
Full text loading...
Postoperative cognitive dysfunction (POCD) is a common central nervous system complication in elderly patients after surgery, characterized by cognitive changes, including impaired learning and memory, reduced attention, and mental disorders and personality changes in severe cases. Despite extensive research, effective targeted therapies remain elusive, underscoring the urgent need to elucidate their molecular mechanisms and identify novel therapeutic targets. Non-coding RNAs (ncRNAs), major transcription products of the human genome, are highly expressed in the central nervous system and play critical roles in regulating neuronal and synaptic complexity through interactions with other biomolecules. Notably, certain ncRNAs modulate gene expression networks by regulating miRNAs, a phenomenon known as the competing endogenous RNA (ceRNA) mechanism. In this review, we summarized and analyzed emerging evidence on ceRNA-mediated regulatory mechanisms in POCD pathogenesis, aiming to establish a foundation for future mechanistic exploration and therapeutic development.
Article metrics loading...
Full text loading...
References
Data & Media loading...