Skip to content
2000
image of Use of Single Prolonged Stress to Model Post-traumatic Stress Disorder in Rodents: What We Found and Where to Next?

Abstract

Post-traumatic stress disorder (PTSD) represents a grave and expansive mental illness, caused by experiencing or witnessing traumatic events that invoke profound feelings of helplessness, fear and anxiety. Reflecting the clinical features of PTSD, the single prolonged stress (SPS) model in rodents was developed to elucidate the pathogenesis and identify potential therapeutic interventions. This review aimed to deepen our understanding of the mechanisms and therapeutic methods for PTSD. We conducted a comprehensive literature search on PubMed and Web of Science using keywords such as “SPS”, “PTSD”, and “mechanisms”. Clinical and animal research, especially the exploration of the mechanisms and treatments, were included in this review. We identified a total of 327 articles. After removing duplicates and screening the full texts, we selected only 137 articles. Based on the literature, we examined the parallels and divergences between PTSD and the SPS model regarding symptomatic manifestations, affected brain regions, and molecular markers, demonstrating that the SPS model can effectively replicate PTSD-like behaviors in rodents. Guided by clinical research findings, we further synthesized the mechanisms by which SPS induces PTSD, focusing on the modulation of relevant signaling pathways and neural circuits. Additionally, we reviewed potential intervention strategies for PTSD using this model, encompassing both pharmacological and non-pharmacological therapies. This review offers significant implications for basic research rooted in the clinical characteristics of PTSD, suggesting that studies utilizing the SPS model could enhance our understanding of PTSD and aid in the identification of effective treatment strategies.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X377560250629183749
2025-07-17
2025-09-13
Loading full text...

Full text loading...

References

  1. Ressler K.J. Berretta S. Bolshakov V.Y. Rosso I.M. Meloni E.G. Rauch S.L. Carlezon W.A. Jr Post-traumatic stress disorder: Clinical and translational neuroscience from cells to circuits. Nat. Rev. Neurol. 2022 18 5 273 288 10.1038/s41582‑022‑00635‑8 35352034
    [Google Scholar]
  2. Thakur A. Choudhary D. Kumar B. Chaudhary A. A review on post-traumatic stress disorder (PTSD): Symptoms, therapies and recent case studies. Curr. Mol. Pharmacol. 2022 15 3 502 516 10.2174/1874467214666210525160944 34036925
    [Google Scholar]
  3. Merians A.N. Spiller T. Harpaz-Rotem I. Krystal J.H. Pietrzak R.H. Post-traumatic stress disorder. Med. Clin. North Am. 2023 107 1 85 99 10.1016/j.mcna.2022.04.003 36402502
    [Google Scholar]
  4. Bisson J.I. Olff M. Prevention and treatment of PTSD: The current evidence base. Eur. J. Psychotraumatol. 2021 12 1 1824381 10.1080/20008198.2020.1824381 34992739
    [Google Scholar]
  5. Török B. Sipos E. Pivac N. Zelena D. Modelling posttraumatic stress disorders in animals. Prog. Neuropsychopharmacol. Biol. Psychiatry 2019 90 117 133 10.1016/j.pnpbp.2018.11.013 30468906
    [Google Scholar]
  6. Bouton M.E. Maren S. McNally G.P. Behavioral and neurobiological mechanisms of pavlovian and instrumental extinction learning. Physiol. Rev. 2021 101 2 611 681 10.1152/physrev.00016.2020 32970967
    [Google Scholar]
  7. Daws S.E. Jamieson S. de Nijs L. Jones M. Snijders C. Klengel T. Joseph N.F. Krauskopf J. Kleinjans J. Vinkers C.H. Boks M.P.M. Geuze E. Vermetten E. Berretta S. Ressler K.J. Rutten B.P.F. Rumbaugh G. Miller C.A. MicroRNA regulation of persistent stress-enhanced memory. Mol. Psychiatry 2020 25 5 965 976 10.1038/s41380‑019‑0432‑2 31142820
    [Google Scholar]
  8. Van Assche I.A. Padilla M.S. Stupart O.S.R.P. Milton A.L. Refinement of the stress-enhanced fear learning model of post-traumatic stress disorder: A behavioral and molecular analysis. Lab Anim. (NY) 2022 51 11 293 300 10.1038/s41684‑022‑01054‑4 36266512
    [Google Scholar]
  9. Adamec R. Holmes A. Blundell J. Vulnerability to lasting anxiogenic effects of brief exposure to predator stimuli: Sex, serotonin and other factors—Relevance to PTSD. Neurosci. Biobehav. Rev. 2008 32 7 1287 1292 10.1016/j.neubiorev.2008.05.005 18550167
    [Google Scholar]
  10. Schöner J. Heinz A. Endres M. Gertz K. Kronenberg G. Post‐traumatic stress disorder and beyond: An overview of rodent stress models. J. Cell. Mol. Med. 2017 21 10 2248 2256 10.1111/jcmm.13161 28374949
    [Google Scholar]
  11. Liberzon I. Krstov M. Young E.A. Stress-restress: Effects on ACTH and fast feedback. Psychoneuroendocrinology 1997 22 6 443 453 10.1016/S0306‑4530(97)00044‑9 9364622
    [Google Scholar]
  12. Liberzon I. Young E.A. Effects of stress and glucocorticoids on CNS oxytocin receptor binding. Psychoneuroendocrinology 1997 22 6 411 422 10.1016/S0306‑4530(97)00045‑0 9364620
    [Google Scholar]
  13. Cathomas F. Murrough J.W. Nestler E.J. Han M.H. Russo S.J. Neurobiology of resilience: Interface between mind and body. Biol. Psychiatry 2019 86 6 410 420 10.1016/j.biopsych.2019.04.011 31178098
    [Google Scholar]
  14. Almeida F.B. Pinna G. Barros H.M.T. The role of HPA axis and allopregnanolone on the neurobiology of major depressive disorders and PTSD. Int. J. Mol. Sci. 2021 22 11 5495 10.3390/ijms22115495 34071053
    [Google Scholar]
  15. Wang J. Gao F. Cui S. Yang S. Gao F. Wang X. Zhu G. Utility of 7,8-dihydroxyflavone in preventing astrocytic and synaptic deficits in the hippocampus elicited by PTSD. Pharmacol. Res. 2022 176 106079 10.1016/j.phrs.2022.106079 35026406
    [Google Scholar]
  16. Zhang Z. Song Z. Shen F. Xie P. Wang J. Zhu A. Zhu G. Ginsenoside Rg1 prevents PTSD-like behaviors in mice through promoting synaptic proteins, reducing Kir4.1 and TNF-α in the Hippocampus. Mol. Neurobiol. 2021 58 4 1550 1563 10.1007/s12035‑020‑02213‑9 33215390
    [Google Scholar]
  17. Ji M. Zhang Z. Gao F. Yang S. Wang J. Wang X. Zhu G. Curculigoside rescues hippocampal synaptic deficits elicited by PTSD through activating cAMP‐PKA signaling. Phytother. Res. 2023 37 2 759 773 10.1002/ptr.7658 36200803
    [Google Scholar]
  18. Maples-Keller J. Watkins L.E. Nylocks K.M. Yasinski C. Coghlan C. Black K. Jovanovic T. Rauch S.A.M. Rothbaum B.O. Norrholm S.D. Acquisition, extinction, and return of fear in veterans in intensive outpatient prolonged exposure therapy: A fear-potentiated startle study. Behav. Res. Ther. 2022 154 104124 10.1016/j.brat.2022.104124 35642990
    [Google Scholar]
  19. Nahum K. Todder D. Zohar J. Cohen H. The Role of Microglia in the (Mal)adaptive Response to Traumatic Experience in an Animal Model of PTSD. Int. J. Mol. Sci. 2022 23 13 7185 10.3390/ijms23137185 35806185
    [Google Scholar]
  20. Germain A. Buysse D.J. Nofzinger E. Sleep-specific mechanisms underlying posttraumatic stress disorder: Integrative review and neurobiological hypotheses. Sleep Med. Rev. 2008 12 3 185 195 10.1016/j.smrv.2007.09.003 17997114
    [Google Scholar]
  21. Clark J.W. Daykin H. Metha J.A. Allocca G. Hoyer D. Drummond S.P.A. Jacobson L.H. Manipulation of rapid eye movement sleep via orexin and GABAA receptor modulators differentially affects fear extinction in mice: Effect of stable versus disrupted circadian rhythm. Sleep 2021 44 9 zsab068 10.1093/sleep/zsab068 33720375
    [Google Scholar]
  22. Ball T.M. Gunaydin L.A. Measuring maladaptive avoidance: From animal models to clinical anxiety. Neuropsychopharmacology 2022 47 5 978 986 10.1038/s41386‑021‑01263‑4 35034097
    [Google Scholar]
  23. Yang S. Qu Y. Wang J. Gao F. Ji M. Xie P. Zhu A. Tan B. Wang X. Zhu G. Anshen Dingzhi prescription in the treatment of PTSD in mice: Investigation of the underlying mechanism from the perspective of hippocampal synaptic function. Phytomedicine 2022 101 154139 10.1016/j.phymed.2022.154139 35523115
    [Google Scholar]
  24. Xie P. Chen L. Wang J. Wang X. Yang S. Zhu G. Polysaccharides from Polygonatum cyrtonema Hua prevent post-traumatic stress disorder behaviors in mice: Mechanisms from the perspective of synaptic injury, oxidative stress, and neuroinflammation. J. Ethnopharmacol. 2024 319 Pt 1 117165 10.1016/j.jep.2023.117165 37696440
    [Google Scholar]
  25. Raut S.B. Marathe P.A. van Eijk L. Eri R. Ravindran M. Benedek D.M. Ursano R.J. Canales J.J. Johnson L.R. Diverse therapeutic developments for post-traumatic stress disorder (PTSD) indicate common mechanisms of memory modulation. Pharmacol. Ther. 2022 239 108195 10.1016/j.pharmthera.2022.108195 35489438
    [Google Scholar]
  26. Ding X. Yang M. Wu N. Li J. Song R. Blockade of dopamine D3 receptor in ventral tegmental area attenuating contextual fear memory. Biomed. Pharmacother. 2023 158 114179 10.1016/j.biopha.2022.114179 36592493
    [Google Scholar]
  27. Vanderheyden W.M. Lefton M. Flores C.C. Owada Y. Gerstner J.R. Fabp7 is required for normal sleep suppression and anxiety-associated phenotype following single-prolonged stress in mice. Neuroglia 2022 3 2 73 83 10.3390/neuroglia3020005 36909794
    [Google Scholar]
  28. Souza R.R. Noble L.J. McIntyre C.K. Using the single prolonged stress model to examine the pathophysiology of PTSD. Front. Pharmacol. 2017 8 615 10.3389/fphar.2017.00615 28955225
    [Google Scholar]
  29. Stander V.A. Thomsen C.J. Highfill-McRoy R.M. Etiology of depression comorbidity in combat-related PTSD: A review of the literature. Clin. Psychol. Rev. 2014 34 2 87 98 10.1016/j.cpr.2013.12.002 24486520
    [Google Scholar]
  30. Della Valle R. Mohammadmirzaei N. Knox D. Single prolonged stress alters neural activation in the periacqueductal gray and midline thalamic nuclei during emotional learning and memory. Learn. Mem. 2019 26 10 403 411 10.1101/lm.050310.119 31527186
    [Google Scholar]
  31. Deslauriers J. Toth M. Der-Avakian A. Risbrough V.B. Current status of animal models of posttraumatic stress disorder: Behavioral and biological phenotypes, and future challenges in improving translation. Biol. Psychiatry 2018 83 10 895 907 10.1016/j.biopsych.2017.11.019 29338843
    [Google Scholar]
  32. Harnett N.G. Goodman A.M. Knight D.C. PTSD-related neuroimaging abnormalities in brain function, structure, and biochemistry. Exp. Neurol. 2020 330 113331 10.1016/j.expneurol.2020.113331 32343956
    [Google Scholar]
  33. Fani N. King T.Z. Shin J. Srivastava A. Brewster R.C. Jovanovic T. Bradley B. Ressler K.J. Structural and functional connectivity in posttraumatic stress disorder: Associations with FKBP5. Depress. Anxiety 2016 33 4 300 307 10.1002/da.22483 27038411
    [Google Scholar]
  34. Harnett N.G. Ference E.W. III Knight A.J. Knight D.C. White matter microstructure varies with post-traumatic stress severity following medical trauma. Brain Imaging Behav. 2020 14 4 1012 1024 10.1007/s11682‑018‑9995‑9 30519996
    [Google Scholar]
  35. Yehuda R. Hoge C.W. McFarlane A.C. Vermetten E. Lanius R.A. Nievergelt C.M. Hobfoll S.E. Koenen K.C. Neylan T.C. Hyman S.E. Post-traumatic stress disorder. Nat. Rev. Dis. Primers 2015 1 1 15057 10.1038/nrdp.2015.57 27189040
    [Google Scholar]
  36. Acheson D.T. Gresack J.E. Risbrough V.B. Hippocampal dysfunction effects on context memory: Possible etiology for posttraumatic stress disorder. Neuropharmacology 2012 62 2 674 685 10.1016/j.neuropharm.2011.04.029 21596050
    [Google Scholar]
  37. Clancy K.J. Devignes Q. Kumar P. May V. Hammack S.E. Akman E. Casteen E.J. Pernia C.D. Jobson S.A. Lewis M.W. Daskalakis N.P. Carlezon W.A. Jr Ressler K.J. Rauch S.L. Rosso I.M. Circulating PACAP levels are associated with increased amygdala-default mode network resting-state connectivity in posttraumatic stress disorder. Neuropsychopharmacology 2023 48 8 1245 1254 10.1038/s41386‑023‑01593‑5 37161077
    [Google Scholar]
  38. Bryant R.A. Felmingham K.L. Malhi G. Andrew E. Korgaonkar M.S. The distinctive neural circuitry of complex posttraumatic stress disorder during threat processing. Psychol. Med. 2021 51 7 1121 1128 10.1017/S0033291719003921 31910918
    [Google Scholar]
  39. Lanius R.A. Bluhm R. Lanius U. Pain C. A review of neuroimaging studies in PTSD: Heterogeneity of response to symptom provocation. J. Psychiatr. Res. 2006 40 8 709 729 10.1016/j.jpsychires.2005.07.007 16214172
    [Google Scholar]
  40. Nicholson A.A. Densmore M. Frewen P.A. Théberge J. Neufeld R.W.J. McKinnon M.C. Lanius R.A. The dissociative subtype of posttraumatic stress disorder: Unique resting-state functional connectivity of basolateral and centromedial amygdala complexes. Neuropsychopharmacology 2015 40 10 2317 2326 10.1038/npp.2015.79 25790021
    [Google Scholar]
  41. Zoladz P.R. Diamond D.M. Current status on behavioral and biological markers of PTSD: A search for clarity in a conflicting literature. Neurosci. Biobehav. Rev. 2013 37 5 860 895 10.1016/j.neubiorev.2013.03.024 23567521
    [Google Scholar]
  42. Lee B. Pothula S. Wu M. Kang H. Girgenti M.J. Picciotto M.R. DiLeone R.J. Taylor J.R. Duman R.S. Positive modulation of N-methyl-D-aspartate receptors in the mPFC reduces the spontaneous recovery of fear. Mol. Psychiatry 2022 27 5 2580 2589 10.1038/s41380‑022‑01498‑7 35418600
    [Google Scholar]
  43. Xiao S. Yang Z. Su T. Gong J. Huang L. Wang Y. Functional and structural brain abnormalities in posttraumatic stress disorder: A multimodal meta-analysis of neuroimaging studies. J. Psychiatr. Res. 2022 155 153 162 10.1016/j.jpsychires.2022.08.010 36029627
    [Google Scholar]
  44. Domitrovic Spudic S. Nikolac Perkovic M. Uzun S. Nedic Erjavec G. Kozumplik O. Svob Strac D. Mimica N. Pivac N. Reduced plasma BDNF concentration and cognitive decline in veterans with PTSD. Psychiatry Res. 2022 316 114772 10.1016/j.psychres.2022.114772 35961151
    [Google Scholar]
  45. Peters J. Dieppa-Perea L.M. Melendez L.M. Quirk G.J. Induction of fear extinction with hippocampal-infralimbic BDNF. Science 2010 328 5983 1288 1290 10.1126/science.1186909 20522777
    [Google Scholar]
  46. Kozlovsky N. Matar M.A. Kaplan Z. Kotler M. Zohar J. Cohen H. Long-term down-regulation of BDNF mRNA in rat hippocampal CA1 subregion correlates with PTSD-like behavioural stress response. Int. J. Neuropsychopharmacol. 2007 10 6 741 758 10.1017/S1461145707007560 17291374
    [Google Scholar]
  47. Takei S. Morinobu S. Yamamoto S. Fuchikami M. Matsumoto T. Yamawaki S. Enhanced hippocampal BDNF/TrkB signaling in response to fear conditioning in an animal model of posttraumatic stress disorder. J. Psychiatr. Res. 2011 45 4 460 468 10.1016/j.jpsychires.2010.08.009 20863519
    [Google Scholar]
  48. Yin J.B. Liu H.X. Shi W. Ding T. Hu H.Q. Guo H.W. Jin S. Wang X.L. Zhang T. Lu Y.C. Cao B.Z. Various BDNF administrations attenuate SPS-induced anxiety-like behaviors. Neurosci. Lett. 2022 788 136851 10.1016/j.neulet.2022.136851 36007708
    [Google Scholar]
  49. Passos I.C. Vasconcelos-Moreno M.P. Costa L.G. Kunz M. Brietzke E. Quevedo J. Salum G. Magalhães P.V. Kapczinski F. Kauer-Sant’Anna M. Inflammatory markers in post-traumatic stress disorder: A systematic review, meta-analysis, and meta-regression. Lancet Psychiatry 2015 2 11 1002 1012 10.1016/S2215‑0366(15)00309‑0 26544749
    [Google Scholar]
  50. Imai R. Hori H. Itoh M. Lin M. Niwa M. Ino K. Ogawa S. Ishida M. Sekiguchi A. Matsui M. Kunugi H. Akechi T. Kamo T. Kim Y. Inflammatory markers and their possible effects on cognitive function in women with posttraumatic stress disorder. J. Psychiatr. Res. 2018 102 192 200 10.1016/j.jpsychires.2018.04.009 29684628
    [Google Scholar]
  51. Daskalakis N.P. Cohen H. Nievergelt C.M. Baker D.G. Buxbaum J.D. Russo S.J. Yehuda R. New translational perspectives for blood-based biomarkers of PTSD: From glucocorticoid to immune mediators of stress susceptibility. Exp Neurol 2016 284 Pt B 133 140 10.1016/j.expneurol.2016.07.024
    [Google Scholar]
  52. Hendrickson R.C. Raskind M.A. Noradrenergic dysregulation in the pathophysiology of PTSD. Exp Neurol 2016 284 Pt B 181 195 10.1016/j.expneurol.2016.05.014 27222130
    [Google Scholar]
  53. Yahyavi S.T. Zarghami M. Naghshvar F. Danesh A. Relationship of cortisol, norepinephrine, and epinephrine levels with war-induced posttraumatic stress disorder in fathers and their offspring. Rev. Bras. Psiquiatr. 2015 37 2 93 98 10.1590/1516‑4446‑2014‑1414 26083811
    [Google Scholar]
  54. Delahanty D.L. Raimonde A.J. Spoonster E. Initial posttraumatic urinary cortisol levels predict subsequent PTSD symptoms in motor vehicle accident victims. Biol. Psychiatry 2000 48 9 940 947 10.1016/S0006‑3223(00)00896‑9 11074232
    [Google Scholar]
  55. Agorastos A. Kellner M. Baker D.G. Otte C. When time stands still. Curr. Opin. Psychiatry 2014 27 5 385 392 10.1097/YCO.0000000000000079 25023884
    [Google Scholar]
  56. Mellman T.A. Bustamante V. Fins A.I. Pigeon W.R. Nolan B. REM sleep and the early development of posttraumatic stress disorder. Am. J. Psychiatry 2002 159 10 1696 1701 10.1176/appi.ajp.159.10.1696 12359675
    [Google Scholar]
  57. Ham B.J. Chey J. Yoon S.J. Sung Y. Jeong D.U. Ju Kim S. Sim M.E. Choi N. Choi I.G. Renshaw P.F. Lyoo I.K. Decreased N ‐acetyl‐aspartate levels in anterior cingulate and hippocampus in subjects with post‐traumatic stress disorder: A proton magnetic resonance spectroscopy study. Eur. J. Neurosci. 2007 25 1 324 329 10.1111/j.1460‑9568.2006.05253.x 17241294
    [Google Scholar]
  58. Knox D. Perrine S.A. George S.A. Galloway M.P. Liberzon I. Single prolonged stress decreases glutamate, glutamine, and creatine concentrations in the rat medial prefrontal cortex. Neurosci. Lett. 2010 480 1 16 20 10.1016/j.neulet.2010.05.052 20546834
    [Google Scholar]
  59. Chen S. Lin Z. Tan K.L. Chen R. Su W. Zhao H. Tan Q. Tan W. Enhanced contextual fear memory and elevated astroglial glutamate synthase activity in hippocampal CA1 BChE shRNA Knockdown Mice. Front. Psychiatry 2020 11 564843 10.3389/fpsyt.2020.564843 33061920
    [Google Scholar]
  60. Fumagalli F. Pasini M. Frasca A. Drago F. Racagni G. Riva M.A. Prenatal stress alters glutamatergic system responsiveness in adult rat prefrontal cortex. J. Neurochem. 2009 109 6 1733 1744 10.1111/j.1471‑4159.2009.06088.x 19383086
    [Google Scholar]
  61. Ousdal O.T. Milde A.M. Craven A.R. Ersland L. Endestad T. Melinder A. Huys Q.J. Hugdahl K. Prefrontal glutamate levels predict altered amygdala–prefrontal connectivity in traumatized youths. Psychol. Med. 2019 49 11 1822 1830 10.1017/S0033291718002519 30223909
    [Google Scholar]
  62. Su X. Xia C. Wang W. Sun H. Tan Q. Zhang S. Li L. Kemp G.J. Yue Q. Gong Q. Abnormal metabolite concentrations and amygdala volume in patients with recent-onset posttraumatic stress disorder. J. Affect. Disord. 2018 241 539 545 10.1016/j.jad.2018.08.018 30153637
    [Google Scholar]
  63. McDonald A.J. Mott D.D. Functional neuroanatomy of amygdalohippocampal interconnections and their role in learning and memory. J. Neurosci. Res. 2017 95 3 797 820 10.1002/jnr.23709 26876924
    [Google Scholar]
  64. Fang Q. Li Z. Huang G.D. Zhang H.H. Chen Y.Y. Zhang L.B. Ding Z.B. Shi J. Lu L. Yang J.L. Traumatic stress produces distinct activations of GABAergic and glutamatergic neurons in Amygdala. Front. Neurosci. 2018 12 387 10.3389/fnins.2018.00387 30186100
    [Google Scholar]
  65. Misaki M. Mulyana B. Zotev V. Wurfel B.E. Krueger F. Feldner M. Bodurka J. Hippocampal volume recovery with real-time functional MRI amygdala neurofeedback emotional training for posttraumatic stress disorder. J. Affect. Disord. 2021 283 229 235 10.1016/j.jad.2021.01.058 33561804
    [Google Scholar]
  66. Fragkaki I. Thomaes K. Sijbrandij M. Posttraumatic stress disorder under ongoing threat: A review of neurobiological and neuroendocrine findings. Eur. J. Psychotraumatol. 2016 7 1 30915 10.3402/ejpt.v7.30915 27511448
    [Google Scholar]
  67. Nelson M.D. Tumpap A.M. Posttraumatic stress disorder symptom severity is associated with left hippocampal volume reduction: A meta-analytic study. CNS Spectr. 2017 22 4 363 372 10.1017/S1092852916000833 27989265
    [Google Scholar]
  68. Smith B.M. Thomasson M. Yang Y.C. Sibert C. Stocco A. When fear shrinks the brain: A computational model of the effects of posttraumatic stress on hippocampal volume. Top. Cogn. Sci. 2021 13 3 499 514 10.1111/tops.12537 34174028
    [Google Scholar]
  69. Perrine S.A. Eagle A.L. George S.A. Mulo K. Kohler R.J. Gerard J. Harutyunyan A. Hool S.M. Susick L.L. Schneider B.L. Ghoddoussi F. Galloway M.P. Liberzon I. Conti A.C. Severe, multimodal stress exposure induces PTSD-like characteristics in a mouse model of single prolonged stress. Behav. Brain Res. 2016 303 228 237 10.1016/j.bbr.2016.01.056 26821287
    [Google Scholar]
  70. Matsumoto Y. Morinobu S. Yamamoto S. Matsumoto T. Takei S. Fujita Y. Yamawaki S. Vorinostat ameliorates impaired fear extinction possibly via the hippocampal NMDA-CaMKII pathway in an animal model of posttraumatic stress disorder. Psychopharmacology 2013 229 1 51 62 10.1007/s00213‑013‑3078‑9 23584669
    [Google Scholar]
  71. Liu F. Yang L. Sun X. Zhang H. Pan W. Wang X. Yang J. Ji M. Yuan H. NOX2 mediated-parvalbumin interneuron loss might contribute to anxiety-like and enhanced fear learning behavior in a rat model of post-traumatic stress disorder. Mol. Neurobiol. 2016 53 10 6680 6689 10.1007/s12035‑015‑9571‑x 26650043
    [Google Scholar]
  72. Murray S.L. Holton K.F. Post-traumatic stress disorder may set the neurobiological stage for eating disorders: A focus on glutamatergic dysfunction. Appetite 2021 167 105599 10.1016/j.appet.2021.105599 34271078
    [Google Scholar]
  73. Pittenger C. Duman R.S. Stress, depression, and neuroplasticity: A convergence of mechanisms. Neuropsychopharmacology 2008 33 1 88 109 10.1038/sj.npp.1301574 17851537
    [Google Scholar]
  74. Yang S. Hu J. Chen Y. Zhang Z. Wang J. Zhu G. DCC, a potential target for controlling fear memory extinction and hippocampal LTP in male mice receiving single prolonged stress. Neurobiol. Stress 2024 32 100666 10.1016/j.ynstr.2024.100666 39224830
    [Google Scholar]
  75. Sun J. Jia K. Sun M. Zhang X. Chen J. Zhu G. Li C. Lian B. Du Z. Sun H. Sun L. The GluA1-related BDNF pathway is involved in PTSD-induced cognitive flexibility deficit in attentional set-shifting tasks of rats. J. Clin. Med. 2022 11 22 6824 10.3390/jcm11226824 36431303
    [Google Scholar]
  76. Lee B. Sur B. Oh S. Neuroprotective effect of Korean Red Ginseng against single prolonged stress-induced memory impairments and inflammation in the rat brain associated with BDNF expression. J. Ginseng Res. 2022 46 3 435 443 10.1016/j.jgr.2021.08.002 35600771
    [Google Scholar]
  77. Ehrlich I. Klein M. Rumpel S. Malinow R. PSD-95 is required for activity-driven synapse stabilization. Proc. Natl. Acad. Sci. USA 2007 104 10 4176 4181 10.1073/pnas.0609307104 17360496
    [Google Scholar]
  78. Zhang L. Deng L. Ma C. Zhang H. Dang Y. Brain-Derived neurotrophic factor delivered intranasally relieves post-traumatic stress disorder symptoms caused by a single prolonged stress in rats. Neuropsychobiology 2023 82 1 40 50 10.1159/000528755 36630922
    [Google Scholar]
  79. Chen Y.L. Tong L. Chen Y. Fu C.H. Peng J.B. Ji L.L. MiR-153 downregulation alleviates PTSD-like behaviors and reduces cell apoptosis by upregulating the Sigma-1 receptor in the hippocampus of rats exposed to single-prolonged stress. Exp. Neurol. 2022 352 114034 10.1016/j.expneurol.2022.114034 35259352
    [Google Scholar]
  80. Tong L. Li M.D. Nie P.Y. Chen Y. Chen Y.L. Ji L.L. miR-132 downregulation alleviates behavioral impairment of rats exposed to single prolonged stress, reduces the level of apoptosis in PFC, and upregulates the expression of MeCP2 and BDNF. Neurobiol. Stress 2021 14 100311 10.1016/j.ynstr.2021.100311 33718536
    [Google Scholar]
  81. Nie P.Y. Ji L.L. Fu C.H. Peng J.B. Wang Z.Y. Tong L. miR-132 regulates PTSD-like behaviors in rats following single-prolonged stress through Fragile X-related protein 1. Cell. Mol. Neurobiol. 2021 41 2 327 340 10.1007/s10571‑020‑00854‑x 32333305
    [Google Scholar]
  82. Ji L.L. Ye Y. Nie P.Y. Peng J.B. Fu C.H. Wang Z.Y. Tong L. Dysregulation of miR-142 results in anxiety-like behaviors following single prolonged stress. Behav. Brain Res. 2019 365 157 163 10.1016/j.bbr.2019.03.018 30857769
    [Google Scholar]
  83. Chen Y. An Q. Yang S.T. Chen Y.L. Tong L. Ji L.L. MicroRNA-124 attenuates PTSD-like behaviors and reduces the level of inflammatory cytokines by downregulating the expression of TRAF6 in the hippocampus of rats following single-prolonged stress. Exp. Neurol. 2022 356 114154 10.1016/j.expneurol.2022.114154 35753367
    [Google Scholar]
  84. Chang X. Wang J. Jiang H. Shi L. Xie J. Hyperpolarization-activated cyclic nucleotide-gated channels: An emerging role in neurodegenerative diseases. Front. Mol. Neurosci. 2019 12 141 10.3389/fnmol.2019.00141 31231190
    [Google Scholar]
  85. Ni L. Xu Y. Dong S. Kong Y. Wang H. Lu G. Wang Y. Li Q. Li C. Du Z. Sun H. Sun L. The potential role of the HCN1 ion channel and BDNF-mTOR signaling pathways and synaptic transmission in the alleviation of PTSD. Transl. Psychiatry 2020 10 1 101 10.1038/s41398‑020‑0782‑1 32198387
    [Google Scholar]
  86. Zhang X. Zhao Y. Du Y. Sun H. Zhang W. Wang A. Li Q. Li C. Wang Y. Du Z. Sun H. Sun L. Effect of ketamine on mood dysfunction and spatial cognition deficits in PTSD mouse models via HCN1–BDNF signaling. J. Affect. Disord. 2021 286 248 258 10.1016/j.jad.2021.02.058 33752039
    [Google Scholar]
  87. Wen Y. Li B. Han F. Wang E. Shi Y. Dysfunction of calcium/calmodulin/CaM kinase IIα cascades in the medial prefrontal cortex in post-traumatic stress disorder. Mol. Med. Rep. 2012 6 5 1140 1144 10.3892/mmr.2012.1022 22895536
    [Google Scholar]
  88. Zheng S. Han F. Shi Y. Wen L. Han D. Single-prolonged-stress-induced changes in autophagy-related proteins Beclin-1, LC3, and p62 in the medial prefrontal cortex of rats with post-traumatic stress disorder. J. Mol. Neurosci. 2017 62 1 43 54 10.1007/s12031‑017‑0909‑x 28341893
    [Google Scholar]
  89. George S.A. Rodriguez-Santiago M. Riley J. Rodriguez E. Liberzon I. The effect of chronic phenytoin administration on single prolonged stress induced extinction retention deficits and glucocorticoid upregulation in the rat medial prefrontal cortex. Psychopharmacology 2015 232 1 47 56 10.1007/s00213‑014‑3635‑x 24879497
    [Google Scholar]
  90. Rosso I.M. Crowley D.J. Silveri M.M. Rauch S.L. Jensen J.E. Hippocampus glutamate and N-Acetyl aspartate markers of excitotoxic neuronal compromise in posttraumatic stress disorder. Neuropsychopharmacology 2017 42 8 1698 1705 10.1038/npp.2017.32 28195577
    [Google Scholar]
  91. Coimbra-Costa D. Alva N. Duran M. Carbonell T. Rama R. Oxidative stress and apoptosis after acute respiratory hypoxia and reoxygenation in rat brain. Redox Biol. 2017 12 216 225 10.1016/j.redox.2017.02.014 28259102
    [Google Scholar]
  92. Alquraan L. Alzoubi K.H. Hammad H. Rababa’h S.Y. Mayyas F. Omega-3 fatty acids prevent post-traumatic stress disorder-induced memory impairment. Biomolecules 2019 9 3 100 10.3390/biom9030100 30871113
    [Google Scholar]
  93. Araki M. Fuchikami M. Omura J. Miyagi T. Nagashima N. Okamoto Y. Morinobu S. The role of glucocorticoid receptors in the induction and prevention of hippocampal abnormalities in an animal model of posttraumatic stress disorder. Psychopharmacology 2020 237 7 2125 2137 10.1007/s00213‑020‑05523‑x 32333135
    [Google Scholar]
  94. Li B. Zhang D. Verkhratsky A. Astrocytes in post-traumatic stress disorder. Neurosci. Bull. 2022 38 8 953 965 10.1007/s12264‑022‑00845‑6 35349095
    [Google Scholar]
  95. Ney L.J. Crombie K.M. Mayo L.M. Felmingham K.L. Bowser T. Matthews A. Translation of animal endocannabinoid models of PTSD mechanisms to humans: Where to next? Neurosci. Biobehav. Rev. 2022 132 76 91 10.1016/j.neubiorev.2021.11.040 34838529
    [Google Scholar]
  96. Gunduz-Cinar O. Castillo L.I. Xia M. Van Leer E. Brockway E.T. Pollack G.A. Yasmin F. Bukalo O. Limoges A. Oreizi-Esfahani S. Kondev V. Báldi R. Dong A. Harvey-White J. Cinar R. Kunos G. Li Y. Zweifel L.S. Patel S. Holmes A. A cortico-amygdala neural substrate for endocannabinoid modulation of fear extinction. Neuron 2023 111 19 3053 3067.e10 10.1016/j.neuron.2023.06.023 37480845
    [Google Scholar]
  97. Xie G. Gao X. Guo Q. Liang H. Yao L. Li W. Ma B. Wu N. Han X. Li J. Cannabidiol ameliorates PTSD-like symptoms by inhibiting neuroinflammation through its action on CB2 receptors in the brain of male mice. Brain Behav. Immun. 2024 119 945 964 10.1016/j.bbi.2024.05.016 38759736
    [Google Scholar]
  98. Xue F. Xue S. Liu L. Sang H. Ma Q. Tan Q. Wang H. Zhou C. Peng Z. Early intervention with electroacupuncture prevents PTSD-like behaviors in rats through enhancing hippocampal endocannabinoid signaling. Prog. Neuropsychopharmacol. Biol. Psychiatry 2019 93 171 181 10.1016/j.pnpbp.2019.03.018 30946940
    [Google Scholar]
  99. Jeon M. Kim M.S. Kong C.H. Min H.S. Kang W.C. Park K. Jung S.Y. Bae H.J. Park S.J. Lee J.Y. Kim J.W. Ryu J.H. 4-Methoxycinnamic acid ameliorates post-traumatic stress disorder-like behavior in mice by antagonizing the CRF type 1 receptor. Life Sci. 2025 361 123271 10.1016/j.lfs.2024.123271 39603448
    [Google Scholar]
  100. Zhu J. Wang C. wang Y. Guo C. Lu P. Mou F. Shao S. Electroacupuncture alleviates anxiety and modulates amygdala CRH/CRHR1 signaling in single prolonged stress mice. Acupunct. Med. 2022 40 4 369 378 10.1177/09645284211056352 35044840
    [Google Scholar]
  101. Tillinger A. Zvozilová A. Mach M. Horváthová Ľ. Dziewiczová L. Osacká J. Single intranasal administration of Ucn3 affects the development of PTSD symptoms in an animal model. Int. J. Mol. Sci. 2024 25 22 11908 10.3390/ijms252211908 39595978
    [Google Scholar]
  102. Wang Z. Hu X. Wang Z. Chen J. Wang L. Li C. Deng J. Yue K. Wang L. Kong Y. Sun L. Ketamine alleviates PTSD-like effect and improves hippocampal synaptic plasticity via regulation of GSK-3β/GR signaling of rats. J. Psychiatr. Res. 2024 178 259 269 10.1016/j.jpsychires.2024.08.019 39167905
    [Google Scholar]
  103. Wang S.C. Lin C.C. Tzeng N.S. Tung C.S. Liu Y.P. Effects of oxytocin on prosocial behavior and the associated profiles of oxytocinergic and corticotropin-releasing hormone receptors in a rodent model of posttraumatic stress disorder. J. Biomed. Sci. 2019 26 1 26 10.1186/s12929‑019‑0514‑0 30898126
    [Google Scholar]
  104. Frijling J.L. Preventing PTSD with oxytocin: Effects of oxytocin administration on fear neurocircuitry and PTSD symptom development in recently trauma-exposed individuals. Eur. J. Psychotraumatol. 2017 8 1 1302652 10.1080/20008198.2017.1302652 28451068
    [Google Scholar]
  105. Wang S.C. Lin C.C. Chen C.C. Tzeng N.S. Liu Y.P. Effects of oxytocin on fear memory and neuroinflammation in a rodent model of posttraumatic stress disorder. Int. J. Mol. Sci. 2018 19 12 3848 10.3390/ijms19123848 30513893
    [Google Scholar]
  106. Le Dorze C. Borreca A. Pignataro A. Ammassari-Teule M. Gisquet-Verrier P. Emotional remodeling with oxytocin durably rescues trauma-induced behavioral and neuro-morphological changes in rats: A promising treatment for PTSD. Transl. Psychiatry 2020 10 1 27 10.1038/s41398‑020‑0714‑0 32066681
    [Google Scholar]
  107. Eskandarian S. Vafaei A.A. Vaezi G.H. Taherian F. Kashefi A. Rashidy-Pour A. Effects of systemic administration of oxytocin on contextual fear extinction in a rat model of post-traumatic stress disorder. Basic Clin. Neurosci. 2013 4 4 315 322 25337363
    [Google Scholar]
  108. Li M. Han F. Shi Y. Expression of locus coeruleus mineralocorticoid receptor and glucocorticoid receptor in rats under single-prolonged stress. Neurol. Sci. 2011 32 4 625 631 10.1007/s10072‑011‑0597‑1 21584742
    [Google Scholar]
  109. Hou Y. Li M. Jin Y. Xu F. Liang S. Xue C. Wang K. Zhao W. Protective effects of tetramethylpyrazine on dysfunction of the locus coeruleus in rats exposed to single prolonged stress by anti-ER stress mechanism. Psychopharmacology 2021 238 10 2923 2936 10.1007/s00213‑021‑05908‑6 34231002
    [Google Scholar]
  110. George S.A. Knox D. Curtis A.L. Aldridge J.W. Valentino R.J. Liberzon I. Altered locus coeruleus–norepinephrine function following single prolonged stress. Eur. J. Neurosci. 2013 37 6 901 909 10.1111/ejn.12095 23279008
    [Google Scholar]
  111. Nwokafor C. Serova L.I. Tanelian A. Nahvi R.J. Sabban E.L. Variable response of norepinephrine transporter to traumatic stress and relationship to hyperarousal. Front. Behav. Neurosci. 2021 15 725091 10.3389/fnbeh.2021.725091 34650410
    [Google Scholar]
  112. Salehabadi S. Abrari K. Elahdadi Salmani M. Nasiri M. Lashkarbolouki T. Investigating the role of the amygdala orexin receptor 1 in memory acquisition and extinction in a rat model of PTSD. Behav. Brain Res. 2020 384 112455 10.1016/j.bbr.2019.112455 32044404
    [Google Scholar]
  113. Han D. Han F. Shi Y. Zheng S. Wen L. Mechanisms of memory impairment induced by Orexin-A via Orexin 1 and Orexin 2 receptors in post-traumatic stress disorder rats. Neuroscience 2020 432 126 136 10.1016/j.neuroscience.2020.02.026 32112915
    [Google Scholar]
  114. Kong C.H. Min H.S. Jeon M. Kang W.C. Park K. Kim M.S. Jung S.Y. Bae H.J. Park S.J. Shin H.K. Seo C.S. Ryu J.H. Cheonwangbosimdan mitigates post-traumatic stress disorder-like behaviors through GluN2B-containing NMDA receptor antagonism in mice. J. Ethnopharmacol. 2024 330 118270 10.1016/j.jep.2024.118270 38685368
    [Google Scholar]
  115. Traylor M. Persyn E. Tomppo L. Klasson S. Abedi V. Bakker M.K. Torres N. Li L. Bell S. Rutten-Jacobs L. Tozer D.J. Griessenauer C.J. Zhang Y. Pedersen A. Sharma P. Jimenez-Conde J. Rundek T. Grewal R.P. Lindgren A. Meschia J.F. Salomaa V. Havulinna A. Kourkoulis C. Crawford K. Marini S. Mitchell B.D. Kittner S.J. Rosand J. Dichgans M. Jern C. Strbian D. Fernandez-Cadenas I. Zand R. Ruigrok Y. Rost N. Lemmens R. Rothwell P.M. Anderson C.D. Wardlaw J. Lewis C.M. Markus H.S. Helsinki Stroke S.D.P.I-C.A.S.G. Genetic basis of lacunar stroke: A pooled analysis of individual patient data and genome-wide association studies. Lancet Neurol. 2021 20 5 351 361 10.1016/S1474‑4422(21)00031‑4 33773637
    [Google Scholar]
  116. Riggs L.M. Aracava Y. Zanos P. Fischell J. Albuquerque E.X. Pereira E.F.R. Thompson S.M. Gould T.D. (2R,6R)-hydroxynorketamine rapidly potentiates hippocampal glutamatergic transmission through a synapse-specific presynaptic mechanism. Neuropsychopharmacology 2020 45 2 426 436 10.1038/s41386‑019‑0443‑3 31216563
    [Google Scholar]
  117. Li Y. Du Y. Wang C. Lu G. Sun H. Kong Y. Wang W. Lian B. Li C. Wang L. Zhang X. Sun L. (2R,6R)-hydroxynorketamine acts through GluA1-induced synaptic plasticity to alleviate PTSD-like effects in rat models. Neurobiol. Stress 2022 21 100503 10.1016/j.ynstr.2022.100503 36532380
    [Google Scholar]
  118. Lee B. Sur B. Lee H. Oh S. Korean Red Ginseng prevents posttraumatic stress disorder–triggered depression-like behaviors in rats via activation of the serotonergic system. J. Ginseng Res. 2020 44 4 644 654 10.1016/j.jgr.2019.09.005 32617045
    [Google Scholar]
  119. Lee B. Choi G.M. Sur B. Silibinin prevents depression-like behaviors in a single prolonged stress rat model: The possible role of serotonin. BMC Complement. Med. Ther. 2020 20 1 70 10.1186/s12906‑020‑2868‑y 32143600
    [Google Scholar]
  120. Su A. Chen X. Zhang Z. Xu B. Wang C. Xu Z. Integrated transcriptomic and metabolomic analysis of rat serum to investigate potential target of puerarin in the treatment post-traumatic stress disorder. Ann. Transl. Med. 2021 9 24 1771 10.21037/atm‑21‑6009 35071465
    [Google Scholar]
  121. Jiang Y. Wang X. Li X. Liu A. Fan Q. Yang L. Feng B. Zhang K. Lu L. Qi J. Yang F. Song D. Wu Y. Zhao M. Liu S. Tanshinone IIA improves contextual fear‐ and anxiety‐like behaviors in mice via the CREB / BDNF / TrkB signaling pathway. Phytother. Res. 2022 36 10 3932 3948 10.1002/ptr.7540 35801985
    [Google Scholar]
  122. Alzoubi K.H. Al Hilo A.S. Al-Balas Q.A. El-Salem K. El-Elimat T. Alali F.Q. Withania somnifera root powder protects againist post-traumatic stress disorder-induced memory impairment. Mol. Biol. Rep. 2019 46 5 4709 4715 10.1007/s11033‑019‑04915‑3 31218539
    [Google Scholar]
  123. Gou L. Li Y. Liu S. Sang H. Lan J. Chen J. Wang L. Li C. Lian B. Zhang X. Sun H. Sun L. (2R,6R)-hydroxynorketamine improves PTSD-associated behaviors and structural plasticity via modulating BDNF-mTOR signaling in the nucleus accumbens. J. Affect. Disord. 2023 335 129 140 10.1016/j.jad.2023.04.101 37137411
    [Google Scholar]
  124. Serova L.I. Nwokafor C. Van Bockstaele E.J. Reyes B.A.S. Lin X. Sabban E.L. Single prolonged stress PTSD model triggers progressive severity of anxiety, altered gene expression in locus coeruleus and hypothalamus and effected sensitivity to NPY. Eur. Neuropsychopharmacol. 2019 29 4 482 492 10.1016/j.euroneuro.2019.02.010 30878321
    [Google Scholar]
  125. Alzoubi K.H. Shatnawi A. Al-Qudah M.A. Alfaqih M.A. Edaravone prevents memory impairment in an animal model of post-traumatic distress. Behav Pharmacol 2019 30 2 and 3-Spec Issue 201 207 10.1097/FBP.0000000000000479
    [Google Scholar]
  126. Abdullahi P.R. Raeis-Abdollahi E. Sameni H. Vafaei A.A. Ghanbari A. Rashidy-Pour A. Protective effects of morphine in a rat model of post-traumatic stress disorder: Role of hypothalamic-pituitary-adrenal axis and beta- adrenergic system. Behav. Brain Res. 2020 395 112867 10.1016/j.bbr.2020.112867 32827567
    [Google Scholar]
  127. Lin C.C. Chang H.A. Tai Y.M. Chen T.Y. Wan F.J. Chang C.C. Tung C.S. Liu Y.P. Subchronic administration of aripiprazole improves fear extinction retrieval of Pavlovian conditioning paradigm in rats experiencing psychological trauma. Behav. Brain Res. 2019 362 181 187 10.1016/j.bbr.2018.12.051 30610908
    [Google Scholar]
  128. Jiang H. Chen L. Li Y. Gao X. Yang X. Zhao B. Li Y. Wang Y. Yu X. Zhang X. Feng S. Chai Y. Meng H. Ren X. Bao T. Effects of acupuncture on regulating the hippocampal inflammatory response in rats exposed to post-traumatic stress disorder. Neurosci. Lett. 2023 796 137056 10.1016/j.neulet.2023.137056 36621587
    [Google Scholar]
  129. Zhou C.H. Xue F. Shi Q.Q. Xue S.S. Zhang T. Ma X.X. Yu L.S. Liu C. Wang H.N. Peng Z.W. The impact of electroacupuncture early intervention on the brain lipidome in a mouse model of post-traumatic stress disorder. Front. Mol. Neurosci. 2022 15 812479 10.3389/fnmol.2022.812479 35221914
    [Google Scholar]
  130. Hou Y. Chen M. Wang C. Liu L. Mao H. Qu X. Shen X. Yu B. Liu S. Electroacupuncture attenuates anxiety-like behaviors in a rat model of post-traumatic stress disorder: The role of the ventromedial prefrontal cortex. Front. Neurosci. 2021 15 690159 10.3389/fnins.2021.690159 34248490
    [Google Scholar]
  131. Lin C.C. Huang K.L. Tung C.S. Liu Y.P. Hyperbaric oxygen therapy restored traumatic stress-induced dysregulation of fear memory and related neurochemical abnormalities. Behav. Brain Res. 2019 359 861 870 10.1016/j.bbr.2018.07.014 30056129
    [Google Scholar]
  132. Koyuncuoğlu T. Sevim H. Çetrez N. Meral Z. Gönenç B. Kuntsal Dertsiz E. Akakın D. Yüksel M. Kasımay Çakır Ö. High intensity interval training protects from Post Traumatic Stress Disorder induced cognitive impairment. Behav. Brain Res. 2021 397 112923 10.1016/j.bbr.2020.112923 32976860
    [Google Scholar]
  133. Badour C.L. Flores J. Hood C.O. Jones A.C. Brake C.A. Tipsword J.M. Penn C.J. McCann J.P. Concurrent and proximal associations among PTSD symptoms, prescription opioid use, and co-use of other substances: Results from a daily monitoring study. Psychol. Trauma 2023 15 3 367 376 10.1037/tra0001303 35901427
    [Google Scholar]
  134. Rodríguez M.N. Colgan D.D. Leyde S. Pike K. Merrill J.O. Price C.J. Trauma exposure across the lifespan among individuals engaged in treatment with medication for opioid use disorder: Differences by gender, PTSD status, and chronic pain. Subst. Abuse Treat. Prev. Policy 2024 19 1 25 10.1186/s13011‑024‑00608‑8 38702783
    [Google Scholar]
  135. Peck K.R. Badger G.J. Cole R. Higgins S.T. Moxley-Kelly N. Sigmon S.C. Prolonged exposure therapy for PTSD in individuals with opioid use disorder: A randomized pilot study. Addict. Behav. 2023 143 107688 10.1016/j.addbeh.2023.107688 36989699
    [Google Scholar]
  136. Petrakis I.L. Meshberg-Cohen S. Nich C. Kelly M.M. Claudio T. Jane J.S. Pisani E. Ralevski E. Cognitive processing therapy (CPT) versus individual drug counseling (IDC) for PTSD for veterans with opioid use disorder maintained on buprenorphine. Am. J. Addict. 2024 33 5 525 533 10.1111/ajad.13557 38624259
    [Google Scholar]
  137. Fuchs-Leitner I. Yazdi K. Gerstgrasser N.W. Tholen M.G. Graffius S.T. Schorb A. Rosenleitner J. Risk of PTSD due to the COVID-19 pandemic among patients in opioid substitution treatment. Front. Psychiatry 2021 12 729460 10.3389/fpsyt.2021.729460 34658964
    [Google Scholar]
  138. Tanelian A. Nankova B. Miari M. Nahvi R.J. Sabban E.L. Resilience or susceptibility to traumatic stress: Potential influence of the microbiome. Neurobiol. Stress 2022 19 100461 10.1016/j.ynstr.2022.100461 35789769
    [Google Scholar]
  139. Tanelian A. Nankova B. Hu F. Sahawneh J.D. Sabban E.L. Effect of acetate supplementation on traumatic stress-induced behavioral impairments in male rats. Neurobiol. Stress 2023 27 100572 10.1016/j.ynstr.2023.100572 37781563
    [Google Scholar]
  140. Chen L. Zhang Y. Wang Z. Zhang Z. Wang J. Zhu G. Yang S. Activation of GPER1 by G1 prevents PTSD ‐like behaviors in mice: Illustrating the mechanisms from BDNF / TrkB to mitochondria and synaptic connection. CNS Neurosci. Ther. 2024 30 7 14855 10.1111/cns.14855 38992889
    [Google Scholar]
  141. Gao F. Wang J. Yang S. Ji M. Zhu G. Fear extinction induced by activation of PKA ameliorates anxiety-like behavior in PTSD mice. Neuropharmacology 2023 222 109306 10.1016/j.neuropharm.2022.109306 36341808
    [Google Scholar]
  142. Chen D. Wang J. Cao J. Zhu G. cAMP-PKA signaling pathway and anxiety: Where do we go next? Cell. Signal. 2024 122 111311 10.1016/j.cellsig.2024.111311 39059755
    [Google Scholar]
  143. Su A. Zhang J. Zou J. The anxiolytic-like effects of puerarin on an animal model of PTSD. Biomed. Pharmacother. 2019 115 108978 10.1016/j.biopha.2019.108978 31102911
    [Google Scholar]
  144. Cui J.J. Huang Z.Y. Xie Y.H. Wu J.B. Xu G.H. Li C.F. Zhang M.M. Yi L.T. Gut microbiota mediated inflammation, neuroendocrine and neurotrophic functions involved in the antidepressant-like effects of diosgenin in chronic restraint stress. J. Affect. Disord. 2023 321 242 252 10.1016/j.jad.2022.10.045 36349650
    [Google Scholar]
  145. Malik H. Usman M. Arif M. Ahmed Z. Ali G. Rauf K. Sewell R.D.E. Diosgenin normalization of disrupted behavioral and central neurochemical activity after single prolonged stress. Front. Pharmacol. 2023 14 1232088 10.3389/fphar.2023.1232088 37663254
    [Google Scholar]
  146. Chen X.D. Wei J.X. Wang H.Y. Peng Y.Y. Tang C. Ding Y. Li S. Long Z.Y. Lu X.M. Wang Y.T. Effects and mechanisms of salidroside on the behavior of SPS-induced PTSD rats. Neuropharmacology 2023 240 109728 10.1016/j.neuropharm.2023.109728 37742716
    [Google Scholar]
  147. Hu J. Li H. Wang X. Cheng H. Zhu G. Yang S. Novel mechanisms of Anshen Dingzhi prescription against PTSD: Inhibiting DCC to modulate synaptic function and inflammatory responses. J. Ethnopharmacol. 2024 333 118425 10.1016/j.jep.2024.118425 38848974
    [Google Scholar]
  148. Wang J. Zhao P. Cheng P. Zhang Z. Yang S. Wang J. Wang X. Zhu G. Exploring the effect of Anshen Dingzhi prescription on hippocampal mitochondrial signals in single prolonged stress mouse model. J. Ethnopharmacol. 2024 323 117713 10.1016/j.jep.2024.117713 38181935
    [Google Scholar]
  149. Shen F. Song Z. Xie P. Li L. Wang B. Peng D. Zhu G. Polygonatum sibiricum polysaccharide prevents depression-like behaviors by reducing oxidative stress, inflammation, and cellular and synaptic damage. J. Ethnopharmacol. 2021 275 114164 10.1016/j.jep.2021.114164 33932516
    [Google Scholar]
  150. Shen F. Xie P. Li C. Bian Z. Wang X. Peng D. Zhu G. Polysaccharides from Polygonatum cyrtonema Hua reduce depression-like behavior in mice by inhibiting oxidative stress-Calpain-1-NLRP3 signaling axis. Oxid. Med. Cell. Longev. 2022 2022 1 17 10.1155/2022/2566917 35498131
    [Google Scholar]
  151. Li M. Li K. Zhang H. Jiang Y. Study on the mechanism of TMRK electroacupuncture in repairing synaptic plasticity in amygdala and hippocampus to relieve fear memory in PTSD rats. Technol. Health Care 2019 27 1_suppl 425 443 10.3233/THC‑199038 31045558
    [Google Scholar]
  152. Zhou C. Xue F. Xue S. Sang H. Liu L. Wang Y. Cai M. Zhang Z.J. Tan Q. Wang H. Peng Z. Electroacupuncture pretreatment ameliorates PTSD-like behaviors in rats by Enhancing Hippocampal Neurogenesis via the Keap1/Nrf2 antioxidant signaling pathway. Front. Cell. Neurosci. 2019 13 275 10.3389/fncel.2019.00275 31293390
    [Google Scholar]
  153. Chen X. Liu C. Du K. Chen Y. Yang S. Zhu G. Wang J. Effects and mechanisms of electroacupuncture on fear extinction and sleep phase in single prolonged stress mice. Zhongguo Zhenjiu 2024 44 8 923 930 10.13703/j.0255‑2930.20240305‑0001 39111792
    [Google Scholar]
  154. Salehpour F. Mahmoudi J. Kamari F. Sadigh-Eteghad S. Rasta S.H. Hamblin M.R. Brain photobiomodulation therapy: A narrative review. Mol. Neurobiol. 2018 55 8 6601 6636 10.1007/s12035‑017‑0852‑4 29327206
    [Google Scholar]
  155. Zhao C. Li D. Kong Y. Liu H. Hu Y. Niu H. Jensen O. Li X. Liu H. Song Y. Transcranial photobiomodulation enhances visual working memory capacity in humans. Sci. Adv. 2022 8 48 eabq3211 10.1126/sciadv.abq3211 36459562
    [Google Scholar]
  156. Li Y. Dong Y. Yang L. Tucker L. Yang B. Zong X. Hamblin M.R. Zhang Q. Transcranial photobiomodulation prevents PTSD-like comorbidities in rats experiencing underwater trauma. Transl. Psychiatry 2021 11 1 270 10.1038/s41398‑021‑01389‑5 33953158
    [Google Scholar]
  157. Li Y. Dong Y. Yang L. Tucker L. Zong X. Brann D. Hamblin M.R. Vazdarjanova A. Zhang Q. Photobiomodulation prevents PTSD-like memory impairments in rats. Mol. Psychiatry 2021 26 11 6666 6679 10.1038/s41380‑021‑01088‑z 33859360
    [Google Scholar]
  158. Zhao H. Li Y. Luo T. Chou W. Sun T. Liu H. Qiu H. Zhu D. Chen D. Gu Y. Preventing Post-Traumatic Stress Disorder (PTSD) in rats with pulsed 810 nm laser transcranial phototherapy. Transl. Psychiatry 2023 13 1 281 10.1038/s41398‑023‑02583‑3 37580354
    [Google Scholar]
  159. Jung J.T.K. Marques L.S. Zborowski V.A. Silva G.L. Nogueira C.W. Zeni G. Resistance training modulates hippocampal neuroinflammation and protects anxiety-depression-like dyad induced by an emotional single prolonged stress model. Mol. Neurobiol. 2023 60 1 264 276 10.1007/s12035‑022‑03069‑x 36261694
    [Google Scholar]
  160. Chang S.H. Chen H.Y. Shaw F.Z. Shyu B.C. Early- and late-phase changes of brain activity and early-phase neuromodulation in the posttraumatic stress disorder rat model. Neurobiol. Stress 2023 26 100554 10.1016/j.ynstr.2023.100554 37576348
    [Google Scholar]
  161. Han F. Jiang J. Ding J. Liu H. Xiao B. Shi Y. Change of Rin1 and Stathmin in the animal model of traumatic stresses. Front. Behav. Neurosci. 2017 11 62 10.3389/fnbeh.2017.00062 28491025
    [Google Scholar]
  162. Szeszko P.R. Lehrner A. Yehuda R. Glucocorticoids and Hippocampal Structure and Function in PTSD. Harv. Rev. Psychiatry 2018 26 3 142 157 10.1097/HRP.0000000000000188 29734228
    [Google Scholar]
  163. Fischer S. Schumacher T. Knaevelsrud C. Ehlert U. Schumacher S. Genes and hormones of the hypothalamic–pituitary–adrenal axis in post-traumatic stress disorder. What is their role in symptom expression and treatment response? J. Neural Transm. 2021 128 9 1279 1286 10.1007/s00702‑021‑02330‑2 33825945
    [Google Scholar]
  164. Ganon-Elazar E. Akirav I. Cannabinoids prevent the development of behavioral and endocrine alterations in a rat model of intense stress. Neuropsychopharmacology 2012 37 2 456 466 10.1038/npp.2011.204 21918506
    [Google Scholar]
  165. Zambetti P.R. Schuessler B.P. Lecamp B.E. Shin A. Kim E.J. Kim J.J. Ecological analysis of Pavlovian fear conditioning in rats. Commun. Biol. 2022 5 1 830 10.1038/s42003‑022‑03802‑1 35982246
    [Google Scholar]
  166. Jones M.E. Lebonville C.L. Paniccia J.E. Balentine M.E. Reissner K.J. Lysle D.T. Hippocampal interleukin-1 mediates stress-enhanced fear learning: A potential role for astrocyte-derived interleukin-1β. Brain Behav. Immun. 2018 67 355 363 10.1016/j.bbi.2017.09.016 28963000
    [Google Scholar]
  167. Matsukawa M. Yoshikawa M. Katsuyama N. Aizawa S. Sato T. The anterior piriform cortex and predator odor responses: Modulation by inhibitory circuits. Front. Behav. Neurosci. 2022 16 896525 10.3389/fnbeh.2022.896525 35571276
    [Google Scholar]
  168. Tyler R.E. Weinberg B.Z.S. Lovelock D.F. Ornelas L.C. Besheer J. Exposure to the predator odor TMT induces early and late differential gene expression related to stress and excitatory synaptic function throughout the brain in male rats. Genes Brain Behav. 2020 19 8 12684 10.1111/gbb.12684 32666635
    [Google Scholar]
  169. Philbert J. Beeské S. Belzung C. Griebel G. The CRF1 receptor antagonist SSR125543 prevents stress-induced long-lasting sleep disturbances in a mouse model of PTSD: Comparison with paroxetine and d-cycloserine. Behav. Brain Res. 2015 279 41 46 10.1016/j.bbr.2014.11.006 25446760
    [Google Scholar]
  170. Cheng C.M. Chen M.H. Tsai S.J. Chang W.H. Tsai C.F. Lin W.C. Bai Y.M. Su T.P. Chen T.J. Li C.T. Susceptibility to treatment-resistant depression within families. JAMA Psychiatry 2024 81 7 663 672 10.1001/jamapsychiatry.2024.0378 38568605
    [Google Scholar]
  171. Tseilikman V.E. Tseilikman O.B. Pashkov A.A. Ivleva I.S. Karpenko M.N. Shatilov V.A. Zhukov M.S. Fedotova J.O. Kondashevskaya M.V. Downey H.F. Manukhina E.B. Mechanisms of susceptibility and resilience to PTSD: Role of dopamine metabolism and BDNF expression in the hippocampus. Int. J. Mol. Sci. 2022 23 23 14575 10.3390/ijms232314575 36498900
    [Google Scholar]
  172. Alexander K.S. Nalloor R. Bunting K.M. Vazdarjanova A. Investigating individual pre-trauma susceptibility to a PTSD-like phenotype in animals. Front. Syst. Neurosci. 2020 13 85 10.3389/fnsys.2019.00085 31992972
    [Google Scholar]
  173. Nahvi R.J. Tanelian A. Nwokafor C. Godino A. Parise E. Estill M. Shen L. Nestler E.J. Sabban E.L. Transcriptome profiles associated with resilience and susceptibility to single prolonged stress in the locus coeruleus and nucleus accumbens in male sprague-dawley rats. Behav. Brain Res. 2023 439 114162 10.1016/j.bbr.2022.114162 36257560
    [Google Scholar]
  174. Huang G. Iqbal J. Shen D. Xue Y. Yang M. Jia X. MicroRNA expression profiles of stress susceptibility and resilience in the prelimbic and infralimbic cortex of rats after single prolonged stress. Front. Psychiatry 2023 14 1247714 10.3389/fpsyt.2023.1247714 37692297
    [Google Scholar]
  175. Laudani S. Torrisi S.A. Alboni S. Bastiaanssen T.F.S. Benatti C. Rivi V. Moloney R.D. Fuochi V. Furneri P.M. Drago F. Salomone S. Tascedda F. Cryan J.F. Leggio G.M. Gut microbiota alterations promote traumatic stress susceptibility associated with p-cresol-induced dopaminergic dysfunctions. Brain Behav. Immun. 2023 107 385 396 10.1016/j.bbi.2022.11.004 36400332
    [Google Scholar]
  176. Troy A.S. Willroth E.C. Shallcross A.J. Giuliani N.R. Gross J.J. Mauss I.B. Psychological resilience: An affect-regulation framework. Annu. Rev. Psychol. 2023 74 1 547 576 10.1146/annurev‑psych‑020122‑041854 36103999
    [Google Scholar]
  177. Li H.Y. Zhu M.Z. Yuan X.R. Guo Z.X. Pan Y.D. Li Y.Q. Zhu X.H. A thalamic-primary auditory cortex circuit mediates resilience to stress. Cell 2023 186 7 1352 1368.e18 10.1016/j.cell.2023.02.036 37001500
    [Google Scholar]
  178. Rakesh G. Morey R.A. Zannas A.S. Malik Z. Marx C.E. Clausen A.N. Kritzer M.D. Szabo S.T. Resilience as a translational endpoint in the treatment of PTSD. Mol. Psychiatry 2019 24 9 1268 1283 10.1038/s41380‑019‑0383‑7 30867558
    [Google Scholar]
  179. Willmore L. Cameron C. Yang J. Witten I.B. Falkner A.L. Behavioural and dopaminergic signatures of resilience. Nature 2022 611 7934 124 132 10.1038/s41586‑022‑05328‑2 36261520
    [Google Scholar]
  180. Zhang X.X. Tian Y. Wang Z.T. Ma Y.H. Tan L. Yu J.T. The epidemiology of Alzheimer’s disease modifiable risk factors and prevention. J. Prev. Alzheimers Dis. 2021 8 3 313 321 10.14283/jpad.2021.15 34101789
    [Google Scholar]
  181. Seo D. Zhang E.T. Piantadosi S.C. Marcus D.J. Motard L.E. Kan B.K. Gomez A.M. Nguyen T.K. Xia L. Bruchas M.R. A locus coeruleus to dentate gyrus noradrenergic circuit modulates aversive contextual processing. Neuron 2021 109 13 2116 2130.e6 10.1016/j.neuron.2021.05.006 34081911
    [Google Scholar]
  182. Liu M. Xie J. Sun Y. TLR4/MyD88/NF-κB-mediated inflammation contributes to cardiac dysfunction in rats of PTSD. Cell. Mol. Neurobiol. 2020 40 6 1029 1035 10.1007/s10571‑020‑00791‑9 31939007
    [Google Scholar]
  183. Sun J. Yu X. Huangpu H. Yao F. Ginsenoside Rb3 protects cardiomyocytes against hypoxia/reoxygenation injury via activating the antioxidation signaling pathway of PERK/Nrf2/HMOX1. Biomed. Pharmacother. 2019 109 254 261 10.1016/j.biopha.2018.09.002 30396083
    [Google Scholar]
  184. Le Dorze C. Gisquet-Verrier P. Sensitivity to trauma-associated cues is restricted to vulnerable traumatized rats and reinstated after extinction by yohimbine. Behav. Brain Res. 2016 313 120 134 10.1016/j.bbr.2016.07.006 27392642
    [Google Scholar]
  185. Tanelian A. Nankova B. Cheriyan A. Arens C. Hu F. Sabban E.L. Differences in gut microbiota associated with stress resilience and susceptibility to single prolonged stress in female rodents. Neurobiol. Stress 2023 24 100533 10.1016/j.ynstr.2023.100533 36970450
    [Google Scholar]
  186. Javidi H. Yadollahie M. Post-traumatic stress disorder. Int. J. Occup. Environ. Med. 2012 3 1 2 9 23022845
    [Google Scholar]
  187. Mayou R. Bryant B. Ehlers A. Prediction of psychological outcomes one year after a motor vehicle accident. Am. J. Psychiatry 2001 158 8 1231 1238 10.1176/appi.ajp.158.8.1231 11481156
    [Google Scholar]
  188. Wang Z. Zuschlag Z.D. Myers U.S. Hamner M. Atomoxetine in comorbid ADHD/PTSD: A randomized, placebo controlled, pilot, and feasibility study. Depress. Anxiety 2022 39 4 286 295 10.1002/da.23248 35312136
    [Google Scholar]
  189. Lin C.C. Chen T.Y. Cheng P.Y. Liu Y.P. Early life social experience affects adulthood fear extinction deficit and associated dopamine profile abnormalities in a rat model of PTSD. Prog. Neuropsychopharmacol. Biol. Psychiatry 2020 101 109914 10.1016/j.pnpbp.2020.109914 32165120
    [Google Scholar]
  190. Marques L.S. Jung J.T.K. Zborowski V.A. Pinheiro R.C. Nogueira C.W. Zeni G. Emotional-Single Prolonged Stress: A promising model to illustrate the gut-brain interaction. Physiol. Behav. 2023 260 114070 10.1016/j.physbeh.2022.114070 36574940
    [Google Scholar]
  191. Cheng W. Han F. Shi Y. Neonatal isolation modulates glucocorticoid-receptor function and synaptic plasticity of hippocampal and amygdala neurons in a rat model of single prolonged stress. J. Affect. Disord. 2019 246 682 694 10.1016/j.jad.2018.12.084 30611912
    [Google Scholar]
  192. Pitcairn S.R. Ortelli O.A. Weiner J.L. Effects of early social isolation and adolescent single prolonged stress on anxiety‐like behaviors and voluntary ethanol consumption in female Long Evans rats. Alcohol. Clin. Exp. Res. 2024 48 8 1586 1599 10.1111/acer.15397 39031683
    [Google Scholar]
/content/journals/cn/10.2174/011570159X377560250629183749
Loading
/content/journals/cn/10.2174/011570159X377560250629183749
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test