative cognitive disorder via PKM2. Mol. Neurobiol. 2024 61 4 2459 2467 10.1007/s12035‑023‑03729‑6 37897635
    [Google Scholar]
  15. Nemeth K. Bayraktar R. Ferracin M. Calin G.A. Non-coding RNAs in disease: From mechanisms to therapeutics. Nat. Rev. Genet. 2024 25 3 211 232 10.1038/s41576‑023‑00662‑1 37968332
    [Google Scholar]
  16. Li Y. Fan C. Wang L. Lan T. Gao R. Wang W. Yu S.Y. MicroRNA-26a-3p rescues depression-like behaviors in male rats via preventing hippocampal neuronal anomalies. J. Clin. Invest. 2021 131 16 148853 10.1172/JCI148853 34228643
    [Google Scholar]
  17. Akiki R.M. Cornbrooks R.G. Magami K. Greige A. Snyder K.K. Wood D.J. Herrington M.C. Mace P. Blidy K. Koike N. Berto S. Cowan C.W. Taniguchi M. A long noncoding eRNA forms R-loops to shape emotional experience–induced behavioral adaptation. Science 2024 386 6727 1282 1289 10.1126/science.adp1562 39666799
    [Google Scholar]
  18. He X. Yang T. Lu Y.W. Wu G. Dai G. Ma Q. Zhang M. Zhou H. Long T. Yan Y. Liang Z. Liu C. Pu W.T. Dong Y. Ou J. Chen H. Mably J.D. He J. Wang D.Z. Huang Z.P. The long noncoding RNA CARDINAL attenuates cardiac hypertrophy by modulating protein translation. J. Clin. Invest. 2024 134 13 169112 10.1172/JCI169112 38743498
    [Google Scholar]
  19. Winkler I. Engler J.B. Vieira V. Bauer S. Liu Y.H. Di Liberto G. Grochowska K.M. Wagner I. Bier J. Bal L.C. Rothammer N. Meurs N. Egervari K. Schattling B. Salinas G. Kreutz M.R. Huang Y.S. Pless O. Merkler D. Friese M.A. MicroRNA-92a–CPEB3 axis protects neurons against inflammatory neurodegeneration. Sci. Adv. 2023 9 47 eadi6855 10.1126/sciadv.adi6855 38000031
    [Google Scholar]
  20. Cech T.R. Steitz J.A. The noncoding RNA revolution-trashing old rules to forge new ones. Cell 2014 157 1 77 94 10.1016/j.cell.2014.03.008 24679528
    [Google Scholar]
  21. Baltimore D. Our genome unveiled. Nature 2001 409 6822 815 816 10.1038/35057267 11236992
    [Google Scholar]
  22. Djebali S. Davis C.A. Merkel A. Dobin A. Lassmann T. Mortazavi A. Tanzer A. Lagarde J. Lin W. Schlesinger F. Xue C. Marinov G.K. Khatun J. Williams B.A. Zaleski C. Rozowsky J. Röder M. Kokocinski F. Abdelhamid R.F. Alioto T. Antoshechkin I. Baer M.T. Bar N.S. Batut P. Bell K. Bell I. Chakrabortty S. Chen X. Chrast J. Curado J. Derrien T. Drenkow J. Dumais E. Dumais J. Duttagupta R. Falconnet E. Fastuca M. Fejes-Toth K. Ferreira P. Foissac S. Fullwood M.J. Gao H. Gonzalez D. Gordon A. Gunawardena H. Howald C. Jha S. Johnson R. Kapranov P. King B. Kingswood C. Luo O.J. Park E. Persaud K. Preall J.B. Ribeca P. Risk B. Robyr D. Sammeth M. Schaffer L. See L.H. Shahab A. Skancke J. Suzuki A.M. Takahashi H. Tilgner H. Trout D. Walters N. Wang H. Wrobel J. Yu Y. Ruan X. Hayashizaki Y. Harrow J. Gerstein M. Hubbard T. Reymond A. Antonarakis S.E. Hannon G. Giddings M.C. Ruan Y. Wold B. Carninci P. Guigó R. Gingeras T.R. Landscape of transcription in human cells. Nature 2012 489 7414 101 108 10.1038/nature11233 22955620
    [Google Scholar]
  23. Mattick J.S. The functional genomics of noncoding RNA. Science 2005 309 5740 1527 1528 10.1126/science.1117806 16141063
    [Google Scholar]
  24. Mercer T.R. Dinger M.E. Sunkin S.M. Mehler M.F. Mattick J.S. Specific expression of long noncoding RNAs in the mouse brain. Proc. Natl. Acad. Sci. USA 2008 105 2 716 721 10.1073/pnas.0706729105 18184812
    [Google Scholar]
  25. Cabili M.N. Trapnell C. Goff L. Koziol M. Tazon-Vega B. Regev A. Rinn J.L. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev. 2011 25 18 1915 1927 10.1101/gad.17446611 21890647
    [Google Scholar]
  26. Ulitsky I. Shkumatava A. Jan C.H. Sive H. Bartel D.P. Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution. Cell 2011 147 7 1537 1550 10.1016/j.cell.2011.11.055 22196729
    [Google Scholar]
  27. He L. Zhang F. Zhu Y. Lu M. Noncoding RNAs: Novel insights into postoperative neurocognitive disorders. ACS Chem. Neurosci. 2021 12 9 1480 1486 10.1021/acschemneuro.1c00148 33899470
    [Google Scholar]
  28. Wu W. Peng Y. Zhou J. Zhang X. Cao L. Lin W. Lu Y. Wen J. Wang Z. Identification of the potential gene regulatory networks and therapeutics in aged mice with postoperative neurocognitive disorder. Front. Neurosci. 2021 15 689188 10.3389/fnins.2021.689188 34248489
    [Google Scholar]
  29. Zhang M.X. Lin J.R. Yang S.T. Zou J. Xue Y. Feng C.Z. Cao L. Characterization of circRNA-associated-ceRNA networks involved in the pathogenesis of postoperative cognitive dysfunction in aging mice. Front. Aging Neurosci. 2022 14 727805 10.3389/fnagi.2022.727805 35444525
    [Google Scholar]
  30. Wang W. Lv R. Zhang J. Liu Y. circSAMD4A participates in the apoptosis and autophagy of dopaminergic neurons via the miR 29c 3p mediated AMPK/mTOR pathway in Parkinson’s disease. Mol. Med. Rep. 2021 24 1 540 10.3892/mmr.2021.12179 34080649
    [Google Scholar]
  31. Liu Q. Li Q. Zhang R. Wang H. Li Y. Liu Z. Xie W. Geng D. Wang L. circ-Pank1 promotes dopaminergic neuron neurodegeneration through modulating miR-7a-5p/α-syn pathway in Parkinson’s disease. Cell Death Dis. 2022 13 5 477 10.1038/s41419‑022‑04934‑2 35589691
    [Google Scholar]
  32. Esteves M. Abreu R. Fernandes H. Serra-Almeida C. Martins P.A.T. Barão M. Cristóvão A.C. Saraiva C. Ferreira R. Ferreira L. Bernardino L. MicroRNA-124-3p-enriched small extracellular vesicles as a therapeutic approach for Parkinson’s disease. Mol. Ther. 2022 30 10 3176 3192 10.1016/j.ymthe.2022.06.003 35689381
    [Google Scholar]
  33. Huang X. Su G. Wu C. Sha X. Zou J. Liu X. Li M. He Y. Knockdown of rno_circRNA_009194 improves outcomes in traumatic brain injury rats through inhibiting voltage-gated sodium channel Nav1.3. J. Neurotrauma 2022 39 1-2 196 210 10.1089/neu.2020.7520 34726508
    [Google Scholar]
  34. Zheng P. Shu L. Ren D. Kuang Z. Zhang Y. Wan J. circHtra1/miR‐3960/GRB10 axis promotes neuronal loss and immune deficiency in traumatic brain injury. Oxid. Med. Cell. Longev. 2022 2022 1 3522492 10.1155/2022/3522492 35571247
    [Google Scholar]
  35. Li Y. Han X. Fan H. Sun J. Ni M. Zhang L. Fang F. Zhang W. Ma P. Circular RNA AXL increases neuron injury and inflammation through targeting microRNA-328 mediated BACE1 in Alzheimer’s disease. Neurosci. Lett. 2022 776 136531 10.1016/j.neulet.2022.136531 35167942
    [Google Scholar]
  36. Singh R. Hussain J. Kaur A. Jamdare B.G. Pathak D. Garg K. Kaur R. Shankar S. Sunkaria A. The hidden players: Shedding light on the significance of post-translational modifications and miRNAs in Alzheimer’s disease development. Ageing Res. Rev. 2023 90 102002 10.1016/j.arr.2023.102002 37423542
    [Google Scholar]
  37. Chen M.L. Hong C.G. Yue T. Li H.M. Duan R. Hu W.B. Cao J. Wang Z.X. Chen C.Y. Hu X.K. Wu B. Liu H.M. Tan Y.J. Liu J.H. Luo Z.W. Zhang Y. Rao S.S. Luo M.J. Yin H. Wang Y.Y. Xia K. Tang S.Y. Xie H. Liu Z.Z. Inhibition of miR-331-3p and miR-9-5p ameliorates Alzheimer’s disease by enhancing autophagy. Theranostics 2021 11 5 2395 2409 10.7150/thno.47408 33500732
    [Google Scholar]
  38. Kumar A. Su Y. Sharma M. Singh S. Kim S. Peavey J.J. Suerken C.K. Lockhart S.N. Whitlow C.T. Craft S. Hughes T.M. Deep G. MicroRNA expression in extracellular vesicles as a novel blood‐based biomarker for Alzheimer’s disease. Alzheimers Dement. 2023 19 11 4952 4966 10.1002/alz.13055 37071449
    [Google Scholar]
  39. Cao X. Yeo G. Muotri A.R. Kuwabara T. Gage F.H. Noncoding RNAs in the mammalian central nervous system. Annu. Rev. Neurosci. 2006 29 1 77 103 10.1146/annurev.neuro.29.051605.112839 16776580
    [Google Scholar]
  40. Quinlan S. Kenny A. Medina M. Engel T. Jimenez-Mateos E.M. MicroRNAs in neurodegenerative diseases. Int. Rev. Cell Mol. Biol. 2017 334 309 343 10.1016/bs.ircmb.2017.04.002 28838542
    [Google Scholar]
  41. Ala U. Karreth F.A. Bosia C. Pagnani A. Taulli R. Léopold V. Tay Y. Provero P. Zecchina R. Pandolfi P.P. Integrated transcriptional and competitive endogenous RNA networks are cross-regulated in permissive molecular environments. Proc. Natl. Acad. Sci. USA 2013 110 18 7154 7159 10.1073/pnas.1222509110 23536298
    [Google Scholar]
  42. Lewis B.P. Burge C.B. Bartel D.P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005 120 1 15 20 10.1016/j.cell.2004.12.035 15652477
    [Google Scholar]
  43. O’Brien J. Hayder H. Zayed Y. Peng C. Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front. Endocrinol. 2018 9 402 10.3389/fendo.2018.00402 30123182
    [Google Scholar]
  44. Kopp F. Mendell J.T. Functional classification and experimental dissection of long noncoding RNAs. Cell 2018 172 3 393 407 10.1016/j.cell.2018.01.011 29373828
    [Google Scholar]
  45. Yang S. Lim K.H. Kim S.H. Joo J.Y. Molecular landscape of long noncoding RNAs in brain disorders. Mol. Psychiatry 2021 26 4 1060 1074 10.1038/s41380‑020‑00947‑5 33173194
    [Google Scholar]
  46. Chodroff R.A. Goodstadt L. Sirey T.M. Oliver P.L. Davies K.E. Green E.D. Molnár Z. Ponting C.P. Long noncoding RNA genes: Conservation of sequence and brain expression among diverse amniotes. Genome Biol. 2010 11 7 R72 10.1186/gb‑2010‑11‑7‑r72 20624288
    [Google Scholar]
  47. Fang S. Zhang L. Guo J. Niu Y. Wu Y. Li H. Zhao L. Li X. Teng X. Sun X. Sun L. Zhang M.Q. Chen R. Zhao Y. NONCODEV5: A comprehensive annotation database for long non-coding RNAs. Nucleic Acids Res. 2018 46 D1 D308 D314 10.1093/nar/gkx1107 29140524
    [Google Scholar]
  48. Cesana M. Cacchiarelli D. Legnini I. Santini T. Sthandier O. Chinappi M. Tramontano A. Bozzoni I. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 2011 147 2 358 369 10.1016/j.cell.2011.09.028 22000014
    [Google Scholar]
  49. Wang K.C. Yang Y.W. Liu B. Sanyal A. Corces-Zimmerman R. Chen Y. Lajoie B.R. Protacio A. Flynn R.A. Gupta R.A. Wysocka J. Lei M. Dekker J. Helms J.A. Chang H.Y. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 2011 472 7341 120 124 10.1038/nature09819 21423168
    [Google Scholar]
  50. Tsai M.C. Manor O. Wan Y. Mosammaparast N. Wang J.K. Lan F. Shi Y. Segal E. Chang H.Y. Long noncoding RNA as modular scaffold of histone modification complexes. Science 2010 329 5992 689 693 10.1126/science.1192002 20616235
    [Google Scholar]
  51. Statello L. Guo C.J. Chen L.L. Huarte M. Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol. 2021 22 2 96 118 10.1038/s41580‑020‑00315‑9 33353982
    [Google Scholar]
  52. Mattick J.S. Amaral P.P. Carninci P. Carpenter S. Chang H.Y. Chen L.L. Chen R. Dean C. Dinger M.E. Fitzgerald K.A. Gingeras T.R. Guttman M. Hirose T. Huarte M. Johnson R. Kanduri C. Kapranov P. Lawrence J.B. Lee J.T. Mendell J.T. Mercer T.R. Moore K.J. Nakagawa S. Rinn J.L. Spector D.L. Ulitsky I. Wan Y. Wilusz J.E. Wu M. Long non-coding RNAs: Definitions, functions, challenges and recommendations. Nat. Rev. Mol. Cell Biol. 2023 24 6 430 447 10.1038/s41580‑022‑00566‑8 36596869
    [Google Scholar]
  53. Statello L. Guo C.J. Chen L.L. Huarte M. Author Correction: Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol. 2021 22 2 159 10.1038/s41580‑021‑00330‑4 33420484
    [Google Scholar]
  54. Hezroni H. Perry R.B.T. Ulitsky I. Long noncoding RNAs in development and regeneration of the neural lineage. Cold Spring Harb. Symp. Quant. Biol. 2019 84 165 177 10.1101/sqb.2019.84.039347 31900326
    [Google Scholar]
  55. Wang B. Li J. Tian F. Downregulation of lncRNA SNHG14 attenuates osteoarthritis by inhibiting FSTL-1 mediated NLRP3 and TLR4/NF-κB pathway through miR-124-3p. Life Sci. 2021 270 119143 10.1016/j.lfs.2021.119143 33539913
    [Google Scholar]
  56. Yuan K. Lan J. Xu L. Feng X. Liao H. Xie K. Wu H. Zeng Y. Long noncoding RNA TLNC1 promotes the growth and metastasis of liver cancer via inhibition of p53 signaling. Mol. Cancer 2022 21 1 105 10.1186/s12943‑022‑01578‑w 35477447
    [Google Scholar]
  57. Kuo M.C. Liu S.C.H. Hsu Y.F. Wu R.M. The role of noncoding RNAs in Parkinson’s disease: Biomarkers and associations with pathogenic pathways. J. Biomed. Sci. 2021 28 1 78 10.1186/s12929‑021‑00775‑x 34794432
    [Google Scholar]
  58. Jalaiei A. Asadi M.R. Sabaie H. Dehghani H. Gharesouran J. Hussen B.M. Taheri M. Ghafouri-Fard S. Rezazadeh M. Long non-coding RNAs, novel offenders or guardians in multiple sclerosis: A scoping review. Front. Immunol. 2021 12 774002 10.3389/fimmu.2021.774002 34950142
    [Google Scholar]
  59. Wu Y.Y. Kuo H.C. Functional roles and networks of non-coding RNAs in the pathogenesis of neurodegenerative diseases. J. Biomed. Sci. 2020 27 1 49 10.1186/s12929‑020‑00636‑z 32264890
    [Google Scholar]
  60. Memczak S. Jens M. Elefsinioti A. Torti F. Krueger J. Rybak A. Maier L. Mackowiak S.D. Gregersen L.H. Munschauer M. Loewer A. Ziebold U. Landthaler M. Kocks C. le Noble F. Rajewsky N. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 2013 495 7441 333 338 10.1038/nature11928 23446348
    [Google Scholar]
  61. Dong R. Ma X.K. Chen L.L. Yang L. Increased complexity of circRNA expression during species evolution. RNA Biol. 2017 14 8 1064 1074 10.1080/15476286.2016.1269999 27982734
    [Google Scholar]
  62. Gao Y. Wang J. Zheng Y. Zhang J. Chen S. Zhao F. Comprehensive identification of internal structure and alternative splicing events in circular RNAs. Nat. Commun. 2016 7 1 12060 10.1038/ncomms12060 27350239
    [Google Scholar]
  63. Rybak-Wolf A. Stottmeister C. Glažar P. Jens M. Pino N. Giusti S. Hanan M. Behm M. Bartok O. Ashwal-Fluss R. Herzog M. Schreyer L. Papavasileiou P. Ivanov A. Öhman M. Refojo D. Kadener S. Rajewsky N. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol. Cell 2015 58 5 870 885 10.1016/j.molcel.2015.03.027 25921068
    [Google Scholar]
  64. Dong R. Ma X.K. Li G.W. Yang L. CIRCpedia v2: An] updated database for comprehensive circular RNA annotation and expression comparison. Genom. Proteom. Bioinfor. 2018 16 4 226 233 10.1016/j.gpb.2018.08.001 30172046
    [Google Scholar]
  65. Ji P. Wu W. Chen S. Zheng Y. Zhou L. Zhang J. Cheng H. Yan J. Zhang S. Yang P. Zhao F. Expanded expression landscape and prioritization of circular RNAs in mammals. Cell Rep. 2019 26 12 3444 3460.e5 10.1016/j.celrep.2019.02.078 30893614
    [Google Scholar]
  66. Venø M.T. Hansen T.B. Venø S.T. Clausen B.H. Grebing M. Finsen B. Holm I.E. Kjems J. Spatio-temporal regulation of circular RNA expression during porcine embryonic brain development. Genome Biol. 2015 16 1 245 10.1186/s13059‑015‑0801‑3 26541409
    [Google Scholar]
  67. You X. Vlatkovic I. Babic A. Will T. Epstein I. Tushev G. Akbalik G. Wang M. Glock C. Quedenau C. Wang X. Hou J. Liu H. Sun W. Sambandan S. Chen T. Schuman E.M. Chen W. Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat. Neurosci. 2015 18 4 603 610 10.1038/nn.3975 25714049
    [Google Scholar]
  68. Vo J.N. Cieslik M. Zhang Y. Shukla S. Xiao L. Zhang Y. Wu Y.M. Dhanasekaran S.M. Engelke C.G. Cao X. Robinson D.R. Nesvizhskii A.I. Chinnaiyan A.M. The landscape of circular RNA in cancer. Cell 2019 176 4 869 881.e13 10.1016/j.cell.2018.12.021 30735636
    [Google Scholar]
  69. Chen S. Huang V. Xu X. Livingstone J. Soares F. Jeon J. Zeng Y. Hua J.T. Petricca J. Guo H. Wang M. Yousif F. Zhang Y. Donmez N. Ahmed M. Volik S. Lapuk A. Chua M.L.K. Heisler L.E. Foucal A. Fox N.S. Fraser M. Bhandari V. Shiah Y.J. Guan J. Li J. Orain M. Picard V. Hovington H. Bergeron A. Lacombe L. Fradet Y. Têtu B. Liu S. Feng F. Wu X. Shao Y.W. Komor M.A. Sahinalp C. Collins C. Hoogstrate Y. de Jong M. Fijneman R.J.A. Fei T. Jenster G. van der Kwast T. Bristow R.G. Boutros P.C. He H.H. Widespread and functional RNA circularization in localized prostate cancer. Cell 2019 176 4 831 843.e22 10.1016/j.cell.2019.01.025 30735634
    [Google Scholar]
  70. Li Q. Wang Y. Wu S. Zhou Z. Ding X. Shi R. Thorne R.F. Zhang X.D. Hu W. Wu M. CircACC1 regulates assembly and activation of AMPK complex under metabolic stress. Cell Metab. 2019 30 1 157 173.e7 10.1016/j.cmet.2019.05.009 31155494
    [Google Scholar]
  71. Li X. Liu C.X. Xue W. Zhang Y. Jiang S. Yin Q.F. Wei J. Yao R.W. Yang L. Chen L.L. Coordinated circRNA biogenesis and function with NF90/NF110 in viral infection. Mol. Cell 2017 67 2 214 227.e7 10.1016/j.molcel.2017.05.023 28625552
    [Google Scholar]
  72. Liu C.X. Li X. Nan F. Jiang S. Gao X. Guo S.K. Xue W. Cui Y. Dong K. Ding H. Qu B. Zhou Z. Shen N. Yang L. Chen L.L. Structure and degradation of circular RNAs regulate PKR activation in innate immunity. Cell 2019 177 4 865 880.e21 10.1016/j.cell.2019.03.046 31031002
    [Google Scholar]
  73. Moldovan L.I. Hansen T.B. Venø M.T. Okholm T.L.H. Andersen T.L. Hager H. Iversen L. Kjems J. Johansen C. Kristensen L.S. High-throughput RNA sequencing from paired lesional- and non-lesional skin reveals major alterations in the psoriasis circRNAome. BMC Med. Genomics 2019 12 1 174 10.1186/s12920‑019‑0616‑2 31775754
    [Google Scholar]
  74. Moldovan L.I. Tsoi L.C. Ranjitha U. Hager H. Weidinger S. Gudjonsson J.E. Kjems J. Kristensen L.S. Characterization of circular RNA transcriptomes in psoriasis and atopic dermatitis reveals disease‐specific expression profiles. Exp. Dermatol. 2021 30 8 1187 1196 10.1111/exd.14227 33113213
    [Google Scholar]
  75. Piwecka M. Glažar P. Hernandez-Miranda L.R. Memczak S. Wolf S.A. Rybak-Wolf A. Filipchyk A. Klironomos F. Cerda Jara C.A. Fenske P. Trimbuch T. Zywitza V. Plass M. Schreyer L. Ayoub S. Kocks C. Kühn R. Rosenmund C. Birchmeier C. Rajewsky N. Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science 2017 357 6357 eaam8526 10.1126/science.aam8526 28798046
    [Google Scholar]
  76. Puri S. Hu J. Sun Z. Lin M. Stein T.D. Farrer L.A. Wolozin B. Zhang X. Identification of circRNAs linked to Alzheimer’s disease and related dementias. Alzheimers Dement. 2023 19 8 3389 3405 10.1002/alz.12960 36795937
    [Google Scholar]
  77. Chen Y.J. Chen C.Y. Mai T.L. Chuang C.F. Chen Y.C. Gupta S.K. Yen L. Wang Y.D. Chuang T.J. Genome-wide, integrative analysis of circular RNA dysregulation and the corresponding circular RNA-microRNA-mRNA regulatory axes in autism. Genome Res. 2020 30 3 375 391 10.1101/gr.255463.119 32127416
    [Google Scholar]
  78. Floris G. Zhang L. Follesa P. Sun T. Regulatory role of circular rnas and neurological disorders. Mol. Neurobiol. 2017 54 7 5156 5165 10.1007/s12035‑016‑0055‑4 27558238
    [Google Scholar]
  79. Ozata D.M. Gainetdinov I. Zoch A. O’Carroll D. Zamore P.D. PIWI-interacting RNAs: Small RNAs with big functions. Nat. Rev. Genet. 2019 20 2 89 108 10.1038/s41576‑018‑0073‑3 30446728
    [Google Scholar]
  80. Wang X. Ramat A. Simonelig M. Liu M.F. Emerging roles and functional mechanisms of PIWI-interacting RNAs. Nat. Rev. Mol. Cell Biol. 2023 24 2 123 141 10.1038/s41580‑022‑00528‑0 36104626
    [Google Scholar]
  81. Ben S. Ding Z. Xin J. Li F. Cheng Y. Chen S. Fan L. Zhang Q. Li S. Du M. Zhang Z. Wei G.H. Cheng G. Wang M. piRNA proper suppresses DUSP1 translation by targeting n6 ‐methyladenosine‐mediated RNA circularization to promote oncogenesis of prostate cancer. Adv. Sci. 2024 11 33 2402954 10.1002/advs.202402954 38962952
    [Google Scholar]
  82. Aravin A.A. Hannon G.J. Brennecke J. The Piwi-piRNA pathway provides an adaptive defense in the transposon arms race. Science 2007 318 5851 761 764 10.1126/science.1146484 17975059
    [Google Scholar]
  83. Rounge T.B. Furu K. Skotheim R.I. Haugen T.B. Grotmol T. Enerly E. Profiling of the small RNA populations in human testicular germ cell tumors shows global loss of piRNAs. Mol. Cancer 2015 14 1 153 10.1186/s12943‑015‑0411‑4 26265322
    [Google Scholar]
  84. Stallmeyer B. Bühlmann C. Stakaitis R. Dicke A.K. Ghieh F. Meier L. Zoch A. MacKenzie MacLeod D. Steingröver J. Okutman Ö. Fietz D. Pilatz A. Riera-Escamilla A. Xavier M.J. Ruckert C. Di Persio S. Neuhaus N. Gurbuz A.S. Şalvarci A. Le May N. McEleny K. Friedrich C. van der Heijden G. Wyrwoll M.J. Kliesch S. Veltman J.A. Krausz C. Viville S. Conrad D.F. O’Carroll D. Tüttelmann F. Inherited defects of piRNA biogenesis cause transposon de-repression, impaired spermatogenesis, and human male infertility. Nat. Commun. 2024 15 1 6637 10.1038/s41467‑024‑50930‑9 39122675
    [Google Scholar]
  85. Sun W. Samimi H. Gamez M. Zare H. Frost B. Pathogenic tau-induced piRNA depletion promotes neuronal death through transposable element dysregulation in neurodegenerative tauopathies. Nat. Neurosci. 2018 21 8 1038 1048 10.1038/s41593‑018‑0194‑1 30038280
    [Google Scholar]
  86. Qiu W. Guo X. Lin X. Yang Q. Zhang W. Zhang Y. Zuo L. Zhu Y. Li C.S.R. Ma C. Luo X. Transcriptome-wide piRNA profiling in human brains of Alzheimer’s disease. Neurobiol. Aging 2017 57 170 177 10.1016/j.neurobiolaging.2017.05.020 28654860
    [Google Scholar]
  87. Schulze M. Sommer A. Plötz S. Farrell M. Winner B. Grosch J. Winkler J. Riemenschneider M.J. Sporadic Parkinson’s disease derived neuronal cells show disease-specific mRNA and small RNA signatures with abundant deregulation of piRNAs. Acta Neuropathol. Commun. 2018 6 1 58 10.1186/s40478‑018‑0561‑x 29986767
    [Google Scholar]
  88. Lam M.T.Y. Li W. Rosenfeld M.G. Glass C.K. Enhancer RNAs and regulated transcriptional programs. Trends Biochem. Sci. 2014 39 4 170 182 10.1016/j.tibs.2014.02.007 24674738
    [Google Scholar]
  89. Chen H. Du G. Song X. Li L. Non-coding transcripts from enhancers: New insights into enhancer activity and gene expression regulation. Genomics Proteomics Bioinformatics 2017 15 3 201 207 10.1016/j.gpb.2017.02.003 28599852
    [Google Scholar]
  90. Saha D. Animireddy S. Lee J. Thommen A. Murvin M.M. Lu Y. Calabrese J.M. Bartholomew B. Enhancer switching in cell lineage priming is linked to eRNA, Brg1’s AT-hook, and SWI/SNF recruitment. Mol. Cell 2024 84 10 1855 1869.e5 10.1016/j.molcel.2024.03.013 38593804
    [Google Scholar]
  91. Chen H. Liang H. A high-resolution map of human enhancer rna loci characterizes super-enhancer activities in cancer. Cancer Cell 2020 38 5 701 715.e5 10.1016/j.ccell.2020.08.020 33007258
    [Google Scholar]
  92. Zhao Y. Wen S. Li H. Pan C.W. Wei Y. Huang T. Li Z. Yang Y. Fan S. Zhang Y. Enhancer RNA promotes resistance to radiotherapy in bone-metastatic prostate cancer by m 6 A modification. Theranostics 2023 13 2 596 610 10.7150/thno.78687 36632223
    [Google Scholar]
  93. Patel A. Dharap A. An emerging role for enhancer RNAs in brain disorders. Neuromolecular Med. 2024 26 1 7 10.1007/s12017‑024‑08776‑3 38546891
    [Google Scholar]
  94. Salmena L. Poliseno L. Tay Y. Kats L. Pandolfi P.P. A ceRNA hypothesis: The Rosetta Stone of a hidden RNA language? Cell 2011 146 3 353 358 10.1016/j.cell.2011.07.014 21802130
    [Google Scholar]
  95. Zhang L. Yan J. Liu Q. Xie Z. Jiang H. LncRNA Rik-203 contributes to anesthesia neurotoxicity via microRNA-101a-3p and GSK-3β-mediated neural differentiation. Sci. Rep. 2019 9 1 6822 10.1038/s41598‑019‑42991‑4 31048708
    [Google Scholar]
  96. Zhu Z. Ma L. Sevoflurane induces inflammation in primary hippocampal neurons by regulating Hoxa5/Gm5106/miR-27b-3p positive feedback loop. Bioengineered 2021 12 2 12215 12226 10.1080/21655979.2021.2005927 34783294
    [Google Scholar]
  97. Zhang C. Chen D. Gu Y. Wang T. Wang C. Effects of LncRNA GAS5/miR-137 general anesthesia on cognitive function by TCF4 inflammatory bodies in patients undergoing lumbar spinal canal decompression. Medicine 2022 101 49 31880 10.1097/MD.0000000000031880 36626439
    [Google Scholar]
  98. Wei C. Sun Y. Wang J. Lin D. Cui V. Shi H. Wu A. LncRNA NONMMUT055714 acts as the sponge of microRNA-7684-5p to protect against postoperative cognitive dysfunction. Aging 2021 13 9 12552 12564 10.18632/aging.202932 33902009
    [Google Scholar]
  99. Yu Y. Zhang W. Zhu D. Wang H. Shao H. Zhang Y. LncRNA Rian ameliorates sevoflurane anesthesia-induced cognitive dysfunction through regulation of miR-143-3p/LIMK1 axis. Hum. Cell 2021 34 3 808 818 10.1007/s13577‑021‑00502‑6 33616869
    [Google Scholar]
  100. Sun Y. Yuan Y. Wang L. Sun S. Effect of LncRNA] OIP5-AS1/microRNA-186-5p on isoflurane-induced cognitive] dysfunction in aged rats. Hum. Exp. Toxicol. 2022 41 09603271221116276 10.1177/09603271221116276 36000339
    [Google Scholar]
  101. Li X. Li G. Jin Y. Yao Q. Li R. Wang H. Long non-coding RNA maternally expressed 3 (MEG3) regulates isoflurane-induced cognitive dysfunction by targeting miR-7-5p. Toxicol. Mech. Methods 2022 32 6 453 462 10.1080/15376516.2022.2042881 35164634
    [Google Scholar]
  102. Ye L. Cheng X. Shi Y. Liu Z. Xiong Y. Huang Y. Long non-coding RNA MEG3 alleviates postoperative cognitive dysfunction by suppressing inflammatory response and oxidative stress via has-miR-106a-5p/SIRT3. Neuroreport 2023 34 6 357 367 10.1097/WNR.0000000000001901 36966803
    [Google Scholar]
  103. Wei C. Luo T. Zou S. Zhou X. Shen W. Ji X. Li Q. Wu A. Differentially expressed lncRNAs and miRNAs with associated ceRNA networks in aged mice with postoperative cognitive dysfunction. Oncotarget 2017 8 34 55901 55914 10.18632/oncotarget.18362 28915561
    [Google Scholar]
  104. He G. Ni H. Wang K. Gao H. Li Y. Gu J. Ni X. Wang Z. Bao Y. Dexmedetomidine attenuates the neuroinflammation and cognitive dysfunction in aged mice by targeting the SNHG14/ miR 340/NF κB axis. Biomed. Rep. 2023 19 6 100 10.3892/br.2023.1682 37954634
    [Google Scholar]
  105. Qian X. Zheng S. Yu Y. CircUBE3B high expression participates in sevoflurane-induced human hippocampal neuron injury via targeting mir-326 and regulating myd88 expression. Neurotox. Res. 2023 41 1 16 28 10.1007/s12640‑022‑00617‑0 36585543
    [Google Scholar]
  106. Shuai P. Hu Z. Li W. You G. Liu Z. Zheng N. The protective role of circ_0016760 downregulation against sevoflurane induced neurological impairment via modulating miR 145 expression in aged rats. Acta Neurobiol. Exp. 2023 83 4 47 55 10.55782/ane‑2023‑2464 38224284
    [Google Scholar]
  107. Zhang M. Suo Z. Qu Y. Zheng Y. Xu W. Zhang B. Wang Q. Wu L. Li S. Cheng Y. Xiao T. Zheng H. Ni C. Construction and analysis of circular RNA-associated competing endogenous RNA network in the hippocampus of aged mice for the occurrence of postoperative cognitive dysfunction. Front. Aging Neurosci. 2023 15 1098510 10.3389/fnagi.2023.1098510 37051377
    [Google Scholar]
  108. Wang W. Huo P. Zhang L. Lv G. Xia Z. Decoding competitive endogenous RNA regulatory network in postoperative cognitive dysfunction. Front. Neurosci. 2022 16 972918 10.3389/fnins.2022.972918 36203795
    [Google Scholar]
  109. He G. He Y. Ni H. Wang K. Zhu Y. Bao Y. Dexmedetomidine attenuates neuroinflammation and microglia activation in LPS-stimulated BV2 microglia cells through targeting circ-Shank3/miR-140-3p/TLR4 axis. Eur. J. Histochem. 2023 67 3 3766 10.4081/ejh.2023.3766 37491974
    [Google Scholar]
  110. Gou R.Y. Hshieh T.T. Marcantonio E.R. Cooper Z. Jones R.N. Travison T.G. Fong T.G. Abdeen A. Lange J. Earp B. Schmitt E.M. Leslie D.L. Inouye S.K. One-year medicare costs associated with delirium in older patients undergoing major elective surgery. JAMA Surg. 2021 156 5 462 10.1001/jamasurg.2020.7260 33625501
    [Google Scholar]
  111. Wu W.F. Lin J.T. Qiu Y.K. Dong W. Wan J. Li S. Zheng H. Wu Y.Q. The role of epigenetic modification in postoperative cognitive dysfunction. Ageing Res. Rev. 2023 89 101983 10.1016/j.arr.2023.101983 37321381
    [Google Scholar]
/content/journals/cn/10.2174/011570159X391415250707115740
Loading
/content/journals/cn/10.2174/011570159X391415250707115740
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test