Skip to content
2000
image of Efficacy of Venlafaxine and Deep Brain Stimulation Against the Effects of Hippocampal Lesion with Ibotenic Acid in Animals Exposed to the Chronic Mild Stress Model of Depression

Abstract

Introduction

Dysfunction of the pathway between the ventral hippocampus (vHPC) and medial prefrontal cortex (mPFC) may be responsible for the weaker or lack of efficacy of antidepressant drugs in patients suffering from treatment-resistant depression. This study aims to evaluate the behavioural effects of vHPC lesion with ibotenic acid (IBO) in animals subjected to the chronic mild stress (CMS) procedure and treated with either chronic venlafaxine or acute deep brain stimulation (DBS) in the mPFC. In addition, electrophysiological studies are expected to reveal neuromodulatory effects on the function and plasticity of mPFC neurons in response to stress, lesion, and deep brain stimulation (DBS).

Methods

Wistar Han rats were exposed to the chronic mild stress model of depression and IBO lesion in vHPC. The effects of both procedures were evaluated in a series of behavioural tests (sucrose test, elevated plus maze, novel object recognition, and social interaction) and in electrophysiological recordings (field potential recording and LTP induction).

Results

The CMS procedure caused a decrease in sucrose consumption, deficits in cognitive function and social interaction, and increased anxiety. The lesion in vHPC with IBO resulted in similar behavioral changes. Repeated (5 weeks) administration of venlafaxine (10 mg/kg, IP) reversed these deficits in stressed animals but was only partially effective in reversing the effects of IBO lesion in HPC. In contrast, the neuromodulation strategy with DBS of the mPFC produced a robust reversal of all behavioural changes observed in both stressed and lesioned rats. The CMS did not affect the amplitude of field potentials in mPFC slices, but the induction of Long-Term Potentiation was impaired in these animals. The IBO lesion significantly reduced the amplitude of Field potentials as compared to unstressed rats. Both repeated venlafaxine and acute DBS normalized these effects of the IBO lesion.

Discussion

Observed effects were fully normalized by DBS in mPFC but not by venlafaxine, which only partially reversed the IBO lesion-induced effects. The weaker sensitivity of vHPC-lesioned animals to the therapeutic action of venlafaxine provides further evidence that insufficient transmission from the vHPC to the mPFC could be responsible for antidepressant non-response.

Conclusion

These data support the hypothesis that resistance to antidepressant treatment may result from the inability of antidepressants to fully activate the impaired vHPC-PFC pathway, which could be overcome by the neuromodulatory properties of deep brain stimulation.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X391083250716080839
2025-07-28
2025-11-04
Loading full text...

Full text loading...

/deliver/fulltext/cn/10.2174/011570159X391083250716080839/BMS-CN-2025-HT14-6926-3.html?itemId=/content/journals/cn/10.2174/011570159X391083250716080839&mimeType=html&fmt=ahah

References

  1. Ferrari A.J. Charlson F.J. Norman R.E. Patten S.B. Freedman G. Murray C.J.L. Vos T. Whiteford H.A. Burden of depressive disorders by country, sex, age, and year: findings from the global burden of disease study 2010. PLoS Med. 2013 10 11 e1001547 10.1371/journal.pmed.1001547 24223526
    [Google Scholar]
  2. Briley M. Lépine, The increasing burden of depression. Neuropsychiatr. Dis. Treat. 2011 7 Suppl. 1 3 7 10.2147/NDT.S19617 21750622
    [Google Scholar]
  3. Nemeroff C.B. Prevalence and management of treatment-resistant depression. J. Clin. Psychiatry 2007 68 Suppl. 8 17 25 [PMID: 17640154
    [Google Scholar]
  4. Thase M.E. The small specific effects of antidepressants in clinical trials: What do they mean to psychiatrists? Curr. Psychiatry Rep. 2011 13 6 476 482 10.1007/s11920‑011‑0235‑x 21964929
    [Google Scholar]
  5. Thomas L. Kessler D. Campbell J. Morrison J. Peters T.J. Williams C. Lewis G. Wiles N. Prevalence of treatment-resistant depression in primary care: Cross-sectional data. Br. J. Gen. Pract. 2013 63 617 e852 e858 10.3399/bjgp13X675430 24351501
    [Google Scholar]
  6. McIntyre R.S. Rosenblat J.D. Nemeroff C.B. Sanacora G. Murrough J.W. Berk M. Brietzke E. Dodd S. Gorwood P. Ho R. Iosifescu D.V. Lopez Jaramillo C. Kasper S. Kratiuk K. Lee J.G. Lee Y. Lui L.M.W. Mansur R.B. Papakostas G.I. Subramaniapillai M. Thase M. Vieta E. Young A.H. Zarate C.A. Stahl S. Synthesizing the evidence for ketamine and esketamine in treatment-resistant depression: An international expert opinion on the available evidence and implementation. Am. J. Psychiatry 2021 178 5 383 399 10.1176/appi.ajp.2020.20081251 33726522
    [Google Scholar]
  7. Carhart-Harris R.L. Bolstridge M. Day C.M.J. Rucker J. Watts R. Erritzoe D.E. Kaelen M. Giribaldi B. Bloomfield M. Pilling S. Rickard J.A. Forbes B. Feilding A. Taylor D. Curran H.V. Nutt D.J. Psilocybin with psychological support for treatment-resistant depression: Six-month follow-up. Psychopharmacology 2018 235 2 399 408 10.1007/s00213‑017‑4771‑x 29119217
    [Google Scholar]
  8. Hamani C. Amorim B.O. Wheeler A.L. Diwan M. Driesslein K. Covolan L. Butson C.R. Nobrega J.N. Deep brain stimulation in rats: Different targets induce similar antidepressant-like effects but influence different circuits. Neurobiol. Dis. 2014 71 205 214 10.1016/j.nbd.2014.08.007 25131446
    [Google Scholar]
  9. Lim L.W. Prickaerts J. Huguet G. Kadar E. Hartung H. Sharp T. Temel Y. Electrical stimulation alleviates depressive-like behaviors of rats: investigation of brain targets and potential mechanisms. Transl. Psychiatry 2015 5 3 e535 e5 10.1038/tp.2015.24 25826110
    [Google Scholar]
  10. Jiménez-Sánchez L. Castañé A. Pérez-Caballero L. Grifoll M. López-Gil X. Campa L. Galofré M. Berrocoso E. Adell A. Activation of AMPA receptors mediates the antidepressant action of deep brain stimulation of the infralimbic prefrontal cortex. Cereb. Cortex 2016 26 6 2778 2789 10.1093/cercor/bhv133 26088969
    [Google Scholar]
  11. Torres-Sanchez S. Perez-Caballero L. Berrocoso E. Cellular and molecular mechanisms triggered by Deep Brain Stimulation in depression: A preclinical and clinical approach. Prog. Neuropsychopharmacol. Biol. Psychiatry 2017 73 1 10 10.1016/j.pnpbp.2016.09.005 27644164
    [Google Scholar]
  12. Willner P. Belzung C. Treatment-resistant depression: Are animal models of depression fit for purpose? Psychopharmacology 2015 232 19 3473 3495 10.1007/s00213‑015‑4034‑7 26289353
    [Google Scholar]
  13. Papp M. Gruca P. Lason M. Tota-Glowczyk K. Niemczyk M. Litwa E. Willner P. Rapid antidepressant effects of deep brain stimulation of the pre-frontal cortex in an animal model of treatment-resistant depression. J. Psychopharmacol. 2018 32 10 1133 1140 10.1177/0269881118791737 30182787
    [Google Scholar]
  14. Papp M. Gruca P. Lason M. Litwa E. Solecki W. Willner P. AMPA receptors mediate the pro-cognitive effects of electrical and optogenetic stimulation of the medial prefrontal cortex in antidepressant non-responsive Wistar–Kyoto rats. J. Psychopharmacol. 2020 34 12 1418 1430 10.1177/0269881120967857 33200659
    [Google Scholar]
  15. Papp M. Gruca P. Litwa E. Lason M. Willner P. Optogenetic stimulation of transmission from prelimbic cortex to nucleus accumbens core overcomes resistance to venlafaxine in an animal model of treatment-resistant depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 2023 123 110715 10.1016/j.pnpbp.2023.110715 36610613
    [Google Scholar]
  16. Klein A.K. Austin E.W. Cunningham M.J. Dvorak D. Gatti S. Hulls S.K. Kiss L. Kruegel A.C. Marek G.J. Papp M. Sporn J. Hughes Z.A. GM-1020: a novel, orally bioavailable NMDA receptor antagonist with rapid and robust antidepressant-like effects at well-tolerated doses in rodents. Neuropsychopharmacology 2024 49 6 905 914 10.1038/s41386‑023‑01783‑1 38177696
    [Google Scholar]
  17. Willner P. Gruca P. Lason M. Tota-Glowczyk K. Litwa E. Niemczyk M. Papp M. Validation of chronic mild stress in the Wistar-Kyoto rat as an animal model of treatment-resistant depression. Behav. Pharmacol. 2019 30 (2 and 3) 239 250 10.1097/FBP.0000000000000431 30204592
    [Google Scholar]
  18. Rossetti A.C. Papp M. Gruca P. Paladini M.S. Racagni G. Riva M.A. Molteni R. Stress-induced anhedonia is associated with the activation of the inflammatory system in the rat brain: Restorative effect of pharmacological intervention. Pharmacol. Res. 2016 103 1 12 10.1016/j.phrs.2015.10.022 26535964
    [Google Scholar]
  19. Song W. Shen Y. Zhang Y. Peng S. Zhang R. Ning A. Li H. Li X. Lin G.N. Yu S. Expression alteration of microRNAs in Nucleus Accumbens is associated with chronic stress and antidepressant treatment in rats. BMC Med. Inform. Decis. Mak. 2019 19 S6 271 10.1186/s12911‑019‑0964‑z 31856805
    [Google Scholar]
  20. Godsil B.P. Kiss J.P. Spedding M. Jay T.M. The hippocampal–prefrontal pathway: The weak link in psychiatric disorders? Eur. Neuropsychopharmacol. 2013 23 10 1165 1181 10.1016/j.euroneuro.2012.10.018 23332457
    [Google Scholar]
  21. Genzel L. Dresler M. Cornu M. Jäger E. Konrad B. Adamczyk M. Friess E. Steiger A. Czisch M. Goya-Maldonado R. Medial prefrontal-hippocampal connectivity and motor memory consolidation in depression and schizophrenia. Biol. Psychiatry 2015 77 2 177 186 10.1016/j.biopsych.2014.06.004 25037555
    [Google Scholar]
  22. Papp M. Gruca P. Lason M. Litwa E. Solecki W. Willner P. Insufficiency of ventral hippocampus to medial prefrontal cortex transmission explains antidepressant non-response. J. Psychopharmacol. 2021 35 10 1253 1264 10.1177/02698811211048281 34617804
    [Google Scholar]
  23. Hamani C. Diwan M. Macedo C.E. Brandão M.L. Shumake J. Gonzalez-Lima F. Raymond R. Lozano A.M. Fletcher P.J. Nobrega J.N. Antidepressant-like effects of medial prefrontal cortex deep brain stimulation in rats. Biol. Psychiatry 2010 67 2 117 124 10.1016/j.biopsych.2009.08.025 19819426
    [Google Scholar]
  24. Chang C.H. Chen M.C. Qiu M.H. Lu J. Ventromedial prefrontal cortex regulates depressive-like behavior and rapid eye movement sleep in the rat. Neuropharmacology 2014 86 125 132 10.1016/j.neuropharm.2014.07.005 25036609
    [Google Scholar]
  25. Guirado R. Umemori J. Sipilä P. Castrén E. Evidence for competition for target innervation in the medial prefrontal cortex. Cereb. Cortex 2016 26 3 1287 1294 10.1093/cercor/bhv280 26637448
    [Google Scholar]
  26. Mitazaki S. Nakagawasai O. Onogi H. Watanabe K. Takahashi K. Tan-No K. Quirion R. Srivastava L.K. Tadano T. Role of prefrontal cortical 5-HT2A receptors and serotonin transporter in the behavioral deficits in post-pubertal rats following neonatal lesion of the ventral hippocampus. Behav. Brain Res. 2020 377 112226 10.1016/j.bbr.2019.112226 31521737
    [Google Scholar]
  27. Lipska B.K. Jaskiw G.E. Chrapusta S. Karoum F. Weinberger D.R. Ibotenic acid lesion of the ventral hippocampus differentially affects dopamine and its metabolites in the nucleus accumbens and prefrontal cortex in the rat. Brain Res. 1992 585 1-2 1 6 10.1016/0006‑8993(92)91184‑G 1511295
    [Google Scholar]
  28. Schwabe K. Koch M. Role of the medial prefrontal cortex in N-methyl-d-aspartate receptor antagonist induced sensorimotor gating deficit in rats. Neurosci. Lett. 2004 355 1-2 5 8 10.1016/j.neulet.2003.10.028 14729221
    [Google Scholar]
  29. Zong N. Li F. Deng Y. Shi J. Jin F. Gong Q. Icariin, a major constituent from Epimedium brevicornum, attenuates ibotenic acid-induced excitotoxicity in rat hippocampus. Behav. Brain Res. 2016 313 111 119 10.1016/j.bbr.2016.06.055 27368415
    [Google Scholar]
  30. Papp M. Willner P. Models of affective illness: Chronic mild stress in the rat. Curr. Protoc. 2023 3 3 e712 10.1002/cpz1.712 36892313
    [Google Scholar]
  31. File S.E. Seth P. A review of 25 years of the social interaction test. Eur. J. Pharmacol. 2003 463 1-3 35 53 10.1016/S0014‑2999(03)01273‑1 12600701
    [Google Scholar]
  32. Solomon M.B. Jones K. Packard B.A. Herman J.P. The medial amygdala modulates body weight but not neuroendocrine responses to chronic stress. J. Neuroendocrinol. 2010 22 1 13 23 10.1111/j.1365‑2826.2009.01933.x 19912476
    [Google Scholar]
  33. Tripathi S.J. Chakraborty S. Srikumar B.N. Raju T.R. Shankaranarayana Rao B.S. Prevention of chronic immobilization stress-induced enhanced expression of glucocorticoid receptors in the prefrontal cortex by inactivation of basolateral amygdala. J. Chem. Neuroanat. 2019 95 134 145 10.1016/j.jchemneu.2017.12.006 29277704
    [Google Scholar]
  34. Inglefield J.R. Schwarzkopf S.B. Kellogg C.K. Alterations in behavioral responses to stressors following excitotoxin lesions of dorsomedial hypothalamic regions. Brain Res. 1994 633 1-2 151 161 10.1016/0006‑8993(94)91534‑2 8137151
    [Google Scholar]
  35. Lipska B.K. Lerman D.N. Khaing Z.Z. Weinberger D.R. The neonatal ventral hippocampal lesion model of schizophrenia: Effects on dopamine and GABA mRNA markers in the rat midbrain. Eur. J. Neurosci. 2003 18 11 3097 3104 10.1111/j.1460‑9568.2003.03047.x 14656305
    [Google Scholar]
  36. Nassif S. Cardo B. Libersat F. Velley L. Comparison of deficits in electrical self-stimulation after ibotenic acid lesion of the lateral hypothalamus and the medial prefrontal cortex. Brain Res. 1985 332 2 247 257 10.1016/0006‑8993(85)90594‑3 3995271
    [Google Scholar]
  37. Hollup S.A. Kjelstrup K.G. Hoff J. Moser M.B. Moser E.I. Impaired recognition of the goal location during spatial navigation in rats with hippocampal lesions. J. Neurosci. 2001 21 12 4505 4513 10.1523/JNEUROSCI.21‑12‑04505.2001 11404438
    [Google Scholar]
  38. Klein S. Koch M. Schwabe K. Neuroanatomical changes in the adult rat brain after neonatal lesion of the medial prefrontal cortex. Exp. Neurol. 2008 209 1 199 212 10.1016/j.expneurol.2007.09.015 17967454
    [Google Scholar]
  39. Carreno F.R. Donegan J.J. Boley A.M. Shah A. DeGuzman M. Frazer A. Lodge D.J. Activation of a ventral hippocampus–medial prefrontal cortex pathway is both necessary and sufficient for an antidepressant response to ketamine. Mol. Psychiatry 2016 21 9 1298 1308 10.1038/mp.2015.176 26619811
    [Google Scholar]
  40. Kanzari A. Bourcier-Lucas C. Freyssin A. Abrous D.N. Haddjeri N. Lucas G. Inducing a long-term potentiation in the dentate gyrus is sufficient to produce rapid antidepressant-like effects. Mol. Psychiatry 2018 23 3 587 596 10.1038/mp.2017.94 28485406
    [Google Scholar]
  41. Ohashi S. Matsumoto M. Otani H. Mori K. Togashi H. Ueno K. Kaku A. Yoshioka M. Changes in synaptic plasticity in the rat hippocampo-medial prefrontal cortex pathway induced by repeated treatments with fluvoxamine. Brain Res. 2002 949 1-2 131 138 10.1016/S0006‑8993(02)02973‑6 12213308
    [Google Scholar]
  42. Vialou V. Bagot R.C. Cahill M.E. Ferguson D. Robison A.J. Dietz D.M. Fallon B. Mazei-Robison M. Ku S.M. Harrigan E. Winstanley C.A. Joshi T. Feng J. Berton O. Nestler E.J. Prefrontal cortical circuit for depression- and anxiety-related behaviors mediated by cholecystokinin: role of ΔFosB. J. Neurosci. 2014 34 11 3878 3887 10.1523/JNEUROSCI.1787‑13.2014 24623766
    [Google Scholar]
  43. Adhikari A. Lerner T.N. Finkelstein J. Pak S. Jennings J.H. Davidson T.J. Ferenczi E. Gunaydin L.A. Mirzabekov J.J. Ye L. Kim S.Y. Lei A. Deisseroth K. Basomedial amygdala mediates top-down control of anxiety and fear. Nature 2015 527 7577 179 185 10.1038/nature15698 26536109
    [Google Scholar]
  44. Liu W.Z. Zhang W.H. Zheng Z.H. Zou J.X. Liu X.X. Huang S.H. You W.J. He Y. Zhang J.Y. Wang X.D. Pan B.X. Identification of a prefrontal cortex-to-amygdala pathway for chronic stress-induced anxiety. Nat. Commun. 2020 11 1 2221 10.1038/s41467‑020‑15920‑7 32376858
    [Google Scholar]
  45. Cai Y. Ge J. Pan Z.Z. The projection from dorsal medial prefrontal cortex to basolateral amygdala promotes behaviors of negative emotion in rats Front Neurosci 2024 18 1331864 Awad-Igbaria Y. Abu-Ata S. Nakhleh-Francis Y. Lowenstein L. Ginat K. Bornstein J. Palzur E. Shamir A. Exploring venlafaxine effects on chronic vulvar pain: Changes in mood and pain regulation networks Neuropharmacology 2024 243 109788 10.16/j.neuropharm.2023.109788 37984764
    [Google Scholar]
  46. Papp M. Gruca P. Lason M. Niemczyk M. Willner P. The role of prefrontal cortex dopamine D2 and D3 receptors in the mechanism of action of venlafaxine and deep brain stimulation in animal models of treatment-responsive and treatment-resistant depression. J. Psychopharmacol. 2019 33 6 748 756 10.1177/0269881119827889 30789286
    [Google Scholar]
  47. Hamani C. Machado D.C. Hipólide D.C. Dubiela F.P. Suchecki D. Macedo C.E. Tescarollo F. Martins U. Covolan L. Nobrega J.N. Deep brain stimulation reverses anhedonic-like behavior in a chronic model of depression: Role of serotonin and brain derived neurotrophic factor. Biol. Psychiatry 2012 71 1 30 35 10.1016/j.biopsych.2011.08.025 22000731
    [Google Scholar]
  48. Rea E. Rummel J. Schmidt T.T. Hadar R. Heinz A. Mathé A.A. Winter C. Anti-anhedonic effect of deep brain stimulation of the prefrontal cortex and the dopaminergic reward system in a genetic rat model of depression: An intracranial self-stimulation paradigm study. Brain Stimul. 2014 7 1 21 28 10.1016/j.brs.2013.09.002 24139146
    [Google Scholar]
  49. Liu F. Huang S. Guo D. Li X. Han Y. Deep brain stimulation of ventromedial prefrontal cortex reverses depressive-like behaviors via BDNF/TrkB signaling pathway in rats. Life Sci. 2023 334 122222 10.1016/j.lfs.2023.122222 38084673
    [Google Scholar]
  50. Hu B. Wang Q. Controlling absence seizures by deep brain stimulus applied on substantia nigra pars reticulata and cortex. Chaos Solitons Fractals 2015 80 November 13 23 10.1016/j.chaos.2015.02.014
    [Google Scholar]
  51. Hu B. Guo Y. Zou X. Dong J. Pan L. Yu M. Yang Z. Zhou C. Cheng Z. Tang W. Sun H. Controlling mechanism of absence seizures by deep brain stimulus applied on subthalamic nucleus. Cogn. Neurodynamics 2018 12 1 103 119 10.1007/s11571‑017‑9457‑x 29435091
    [Google Scholar]
  52. Brozova H. Barnaure I. Ruzicka E. Stochl J. Alterman R. Tagliati M. Short- and long-term effects of DBS on gait in parkinson’s disease. Front. Neurol. 2021 12 688760 10.3389/fneur.2021.688760 34690908
    [Google Scholar]
  53. Zhu Y. Wang K. Ma T. Ji Y. Lou Y. Fu X. Lu Y. Liu Y. Dang W. Zhang Q. Yin F. Wang K. Yu B. Zhang H. Lai J. Wang Y. Nucleus accumbens D1/D2 circuits control opioid withdrawal symptoms in mice. J. Clin. Invest. 2023 133 18 e163266 10.1172/JCI163266 37561576
    [Google Scholar]
  54. Krystal J.H. Sanacora G. Duman R.S. Rapid-acting glutamatergic antidepressants: The path to ketamine and beyond. Biol. Psychiatry 2013 73 12 1133 1141 10.1016/j.biopsych.2013.03.026 23683377
    [Google Scholar]
  55. Krystal J.H. Kaye A.P. Jefferson S. Girgenti M.J. Wilkinson S.T. Sanacora G. Ketamine and the neurobiology of depression: Toward next-generation rapid-acting antidepressant treatments. Proc. Natl. Acad. Sci. USA 2023 120 e2305772120 10.1073/pnas.2305772120 38011560
    [Google Scholar]
  56. Krystal J.H. Kavalali E.T. Monteggia L.M. Ketamine and rapid antidepressant action: New treatments and novel synaptic signaling mechanisms. Neuropsychopharmacology 2024 49 1 41 50 10.1038/s41386‑023‑01629‑w 37488280
    [Google Scholar]
  57. Strasburger S.E. Bhimani P.M. Kaabe J.H. Krysiak J.T. Nanchanatt D.L. Nguyen T.N. Pough K.A. Prince T.A. Ramsey N.S. Savsani K.H. Scandlen L. Cavaretta M.J. Raffa R.B. What is the mechanism of Ketamine’s rapid-onset antidepressant effect? A concise overview of the surprisingly large number of possibilities. J. Clin. Pharm. Ther. 2017 42 2 147 154 10.1111/jcpt.12497 28111761
    [Google Scholar]
  58. Freudenberg F. Celikel T. Reif A. The role of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in depression: Central mediators of pathophysiology and antidepressant activity? Neurosci. Biobehav. Rev. 2015 52 193 206 10.1016/j.neubiorev.2015.03.005 25783220
    [Google Scholar]
  59. Suzuki A. Hara H. Kimura H. Role of the AMPA receptor in antidepressant effects of ketamine and potential of AMPA receptor potentiators as a novel antidepressant. Neuropharmacology 2023 222 109308 10.1016/j.neuropharm.2022.109308 36341809
    [Google Scholar]
  60. Toth E. Gersner R. Wilf-Yarkoni A. Raizel H. Dar D.E. Richter-Levin G. Levit O. Zangen A. Age‐dependent effects of chronic stress on brain plasticity and depressive behavior. J. Neurochem. 2008 107 2 522 532 10.1111/j.1471‑4159.2008.05642.x 18752645
    [Google Scholar]
  61. Wellman C.L. Bollinger J.L. Moench K.M. Effects of stress on the structure and function of the medial prefrontal cortex: Insights from animal models. Int. Rev. Neurobiol. 2020 150 129 153 10.1016/bs.irn.2019.11.007 32204829
    [Google Scholar]
  62. Holmes A. Wellman C.L. Stress-induced prefrontal reorganization and executive dysfunction in rodents. Neurosci. Biobehav. Rev. 2009 33 6 773 783 10.1016/j.neubiorev.2008.11.005 19111570
    [Google Scholar]
  63. Woo E. Sansing L.H. Arnsten A.F.T. Datta D. Chronic stress weakens connectivity in the prefrontal cortex: Architectural and molecular changes. Chronic Stress 2021 5 24705470211029254 10.1177/24705470211029254 34485797
    [Google Scholar]
  64. Arnsten A.F.T. Stress weakens prefrontal networks: Molecular insults to higher cognition. Nat. Neurosci. 2015 18 10 1376 1385 10.1038/nn.4087 26404712
    [Google Scholar]
  65. Wallace J. Jackson R.K. Shotton T.L. Munjal I. McQuade R. Gartside S.E. Characterization of electrically evoked field potentials in the medial prefrontal cortex and orbitofrontal cortex of the rat: Modulation by monoamines. Eur. Neuropsychopharmacol. 2014 24 2 321 332 10.1016/j.euroneuro.2013.07.005 23932190
    [Google Scholar]
  66. Anastasiades P.G. Carter A.G. Circuit organization of the rodent medial prefrontal cortex. Trends Neurosci. 2021 44 7 550 563 10.1016/j.tins.2021.03.006 33972100
    [Google Scholar]
  67. Csabai D. Wiborg O. Czéh B. Reduced synapse and axon numbers in the prefrontal cortex of rats subjected to a chronic stress model for depression. Front. Cell. Neurosci. 2018 12 24 10.3389/fncel.2018.00024 29440995
    [Google Scholar]
  68. Licznerski P. Duman R.S. Remodeling of axo-spinous synapses in the pathophysiology and treatment of depression. Neuroscience 2013 251 33 50 10.1016/j.neuroscience.2012.09.057 23036622
    [Google Scholar]
  69. Yan W. Liu J-F. Han Y. Zhang W. Luo Y-X. Xue Y-X. Zhu W-L. Yang C. Chen W-H. Guo H-L. Ma Y-N. Yuan K. Wang J-S. Shi J. Lu L. Protein kinase Mζ in medial prefrontal cortex mediates depressive-like behavior and antidepressant response. Mol. Psychiatry 2018 23 9 1878 1891 10.1038/mp.2017.219 29180675
    [Google Scholar]
  70. Sánchez-Bellot C. AlSubaie R. Mishchanchuk K. Wee R.W.S. MacAskill A.F. Two opposing hippocampus to prefrontal cortex pathways for the control of approach and avoidance behaviour. Nat. Commun. 2022 13 1 339 10.1038/s41467‑022‑27977‑7 35039510
    [Google Scholar]
  71. Alaiyed S. McCann M. Mahajan G. Rajkowska G. Stockmeier C.A. Kellar K.J. Wu J.Y. Conant K. Venlafaxine stimulates an MMP-9-dependent increase in excitatory/inhibitory balance in a stress model of depression. J. Neurosci. 2020 40 22 4418 4431 10.1523/JNEUROSCI.2387‑19.2020 32269106
    [Google Scholar]
  72. Huang Y.Y. Simpson E. Kellendonk C. Kandel E.R. Genetic evidence for the bidirectional modulation of synaptic plasticity in the prefrontal cortex by D1 receptors. Proc. Natl. Acad. Sci. USA 2004 101 9 3236 3241 10.1073/pnas.0308280101 14981263
    [Google Scholar]
  73. Abraham W.C. Bear M.F. Metaplasticity: The plasticity of synaptic plasticity. Trends Neurosci. 1996 19 4 126 130 10.1016/S0166‑2236(96)80018‑X 8658594
    [Google Scholar]
  74. Kolb B. Gibb R. Plasticity in the prefrontal cortex of adult rats. Front. Cell. Neurosci. 2015 9 15 10.3389/fncel.2015.00015 25691857
    [Google Scholar]
  75. Cooper L.N. Bear M.F. The BCM theory of synapse modification at 30: Interaction of theory with experiment. Nat. Rev. Neurosci. 2012 13 11 798 810 10.1038/nrn3353 23080416
    [Google Scholar]
  76. Brown K.A. Gould T.D. Targeting metaplasticity mechanisms to promote sustained antidepressant actions. Mol. Psychiatry 2024 29 4 1114 1127 10.1038/s41380‑023‑02397‑1 38177353
    [Google Scholar]
/content/journals/cn/10.2174/011570159X391083250716080839
Loading
/content/journals/cn/10.2174/011570159X391083250716080839
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test