Skip to content
2000
image of Membrane Protein Modulators in Neuroinflammation

Abstract

Neuroinflammation has emerged as a critical pathological process that significantly contributes to the development and progression of a wide range of neurological disorders, including Alzheimer’s disease, Parkinson’s disease, and multiple sclerosis. Recent advances in neuroscience have underscored the pivotal role of neuroinflammation not only in exacerbating these diseases but also in accelerating neuronal degeneration. The growing prevalence of these conditions worldwide, coupled with the limited efficacy of current therapeutic approaches, highlights the urgent need for new therapeutic strategies. Given the central role of neuroinflammation in disease progression, targeting the neuroinflammatory process offers a compelling opportunity for effective intervention. Membrane proteins are key regulators in cellular signal transduction and intercellular communication, and their dysregulation may trigger and sustain neuroinflammatory responses. Consequently, modulators of membrane proteins have emerged as promising candidates for managing neuroinflammation. Current research indicates that natural products and small-molecule compounds can modulate membrane protein activity, effectively mitigating excessive inflammatory responses and exhibiting potent anti-neuroinflammatory effects. This review systematically examines the classification and functional roles of membrane proteins in neuroinflammation, with a particular focus on the therapeutic potential of channel proteins, transporter proteins, and receptor proteins across various neurological conditions. The identification and development of membrane protein modulators present an innovative and urgent avenue for advancing anti-neuroinflammatory therapies, offering potential breakthroughs in treating these prevalent and debilitating diseases.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X375716250701111204
2025-07-17
2025-09-18
Loading full text...

Full text loading...

References

  1. Wang M. Tang G. Zhou C. Guo H. Hu Z. Hu Q. Li G. Revisiting the intersection of microglial activation and neuroinflammation in Alzheimer’s disease from the perspective of ferroptosis. Chem. Biol. Interact. 2023 375 110387 10.1016/j.cbi.2023.110387 36758888
    [Google Scholar]
  2. Gao L. Peng L. Wang J. Zhang J.H. Xia Y. Mitochondrial stress: A key role of neuroinflammation in stroke. J. Neuroinflammation 2024 21 1 44 10.1186/s12974‑024‑03033‑7 38321473
    [Google Scholar]
  3. Araújo B. Caridade-Silva R. Soares-Guedes C. Martins-Macedo J. Gomes E.D. Monteiro S. Teixeira F.G. Neuroinflammation and Parkinson’s disease—from neurodegeneration to therapeutic opportunities. Cells 2022 11 18 2908 10.3390/cells11182908 36139483
    [Google Scholar]
  4. Kukanja P. Langseth C.M. Rubio Rodríguez-Kirby L.A. Agirre E. Zheng C. Raman A. Yokota C. Avenel C. Tiklová K. Guerreiro-Cacais A.O. Olsson T. Hilscher M.M. Nilsson M. Castelo-Branco G. Cellular architecture of evolving neuroinflammatory lesions and multiple sclerosis pathology. Cell 2024 187 8 1990 2009.e19 10.1016/j.cell.2024.02.030 38513664
    [Google Scholar]
  5. Sparks J.T. Botsko G. Swale D.R. Boland L.M. Patel S.S. Dickens J.C. Membrane proteins mediating reception and transduction in chemosensory neurons in mosquitoes. Front. Physiol. 2018 9 1309 10.3389/fphys.2018.01309 30294282
    [Google Scholar]
  6. Cournia Z. Chatzigoulas A. Allostery in membrane proteins. Curr. Opin. Struct. Biol. 2020 62 197 204 10.1016/j.sbi.2020.03.006 32446013
    [Google Scholar]
  7. Yang H. Xiang Y. Wang J. Ke Z. Zhou W. Yin X. Zhang M. Chen Z. Modulating the blood-brain barrier in CNS disorders: A review of the therapeutic implications of secreted protein acidic and rich in cysteine (SPARC). Int. J. Biol. Macromol. 2025 288 138747 10.1016/j.ijbiomac.2024.138747 39674451
    [Google Scholar]
  8. De Deurwaerdère P. Ponimaskin E. Chagraoui A. Di Giovanni G. Editorial: New GPCR targets and modulators to treat CNS disorders. Front. Mol. Neurosci. 2022 15 1104336 10.3389/fnmol.2022.1104336 36561894
    [Google Scholar]
  9. Urrutia J. Aguado A. Muguruza-Montero A. Núñez E. Malo C. Casis O. Villarroel A. The crossroad of ion channels and calmodulin in disease. Int. J. Mol. Sci. 2019 20 2 400 10.3390/ijms20020400 30669290
    [Google Scholar]
  10. Luo L. Song S. Ezenwukwa C.C. Jalali S. Sun B. Sun D. Ion channels and transporters in microglial function in physiology and brain diseases. Neurochem. Int. 2021 142 104925 10.1016/j.neuint.2020.104925 33248207
    [Google Scholar]
  11. Zhang H. Li X. Hou J. Jiang L. Wang H. Angstrom-scale ion channels towards single-ion selectivity. Chem. Soc. Rev. 2022 51 6 2224 2254 10.1039/D1CS00582K 35225300
    [Google Scholar]
  12. Zhang J. Yuan H. Yao X. Chen S. Endogenous ion channels expressed in human embryonic kidney (HEK-293) cells. Pflugers Arch. 2022 474 7 665 680 10.1007/s00424‑022‑02700‑z 35567642
    [Google Scholar]
  13. Ávalos Prado P. Häfner S. Comoglio Y. Wdziekonski B. Duranton C. Attali B. Barhanin J. Sandoz G. KCNE1 is an auxiliary subunit of two distinct ion channel superfamilies. Cell 2021 184 2 534 544.e11 10.1016/j.cell.2020.11.047 33373586
    [Google Scholar]
  14. Mango D. Nisticò R. Neurodegenerative disease: What potential therapeutic role of acid-sensing ion channels? Front. Cell. Neurosci. 2021 15 730641 10.3389/fncel.2021.730641 34690702
    [Google Scholar]
  15. Liu M. Jiang L. Wen M. Ke Y. Tong X. Huang W. Chen R. Microglia depletion exacerbates acute seizures and hippocampal neuronal degeneration in mouse models of epilepsy. Am. J. Physiol. Cell Physiol. 2020 319 3 C605 C610 10.1152/ajpcell.00205.2020 32783655
    [Google Scholar]
  16. Chen Y. Xiao L. Qiu J. Neuronomodulation of excitable neurons. Neurosci. Bull. 2024 40 1 103 112 10.1007/s12264‑023‑01095‑w 37584858
    [Google Scholar]
  17. Sarkar S. Microglial ion channels: Key players in non-cell autonomous neurodegeneration. Neurobiol. Dis. 2022 174 105861 10.1016/j.nbd.2022.105861 36115552
    [Google Scholar]
  18. Cojocaru A. Burada E. Bălșeanu, A.T.; Deftu, A.F.; Cătălin, B.; Popa-Wagner, A.; Osiac, E. Roles of microglial ion channel in neurodegenerative diseases. J. Clin. Med. 2021 10 6 1239 10.3390/jcm10061239 33802786
    [Google Scholar]
  19. Shi Y. Common folds and transport mechanisms of secondary active transporters. Annu. Rev. Biophys. 2013 42 1 51 72 10.1146/annurev‑biophys‑083012‑130429 23654302
    [Google Scholar]
  20. Lee Y. Park Y. Nam H. Lee J.W. Yu S.W. Translocator protein (TSPO): The new story of the old protein in neuroinflammation. BMB Rep. 2020 53 1 20 27 10.5483/BMBRep.2020.53.1.273 31818362
    [Google Scholar]
  21. Mishra A. Bandopadhyay R. Singh P.K. Mishra P.S. Sharma N. Khurana N. Neuroinflammation in neurological disorders: Pharmacotherapeutic targets from bench to bedside. Metab. Brain Dis. 2021 36 7 1591 1626 10.1007/s11011‑021‑00806‑4 34387831
    [Google Scholar]
  22. Ayers-Ringler J.R. Jia Y.F. Qiu Y.Y. Choi D.S. Role of astrocytic glutamate transporter in alcohol use disorder. World J. Psychiatry 2016 6 1 31 42 10.5498/wjp.v6.i1.31 27014596
    [Google Scholar]
  23. Dahlmanns M. Dahlmanns J.K. Savaskan N. Steiner H.H. Yakubov E. Glial glutamate transporter-mediated plasticity: System xc-/xCT/SLC7A11 and EAAT1/2 in brain diseases. Front Biosci-Landmark 2023 28 3 57 10.31083/j.fbl2803057 37005761
    [Google Scholar]
  24. Abd-Elrahman K.S. Sarasija S. Ferguson S.S.G. The role of neuroglial metabotropic glutamate receptors in Alzheimer’s disease. Curr. Neuropharmacol. 2023 21 2 273 283 10.2174/1570159X19666210916102638 34530715
    [Google Scholar]
  25. Iovino L. Tremblay M.E. Civiero L. Glutamate-induced excitotoxicity in Parkinson’s disease: The role of glial cells. J. Pharmacol. Sci. 2020 144 3 151 164 10.1016/j.jphs.2020.07.011 32807662
    [Google Scholar]
  26. Diniz L.P. Araujo A.P.B. Matias I. Garcia M.N. Barros-Aragão F.G.Q. de Melo Reis R.A. Foguel D. Braga C. Figueiredo C.P. Romão L. Gomes F.C.A. Astrocyte glutamate transporters are increased in an early sporadic model of synucleinopathy. Neurochem. Int. 2020 138 104758 10.1016/j.neuint.2020.104758 32439533
    [Google Scholar]
  27. Onaolapo A.Y. Onaolapo O.J. Peripheral and central glutamate dyshomeostasis in neurodegenerative disorders. Curr. Neuropharmacol. 2021 19 7 1069 1089 10.2174/1570159X18666201015161919 33059576
    [Google Scholar]
  28. Mackie P. Lebowitz J. Saadatpour L. Nickoloff E. Gaskill P. Khoshbouei H. The dopamine transporter: An unrecognized nexus for dysfunctional peripheral immunity and signaling in Parkinson’s disease. Brain Behav. Immun. 2018 70 21 35 10.1016/j.bbi.2018.03.020 29551693
    [Google Scholar]
  29. Ward R.J. Dexter D.T. Crichton R.R. Iron, neuroinflammation and neurodegeneration. Int. J. Mol. Sci. 2022 23 13 7267 10.3390/ijms23137267 35806270
    [Google Scholar]
  30. Motta C. Assogna M. Bonomi C.G. Di Lorenzo F. Nuccetelli M. Mercuri N.B. Koch G. Martorana A. Interplay between the catecholaminergic enzymatic axis and neurodegeneration/] neuroinflammation processes in the Alzheimer’s disease continuum. Eur. J. Neurol. 2023 30 4 839 848 10.1111/ene.15691 36692274
    [Google Scholar]
  31. Nishijima H. Tomiyama M. What mechanisms are responsible for the reuptake of levodopa-derived dopamine in parkinsonian striatum? Front. Neurosci. 2016 10 575 10.3389/fnins.2016.00575 28018168
    [Google Scholar]
  32. Juárez O.H. Calderón G.D. Hernández G.E. Barragán M.G. The role of dopamine and its dysfunction as a consequence of oxidative stress. Oxid. Med. Cell. Longev. 2016 2016 1 9730467 10.1155/2016/9730467 26770661
    [Google Scholar]
  33. Castorina A. Thomas B.S. Louangaphay K. Keay K.A. Leggio G.M. Musumeci G. Dopamine: An immune transmitter. Neural Regen. Res. 2020 15 12 2173 2185 10.4103/1673‑5374.284976 32594028
    [Google Scholar]
  34. Ashraf-Uz-Zaman M. Ji G. Tidwell D. Yin L. Thakolwiboon S. Pan J. Junell R. Griffin Z. Shahi S. Barthels D. Sajib M.S. Trippier P.C. Mikelis C.M. Das H. Avila M. Neugebauer V. German N.A. Evaluation of urea-based inhibitors of the dopamine transporter using the experimental autoimmune encephalomyelitis model of multiple sclerosis. ACS Chem. Neurosci. 2022 13 2 217 228 10.1021/acschemneuro.1c00647 34978174
    [Google Scholar]
  35. Peng Y. Qin X. Du H. Li N. Ren W. Peng Y. The immunological function of GABAergic system. Front. Biosci. 2017 22 7 1162 1172 10.2741/4539 28199198
    [Google Scholar]
  36. Liu J. Feng X. Wang Y. Xia X. Zheng J.C. Astrocytes: GABAceptive and GABAergic Cells in the Brain. Front. Cell. Neurosci. 2022 16 892497 10.3389/fncel.2022.892497 35755777
    [Google Scholar]
  37. Crowley T. Cryan J.F. Downer E.J. O’Leary O.F. Inhibiting neuroinflammation: The role and therapeutic potential of GABA in neuro-immune interactions. Brain Behav. Immun. 2016 54 260 277 10.1016/j.bbi.2016.02.001 26851553
    [Google Scholar]
  38. Sarlo G.L. Holton K.F. Brain concentrations of glutamate and GABA in human epilepsy: A review. Seizure 2021 91 213 227 10.1016/j.seizure.2021.06.028 34233236
    [Google Scholar]
  39. Villasana-Salazar B. Vezzani A. Neuroinflammation microenvironment sharpens seizure circuit. Neurobiol. Dis. 2023 178 106027 10.1016/j.nbd.2023.106027 36736598
    [Google Scholar]
  40. Sun L. Shan W. Yang H. Liu R. Wu J. Wang Q. The role of neuroinflammation in post-traumatic epilepsy. Front. Neurol. 2021 12 646152 10.3389/fneur.2021.646152 34122298
    [Google Scholar]
  41. Jiang J. Tang B. Wang L. Huo Q. Tan S. Misrani A. Han Y. Li H. Hu H. Wang J. Cheng T. Tabassum S. Chen M. Xie W. Long C. Yang L. Systemic LPS-induced microglial activation results in increased GABAergic tone: A mechanism of protection against neuroinflammation in the medial prefrontal cortex in mice. Brain Behav. Immun. 2022 99 53 69 10.1016/j.bbi.2021.09.017 34582995
    [Google Scholar]
  42. Kim Y.S. Choi J. Yoon B.E. Neuron-glia interactions in neurodevelopmental disorders. Cells 2020 9 10 2176 10.3390/cells9102176 32992620
    [Google Scholar]
  43. Petit-Pedrol M. Groc L. Regulation of membrane NMDA receptors by dynamics and protein interactions. J. Cell Biol. 2021 220 1 202006101 10.1083/jcb.202006101 33337489
    [Google Scholar]
  44. Weis W.I. Kobilka B.K. The molecular basis of G protein–coupled receptor activation. Annu. Rev. Biochem. 2018 87 1 897 919 10.1146/annurev‑biochem‑060614‑033910 29925258
    [Google Scholar]
  45. Zhou Z. Ikegaya Y. Koyama R. The astrocytic cAMP pathway in health and disease. Int. J. Mol. Sci. 2019 20 3 779 10.3390/ijms20030779 30759771
    [Google Scholar]
  46. Gu C. Chen Y. Chen Y. Liu C.F. Zhu Z. Wang M. Role of G protein-coupled receptors in microglial activation: Implication in parkinson’s disease. Front. Aging Neurosci. 2021 13 768156 10.3389/fnagi.2021.768156 34867296
    [Google Scholar]
  47. Abulwerdi G. Stoica B.A. Loane D.J. Faden A.I. Putative mGluR4 positive allosteric modulators activate Gi-independent anti-inflammatory mechanisms in microglia. Neurochem. Int. 2020 138 104770 10.1016/j.neuint.2020.104770 32454165
    [Google Scholar]
  48. Meng F. Guo Z. Hu Y. Mai W. Zhang Z. Zhang B. Ge Q. Lou H. Guo F. Chen J. Duan S. Gao Z. CD73-derived adenosine controls inflammation and neurodegeneration by modulating dopamine signalling. Brain 2019 142 3 700 718 10.1093/brain/awy351 30689733
    [Google Scholar]
  49. Gessi S. Poloni T.E. Negro G. Varani K. Pasquini S. Vincenzi F. Borea P.A. Merighi S. A2A adenosine receptor as a potential biomarker and a possible therapeutic target in Alzheimer’s disease. Cells 2021 10 9 2344 10.3390/cells10092344 34571993
    [Google Scholar]
  50. Tian X. Xie G. Xiao H. Ding F. Bao W. Zhang M. CXCR4 knockdown prevents inflammatory cytokine expression in macrophages by suppressing activation of MAPK and NF-κB signaling pathways. Cell Biosci. 2019 9 1 55 10.1186/s13578‑019‑0315‑x 31304005
    [Google Scholar]
  51. Cui L.Y. Chu S.F. Chen N.H. The role of chemokines and chemokine receptors in multiple sclerosis. Int. Immunopharmacol. 2020 83 106314 10.1016/j.intimp.2020.106314 32197226
    [Google Scholar]
  52. Shi K. Li H. Chang T. He W. Kong Y. Qi C. Li R. Huang H. Zhu Z. Zheng P. Ruan Z. Zhou J. Shi F.D. Liu Q. Bone marrow hematopoiesis drives multiple sclerosis progression. Cell 2022 185 13 2234 2247.e17 10.1016/j.cell.2022.05.020 35709748
    [Google Scholar]
  53. Heng A.H.S. Han C.W. Abbott C. McColl S.R. Comerford I. Chemokine-driven migration of pro-inflammatory CD4+ T cells in CNS autoimmune disease. Front. Immunol. 2022 13 817473 10.3389/fimmu.2022.817473 35250997
    [Google Scholar]
  54. Jiang S. Liang J. Li W. Wang L. Song M. Xu S. Liu G. Du Q. Zhai D. Tang L. Yang Y. Zhang L. Zhang B. The role of CXCL1/CXCR2 axis in neurological diseases. Int. Immunopharmacol. 2023 120 110330 10.1016/j.intimp.2023.110330 37247498
    [Google Scholar]
  55. Lyu J. Jiang X. Leak R.K. Shi Y. Hu X. Chen J. Microglial responses to brain injury and disease: Functional diversity and new opportunities. Transl. Stroke Res. 2021 12 3 474 495 10.1007/s12975‑020‑00857‑2 33128703
    [Google Scholar]
  56. Wang H. Huang Q. Zhang Z. Ji J. Sun T. Wang D. Transient post-operative overexpression of CXCR2 on monocytes of traumatic brain injury patients drives monocyte chemotaxis toward cerebrospinal fluid and enhances monocyte-mediated immunogenic cell death of neurons in vitro. J. Neuroinflammation 2022 19 1 171 10.1186/s12974‑022‑02535‑6 35768823
    [Google Scholar]
  57. Semple B.D. Kossmann T. Morganti-Kossmann M.C. Role of chemokines in CNS health and pathology: A focus on the CCL2/CCR2 and CXCL8/CXCR2 networks. J. Cereb. Blood Flow Metab. 2010 30 3 459 473 10.1038/jcbfm.2009.240 19904283
    [Google Scholar]
  58. Luo X. CXCR2 antagonism attenuates neuroinflammation after subarachnoid hemorrhage. J. Stroke Cerebrovasc. Dis. 2023 32 9 107266 10.1016/j.jstrokecerebrovasdis.2023.107266 37481938
    [Google Scholar]
  59. Zhou L. Hu Y. Li C. Yan Y. Ao L. Yu B. Fang W. Liu J. Li Y. Levo-corydalmine alleviates vincristine-induced neuropathic pain in mice by inhibiting an NF-kappa B-dependent CXCL1/] CXCR2 signaling pathway. Neuropharmacology 2018 135 34 47 10.1016/j.neuropharm.2018.03.004 29518397
    [Google Scholar]
  60. Lopes A.H. Brandolini L. Aramini A. Bianchini G. Silva R.L. Zaperlon A.C. Verri W.A. Alves-Filho J.C. Cunha F.Q. Teixeira M.M. Allegretti M. Cunha T.M. DF2755A, a novel non-competitive allosteric inhibitor of CXCR1/2, reduces inflammatory and post-operative pain. Pharmacol. Res. 2016 103 69 79 10.1016/j.phrs.2015.11.005 26592483
    [Google Scholar]
  61. Barata-Antunes S. Cristóvão A.C. Pires J. Rocha S.M. Bernardino L. Dual role of histamine on microglia-induced neurodegeneration. Biochim. Biophys. Acta Mol. Basis Dis. 2017 1863 3 764 769 10.1016/j.bbadis.2016.12.016 28057587
    [Google Scholar]
  62. Soares C.L.R. Wilairatana P. Silva L.R. Moreira P.S. Vilar Barbosa N.M.M. da Silva P.R. Coutinho H.D.M. de Menezes I.R.A. Felipe C.F.B. Biochemical aspects of the inflammatory process: A narrative review. Biomed. Pharmacother. 2023 168 115764 10.1016/j.biopha.2023.115764 37897973
    [Google Scholar]
  63. Flores-Clemente C. Nicolás-Vázquez M.I. Mera Jiménez E. Hernández-Rodríguez M. Inhibition of astrocytic histamine N-methyltransferase as a possible target for the treatment of Alzheimer’s disease. Biomolecules 2021 11 10 1408 10.3390/biom11101408 34680041
    [Google Scholar]
  64. Fang Q. Xicoy H. Shen J. Luchetti S. Dai D. Zhou P. Qi X.R. Martens G.J.M. Huitinga I. Swaab D.F. Liu C. Shan L. Histamine-4 receptor antagonist ameliorates Parkinson-like pathology in the striatum. Brain Behav. Immun. 2021 92 127 138 10.1016/j.bbi.2020.11.036 33249171
    [Google Scholar]
  65. Sanna M.D. Stark H. Lucarini L. Ghelardini C. Masini E. Galeotti N. Histamine H4 receptor activation alleviates neuropathic pain through differential regulation of ERK, JNK, and P38 MAPK phosphorylation. Pain 2015 156 12 2492 2504 10.1097/j.pain.0000000000000319 26270581
    [Google Scholar]
  66. Apolloni S. Fabbrizio P. Amadio S. Napoli G. Verdile V. Morello G. Iemmolo R. Aronica E. Cavallaro S. Volonté C. Histamine regulates the inflammatory profile of SOD1-G93A microglia and the histaminergic system is dysregulated in amyotrophic lateral sclerosis. Front. Immunol. 2017 8 1689 10.3389/fimmu.2017.01689 29250069
    [Google Scholar]
  67. Bhat S.A. Goel R. Shukla R. Hanif K. Angiotensin receptor blockade modulates NF-κB and STAT3 signaling and inhibits glial activation and neuroinflammation better than angiotensin-converting enzyme inhibition. Mol. Neurobiol. 2016 53 10 6950 6967 10.1007/s12035‑015‑9584‑5 26666666
    [Google Scholar]
  68. Sunanda T. Ray B. Mahalakshmi A.M. Bhat A. Rashan L. Rungratanawanich W. Song B.J. Essa M.M. Sakharkar M.K. Chidambaram S.B. Mitochondria-endoplasmic reticulum crosstalk in Parkinson’s disease: The role of brain renin angiotensin system components. Biomolecules 2021 11 11 1669 10.3390/biom11111669 34827667
    [Google Scholar]
  69. Papazian I. Tsoukala E. Boutou A. Karamita M. Kambas K. Iliopoulou L. Fischer R. Kontermann R.E. Denis M.C. Kollias G. Lassmann H. Probert L. Fundamentally different roles of neuronal TNF receptors in CNS pathology: TNFR1 and IKKβ promote microglial responses and tissue injury in demyelination while TNFR2 protects against excitotoxicity in mice. J. Neuroinflammation 2021 18 1 222 10.1186/s12974‑021‑02200‑4 34565380
    [Google Scholar]
  70. Subedi L. Lee S.E. Madiha S. Gaire B.P. Jin M. Yumnam S. Kim S.Y. Phytochemicals against TNFα-mediated neuroinflammatory diseases. Int. J. Mol. Sci. 2020 21 3 764 10.3390/ijms21030764 31991572
    [Google Scholar]
  71. Clark I.A. Vissel B. Broader insights into understanding tumor necrosis factor and neurodegenerative disease pathogenesis infer new therapeutic approaches. J. Alzheimers Dis. 2021 79 3 931 948 10.3233/JAD‑201186 33459706
    [Google Scholar]
  72. Jayaraman A. Htike T.T. James R. Picon C. Reynolds R. TNF-mediated neuroinflammation is linked to neuronal necroptosis in Alzheimer’s disease hippocampus. Acta Neuropathol. Commun. 2021 9 1 159 10.1186/s40478‑021‑01264‑w 34625123
    [Google Scholar]
  73. Kang X. Ploner A. Pedersen N.L. Bandres-Ciga S. Noyce A.J. Wirdefeldt K. Williams D.M. Tumor necrosis factor inhibition and Parkinson disease. Neurology 2021 96 12 e1672 e1679 10.1212/WNL.0000000000011630 33608417
    [Google Scholar]
  74. Ortí-Casañ N. Boerema A.S. Köpke K. Ebskamp A. Keijser J. Zhang Y. Chen T. Dolga A.M. Broersen K. Fischer R. Pfizenmaier K. Kontermann R.E. Eisel U.L.M. The TNFR1 antagonist Atrosimab reduces neuronal loss, glial activation and memory deficits in an acute mouse model of neurodegeneration. Sci. Rep. 2023 13 1 10622 10.1038/s41598‑023‑36846‑2 37391534
    [Google Scholar]
  75. Ortí-Casañ N. Zuhorn I.S. Naudé P.J.W. De Deyn P.P. van Schaik P.E.M. Wajant H. Eisel U.L.M. A TNF receptor 2 agonist ameliorates neuropathology and improves cognition in an Alzheimer’s disease mouse model. Proc. Natl. Acad. Sci. USA 2022 119 37 2201137119 10.1073/pnas.2201137119 36037389
    [Google Scholar]
  76. Karakas E. Furukawa H. Crystal structure of a heterotetrameric NMDA receptor ion channel. Science 2014 344 6187 992 997 10.1126/science.1251915 24876489
    [Google Scholar]
  77. Sühs K.W. Gudi V. Eckermann N. Fairless R. Pul R. Skripuletz T. Stangel M. Cytokine regulation by modulation of the NMDA receptor on astrocytes. Neurosci. Lett. 2016 629 227 233 10.1016/j.neulet.2016.07.016 27423317
    [Google Scholar]
  78. Sulkowski G. Dąbrowska-Bouta, B.; Chalimoniuk, M.; Strużyńska, L. Effects of antagonists of glutamate receptors on pro-inflammatory cytokines in the brain cortex of rats subjected to experimental autoimmune encephalomyelitis. J. Neuroimmunol. 2013 261 1-2 67 76 10.1016/j.jneuroim.2013.05.006 23746391
    [Google Scholar]
  79. Luo P. Liu D. Guo L. Protecting oligodendrocytes by targeting non-glutamate receptors as a new therapeutic strategy for ischemic stroke. Pharmacology 2017 100 3-4 148 152 10.1159/000477939 28637049
    [Google Scholar]
  80. Prakash A. Kumar A. Role of nuclear receptor on regulation of BDNF and neuroinflammation in hippocampus of β-amyloid animal model of Alzheimer’s disease. Neurotox. Res. 2014 25 4 335 347 10.1007/s12640‑013‑9437‑9 24277156
    [Google Scholar]
  81. Kim S. Nam Y. Kim C. Lee H. Hong S. Kim H.S. Shin S.J. Park Y.H. Mai H.N. Oh S.M. Kim K.S. Yoo D.H. Chung W.K. Chung H. Moon M. Neuroprotective and anti-inflammatory effects of low–moderate dose ionizing radiation in models of Alzheimer’s disease. Int. J. Mol. Sci. 2020 21 10 3678 10.3390/ijms21103678 32456197
    [Google Scholar]
  82. Qian L. Li X. Fang R. Wang Z. Xu Y. Zhang H. Bai H. Yang Q. Zhu X. Ben J. Xu Y. Chen Q. Class A scavenger receptor deficiency augments angiotensin II-induced vascular remodeling. Biochem. Pharmacol. 2014 90 3 254 264 10.1016/j.bcp.2014.05.015 24875449
    [Google Scholar]
  83. Sastre D. Colomer-Molera M. de Benito-Bueno A. Valenzuela C. Fernández-Ballester G. Felipe A. KCNE4-dependent modulation of Kv1.3 pharmacology. Biochem. Pharmacol. 2024 226 116368 10.1016/j.bcp.2024.116368 38880360
    [Google Scholar]
  84. Leussink V.I. Montalban X. Hartung H.P. Restoring axonal function with 4-aminopyridine: Clinical efficacy in multiple sclerosis and beyond. CNS Drugs 2018 32 7 637 651 10.1007/s40263‑018‑0536‑2 29992409
    [Google Scholar]
  85. Dietrich M. Koska V. Hecker C. Göttle P. Hilla A.M. Heskamp A. Lepka K. Issberner A. Hallenberger A. Baksmeier C. Steckel J. Balk L. Knier B. Korn T. Havla J. Martínez-Lapiscina E.H. Solà-Valls N. Manogaran P. Olbert E.D. Schippling S. Cruz-Herranz A. Yiu H. Button J. Caldito N.G. von Gall C. Mausberg A.K. Stettner M. Zimmermann H.G. Paul F. Brandt A.U. Küry P. Goebels N. Aktas O. Berndt C. Saidha S. Green A.J. Calabresi P.A. Fischer D. Hartung H.P. Albrecht P. Protective effects of 4-aminopyridine in experimental optic neuritis and multiple sclerosis. Brain 2020 143 4 1127 1142 10.1093/brain/awaa062 32293668
    [Google Scholar]
  86. Dietrich M. Hartung H.P. Albrecht P. Neuroprotective properties of 4-aminopyridine. Neurol. Neuroimmunol. Neuroinflamm. 2021 8 3 976 10.1212/NXI.0000000000000976 33653963
    [Google Scholar]
  87. Markakis I. Charitakis I. Beeton C. Galani M. Repousi E. Aggeloglou S. Sfikakis P.P. Pennington M.W. Chandy K.G. Poulopoulou C. Kv1.3 channel up-regulation in peripheral blood T lymphocytes of patients with multiple sclerosis. Front. Pharmacol. 2021 12 714841 10.3389/fphar.2021.714841 34630091
    [Google Scholar]
  88. Alrashdi B. Dawod B. Schampel A. Tacke S. Kuerten S. Marshall J.S. Côté P.D. Nav1.6 promotes inflammation and neuronal degeneration in a mouse model of multiple sclerosis. J. Neuroinflammation 2019 16 1 215 10.1186/s12974‑019‑1622‑1 31722722
    [Google Scholar]
  89. Faissner S. Plemel J.R. Gold R. Yong V.W. Progressive multiple sclerosis: From pathophysiology to therapeutic strategies. Nat. Rev. Drug Discov. 2019 18 12 905 922 10.1038/s41573‑019‑0035‑2 31399729
    [Google Scholar]
  90. Ramos K.M. Lewis M.T. Morgan K.N. Crysdale N.Y. Kroll J.L. Taylor F.R. Harrison J.A. Sloane E.M. Maier S.F. Watkins L.R. Spinal upregulation of glutamate transporter GLT-1 by ceftriaxone: Therapeutic efficacy in a range of experimental nervous system disorders. Neuroscience 2010 169 4 1888 1900 10.1016/j.neuroscience.2010.06.014 20547213
    [Google Scholar]
  91. Maurya S.K. Bhattacharya N. Mishra S. Bhattacharya A. Banerjee P. Senapati S. Mishra R. Microglia specific drug targeting using natural products for the regulation of redox imbalance in neurodegeneration. Front. Pharmacol. 2021 12 654489 10.3389/fphar.2021.654489 33927630
    [Google Scholar]
  92. Storer P.D. Xu J. Chavis J. Drew P.D. Peroxisome proliferator-activated receptor-gamma agonists inhibit the activation of microglia and astrocytes: Implications for multiple sclerosis. J. Neuroimmunol. 2005 161 1-2 113 122 10.1016/j.jneuroim.2004.12.015 15748950
    [Google Scholar]
  93. Feinstein D.L. Galea E. Gavrilyuk V. Brosnan C.F. Whitacre C.C. Dumitrescu-Ozimek L. Landreth G.E. Pershadsingh H.A. Weinberg G. Heneka M.T. Peroxisome proliferator-activated receptor-γ agonists prevent experimental autoimmune encephalomyelitis. Ann. Neurol. 2002 51 6 694 702 10.1002/ana.10206 12112074
    [Google Scholar]
  94. Mirdha L. Aggregation behavior of amyloid beta peptide depends upon the membrane lipid composition. J. Membr. Biol. 2024 257 3-4 151 164 10.1007/s00232‑024‑00314‑3 38888760
    [Google Scholar]
  95. Katzeff J.S. Kim W.S. ATP-binding cassette transporters and neurodegenerative diseases. Essays Biochem. 2021 65 7 1013 1024 10.1042/EBC20210012 34415015
    [Google Scholar]
  96. Oikawa N. Walter J. Presenilins and γ-secretase in membrane proteostasis. Cells 2019 8 3 209 10.3390/cells8030209 30823664
    [Google Scholar]
  97. Burrinha T. Guimas A.C. Aging impact on amyloid precursor protein neuronal trafficking. Curr. Opin. Neurobiol. 2022 73 102524 10.1016/j.conb.2022.102524 35303572
    [Google Scholar]
  98. Gu X. Wu H. Xie Y. Xu L. Liu X. Wang W. Caspase-1/IL-1β represses membrane transport of GluA1 by inhibiting the interaction between Stargazin and GluA1 in Alzheimer’s disease. Mol. Med. 2021 27 1 8 10.1186/s10020‑021‑00273‑8 33509083
    [Google Scholar]
  99. Deane R. Singh I. Sagare A.P. Bell R.D. Ross N.T. LaRue B. Love R. Perry S. Paquette N. Deane R.J. Thiyagarajan M. Zarcone T. Fritz G. Friedman A.E. Miller B.L. Zlokovic B.V. A multimodal RAGE-specific inhibitor reduces amyloid β–mediated brain disorder in a mouse model of Alzheimer disease. J. Clin. Invest. 2012 122 4 1377 1392 10.1172/JCI58642 22406537
    [Google Scholar]
  100. Hong Y. Shen C. Yin Q. Sun M. Ma Y. Liu X. Effects of RAGE-specific inhibitor FPS-ZM1 on amyloid-β metabolism and AGEs-induced inflammation and oxidative stress in rat hippocampus. Neurochem. Res. 2016 41 5 1192 1199 10.1007/s11064‑015‑1814‑8 26738988
    [Google Scholar]
  101. Lykhmus O. Kalashnyk O. Uspenska K. Skok M. Positive allosteric modulation of alpha7 nicotinic acetylcholine receptors transiently improves memory but aggravates inflammation in LPS-treated mice. Front. Aging Neurosci. 2020 11 359 10.3389/fnagi.2019.00359 31998114
    [Google Scholar]
  102. Takata K. Amamiya T. Mizoguchi H. Kawanishi S. Kuroda E. Kitamura R. Ito A. Saito Y. Tawa M. Nagasawa T. Okamoto H. Sugino Y. Takegami S. Kitade T. Toda Y. Kem W.R. Kitamura Y. Shimohama S. Ashihara E. Alpha7 nicotinic acetylcholine receptor-specific agonist DMXBA (GTS-21) attenuates Aβ accumulation through suppression of neuronal γ-secretase activity and promotion of microglial amyloid-β phagocytosis and ameliorates cognitive impairment in a mouse model of Alzheimer’s disease. Neurobiol. Aging 2018 62 197 209 10.1016/j.neurobiolaging.2017.10.021 29175709
    [Google Scholar]
  103. Govindarajulu M. Pinky P.D. Bloemer J. Ghanei N. Suppiramaniam V. Amin R. Signaling mechanisms of selective PPAR γ modulators in Alzheimer’s disease. PPAR Res. 2018 2018 1 20 10.1155/2018/2010675 30420872
    [Google Scholar]
  104. Cortez I. Hernandez C.M. Dineley K.T. Enhancement of select cognitive domains with rosiglitazone implicates dorsal hippocampus circuitry sensitive to PPARγ agonism in an Alzheimer’s mouse model. Brain Behav. 2021 11 2 01973 10.1002/brb3.1973 33382528
    [Google Scholar]
  105. Carta A.R. Frau L. Pisanu A. Wardas J. Spiga S. Carboni E. Rosiglitazone decreases peroxisome proliferator receptor-γ levels in microglia and inhibits TNF-α production: new evidences on neuroprotection in a progressive Parkinson’s disease model. Neuroscience 2011 194 250 261 10.1016/j.neuroscience.2011.07.046 21839812
    [Google Scholar]
  106. De Miranda B.R. Rocha E.M. Castro S.L. Greenamyre J.T. Protection from α-Synuclein induced dopaminergic neurodegeneration by overexpression of the mitochondrial import receptor TOM20. NPJ Parkinsons Dis. 2020 6 1 38 10.1038/s41531‑020‑00139‑6 33293540
    [Google Scholar]
  107. Territo P.R. Zarrinmayeh H. P2X7 receptors in neurodegeneration: Potential therapeutic applications from basic to clinical approaches. Front. Cell. Neurosci. 2021 15 617036 10.3389/fncel.2021.617036 33889073
    [Google Scholar]
  108. Zheng H. Liu Q. Zhou S. Luo H. Zhang W. Role and therapeutic targets of P2X7 receptors in neurodegenerative diseases. Front. Immunol. 2024 15 1345625 10.3389/fimmu.2024.1345625 38370420
    [Google Scholar]
  109. Franco R. Lillo A. Navarro G. Reyes-Resina I. The adenosine A2A receptor is a therapeutic target in neurological, heart and oncogenic diseases. Expert Opin. Ther. Targets 2022 26 9 791 800 10.1080/14728222.2022.2136570 36300278
    [Google Scholar]
  110. Vorovenci R.J. Antonini A. The efficacy of oral adenosine A 2A antagonist istradefylline for the treatment of moderate to severe Parkinson’s disease. Expert Rev. Neurother. 2015 15 12 1383 1390 10.1586/14737175.2015.1113131 26630457
    [Google Scholar]
  111. Ferreira A.F.F. Ulrich H. Feng Z.P. Sun H.S. Britto L.R. Neurodegeneration and glial morphological changes are both prevented by TRPM2 inhibition during the progression of a Parkinson’s disease mouse model. Exp. Neurol. 2024 377 114780 10.1016/j.expneurol.2024.114780 38649091
    [Google Scholar]
  112. Vaidya B. Sharma S.S. Transient receptor potential channels as an emerging target for the treatment of Parkinson’s disease: An insight into role of pharmacological interventions. Front. Cell Dev. Biol. 2020 8 584513 10.3389/fcell.2020.584513 33330461
    [Google Scholar]
  113. Ferreira A.F.F. Singulani M.P. Ulrich H. Feng Z.P. Sun H.S. Britto L.R. Inhibition of TRPM2 by AG490 is neuroprotective in a Parkinson’s disease animal model. Mol. Neurobiol. 2022 59 3 1543 1559 10.1007/s12035‑022‑02723‑8 35000153
    [Google Scholar]
  114. Gurkoff G. Shahlaie K. Lyeth B. Berman R. Voltage-gated calcium channel antagonists and traumatic brain injury. Pharmaceuticals 2013 6 7 788 812 10.3390/ph6070788 24276315
    [Google Scholar]
  115. Sorrentino Z.A. Lucke-Wold B.P. Laurent D. Quintin S.S. Hoh B.L. Interventional treatment of symptomatic vasospasm in the setting of traumatic brain injury: A systematic review of reported cases. World Neurosurg. 2024 183 45 55 10.1016/j.wneu.2023.11.135 38043741
    [Google Scholar]
  116. Xu G.Z. Wang M.D. Liu K.G. Bai Y.A. Wu W. Li W. A meta-analysis of treating acute traumatic brain injury with calcium channel blockers. Brain Res. Bull. 2013 99 41 47 10.1016/j.brainresbull.2013.09.011 24099981
    [Google Scholar]
  117. Liu X. Zhao Z. Ji R. Zhu J. Sui Q.Q. Knight G.E. Burnstock G. He C. Yuan H. Xiang Z. Inhibition of P2X7 receptors improves outcomes after traumatic brain injury in rats. Purinergic Signal. 2017 13 4 529 544 10.1007/s11302‑017‑9579‑y 28823092
    [Google Scholar]
  118. Nadal-Nicolás F.M. Galindo-Romero C. Valiente-Soriano F.J. Barberà-Cremades M. deTorre-Minguela C. Salinas-Navarro M. Pelegrín P. Agudo-Barriuso M. Involvement of P2X7 receptor in neuronal degeneration triggered by traumatic injury. Sci. Rep. 2016 6 1 38499 10.1038/srep38499 27929040
    [Google Scholar]
  119. Lu Q. Xiong J. Yuan Y. Ruan Z. Zhang Y. Chai B. Li L. Cai S. Xiao J. Wu Y. Huang P. Zhang H. Minocycline improves the functional recovery after traumatic brain injury via inhibition of aquaporin-4. Int. J. Biol. Sci. 2022 18 1 441 458 10.7150/ijbs.64187 34975343
    [Google Scholar]
  120. Higashida T. Kreipke C.W. Rafols J.A. Peng C. Schafer S. Schafer P. Ding J.Y. Dornbos D. Li X. Guthikonda M. Rossi N.F. Ding Y. The role of hypoxia-inducible factor-1α aquaporin-4, and matrix metalloproteinase-9 in blood-brain barrier disruption and brain edema after traumatic brain injury. J. Neurosurg. 2011 114 1 92 101 10.3171/2010.6.JNS10207 20617879
    [Google Scholar]
  121. Zhao Y. Zhou Y.G. Chen J.F. Targeting the adenosine A2A receptor for neuroprotection and cognitive improvement in traumatic brain injury and Parkinson’s disease. Chin. J. Traumatol. 2024 27 3 125 133 10.1016/j.cjtee.2023.08.003 37679245
    [Google Scholar]
  122. Bucciarelli G.M. Lechner M. Fontes A. Kats L.B. Eisthen H.L. Shaffer H.B. From poison to promise: The evolution of tetrodotoxin and its potential as a therapeutic. Toxins 2021 13 8 517 10.3390/toxins13080517 34437388
    [Google Scholar]
  123. Ni J. Suzuki T. Karnup S.V. Gu B. Yoshimura N. Nerve growth factor-mediated Na+ channel plasticity of bladder afferent neurons in mice with spinal cord injury. Life Sci. 2022 298 120524 10.1016/j.lfs.2022.120524 35367467
    [Google Scholar]
  124. Brockie S. Hong J. Fehlings M.G. The role of microglia in modulating neuroinflammation after spinal cord injury. Int. J. Mol. Sci. 2021 22 18 9706 10.3390/ijms22189706 34575871
    [Google Scholar]
  125. Erblich B. Zhu L. Etgen A.M. Dobrenis K. Pollard J.W. Absence of colony stimulation factor-1 receptor results in loss of microglia, disrupted brain development and olfactory deficits. PLoS One 2011 6 10 26317 10.1371/journal.pone.0026317 22046273
    [Google Scholar]
  126. Gerber Y.N. Saint-Martin G.P. Bringuier C.M. Bartolami S. Goze-Bac C. Noristani H.N. Perrin F.E. CSF1R inhibition reduces microglia proliferation, promotes tissue preservation and improves motor recovery after spinal cord injury. Front. Cell. Neurosci. 2018 12 368 10.3389/fncel.2018.00368 30386212
    [Google Scholar]
  127. Batiha G.E.S. Wasef L. Teibo J.O. Shaheen H.M. Zakariya A.M. Akinfe O.A. Teibo T.K.A. Al-kuraishy H.M. Al-Garbee A.I. Alexiou A. Papadakis M. Commiphora myrrh: A phytochemical and pharmacological update. Naunyn Schmiedebergs Arch. Pharmacol. 2023 396 3 405 420 10.1007/s00210‑022‑02325‑0 36399185
    [Google Scholar]
  128. Batiha G.E-S. Al-kuraishy H.M. Al-Gareeb A.I. Qusty N. Alexiou A. Impact of sitagliptin on non-diabetic COVID-19 patients. Curr. Mol. Pharmacol. 2022 15 4 683 692 10.2174/1874467214666210902115650 34477540
    [Google Scholar]
  129. Batiha G.E.S. Al-kuraishy H.M. Al-Gareeb A.I. Alruwaili M. AlRuwaili R. Albogami S.M. Alorabi M. Saad H.M. Simal-Gandara J. Targeting of neuroinflammation by glibenclamide in COVID-19: Old weapon from arsenal. Inflammopharmacology 2023 31 1 1 7 10.1007/s10787‑022‑01087‑8 36418600
    [Google Scholar]
  130. Al-kuraishy H.M. Sulaiman G.M. Mohammed H.A. Albukhaty S. Albuhadily A.K. Al-Gareeb A.I. Klionsky D.J. Abomughaid M.M. The compelling role of brain-derived neurotrophic factor signaling in multiple sclerosis: Role of BDNF activators. CNS Neurosci. Ther. 2024 30 12 70167 10.1111/cns.70167 39654365
    [Google Scholar]
  131. Liu C. Wang W. Zhao S. Chen S. Chen H. Wang S. Li Z. Qian H. Tian X. Discovery of first-in-class highly selective TRPV1 antagonists with dual analgesic and hypoglycemic effects. Bioorg. Med. Chem. 2024 107 117750 10.1016/j.bmc.2024.117750 38776567
    [Google Scholar]
  132. Brandwine-Shemmer T. Minke B. Levitan I. Inhibition of TRPV1 by an antagonist in clinical trials is dependent on cholesterol binding. Cell Calcium 2024 124 102957 10.1016/j.ceca.2024.102957 39357317
    [Google Scholar]
  133. Jha R.M. Simard J.M. Glibenclamide for brain contusions: Contextualizing a promising clinical trial design that leverages an imaging-based TBI endotype. Neurotherapeutics 2023 20 6 1472 1481 10.1007/s13311‑023‑01389‑x 37306928
    [Google Scholar]
  134. Wiciński, M.; Wódkiewicz, E.; Słupski, M.; Walczak, M.; Socha, M.; Malinowski, B.; Pawlak-Osińska, K. Neuroprotective activity of sitagliptin via reduction of neuroinflammation beyond the incretin effect: Focus on Alzheimer’s disease. BioMed Res. Int. 2018 2018 1 9 10.1155/2018/6091014 30186862
    [Google Scholar]
/content/journals/cn/10.2174/011570159X375716250701111204
Loading
/content/journals/cn/10.2174/011570159X375716250701111204
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test