Skip to content
2000
image of Unraveling Complex Interactions Mechanisms Linking PTSD and Chronic Diseases

Abstract

Post-traumatic stress disorder (PTSD) is a chronic and multifactorial psychiatric condition that is often underdiagnosed, particularly when associated with chronic diseases (CDs). These conditions arise from complex interactions among psychosocial, socioeconomic, epigenetic, immune, metabolic, and neurobiological factors. Current treatment options for PTSD and CDs, whether isolated or comorbid, remain suboptimal. Addressing the bidirectional relationship between PTSD and CDs is a pressing global public health challenge, necessitating a deeper understanding of the underlying molecular mechanisms. This review examines the interplay of stress-response and neurochemical factors in PTSD and CDs, highlighting how maladaptive stress responses to trauma can disrupt neurochemical pathways, contributing to the development of CDs, and . Despite this, a significant gap exists in the number of model studies that adequately mimic the comorbid symptoms of PTSD and CDs, hindering progress in elucidating shared cellular and molecular pathways. This limitation restricts therapeutic advancements. Therefore, a comprehensive understanding of the neurobiological dysfunctions in the brain and their crosstalk with the immune, cardiovascular, and endocrine systems is critical. Such insights will pave the way for individualized treatment strategies tailored to the unique profiles of patients with PTSD associated with CDs.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X392154250730072830
2025-08-21
2025-10-28
Loading full text...

Full text loading...

References

  1. Izquierdo I. Furini C.R.G. Myskiw J.C. Fear memory. Physiol. Rev. 2016 96 2 695 750 10.1152/physrev.00018.2015 26983799
    [Google Scholar]
  2. Jannini T.B. Longo L. Rossi R. Niolu C. Siracusano A. Di Lorenzo G. Complex post-traumatic stress disorder (cPTSD) and suicide risk: A multigroup mediation analysis exploring the role of post-traumatic symptomatology on hopelessness. J. Psychiatr. Res. 2023 165 165 169 10.1016/j.jpsychires.2023.07.032 37506411
    [Google Scholar]
  3. Serpeloni F. Narrog J.A. Pickler B. Avanci J.Q. Assis S.G.D. Koebach A. Narrative exposure therapy for the treatment of post-traumatic stress disorder with people who have experienced domestic and community violence: Study of a series of cases in two health centers in Rio de Janeiro, Brazil. Ciênc Saúde Coletiva 2023 28 1619 1630 10.1590/1413‑81232023286.16532022en
    [Google Scholar]
  4. Marazziti D. Carmassi C. Cappellato G. Chiarantini I. Massoni L. Mucci F. Arone A. Violi M. Palermo S. De Iorio G. Dell’Osso L. Novel pharmacological targets of post-traumatic stress disorders. Life 2023 13 8 1731 10.3390/life13081731 37629588
    [Google Scholar]
  5. Lunkenheimer F. Garatva P. Steubl L. Baumeister H. Prevalence and incidence of post-traumatic stress disorder and symptoms in people with chronic somatic diseases: A systematic review and meta-analysis. Front. Psychiatry 2023 14 1107144 10.3389/fpsyt.2023.1107144 36741119
    [Google Scholar]
  6. Kmita H. Pinna G. Lushchak V.I. Potential oxidative stress related targets of mitochondria-focused therapy of PTSD. Front. Physiol. 2023 14 1266575 10.3389/fphys.2023.1266575 38028782
    [Google Scholar]
  7. Dell’Oste V. Fantasia S. Gravina D. Palego L. Betti L. Dell’Osso L. Giannaccini G. Carmassi C. Metabolic and inflammatory response in post-traumatic stress disorder (PTSD): A systematic review on peripheral neuroimmune biomarkers. Int. J. Environ. Res. Public Health 2023 20 4 2937 10.3390/ijerph20042937 36833633
    [Google Scholar]
  8. Chakrabarti S. Bisaglia M. Oxidative stress and neuroinflammation in Parkinson’s disease: The role of dopamine oxidation products. Antioxidants 2023 12 4 955 10.3390/antiox12040955 37107329
    [Google Scholar]
  9. Prieto S. Nolan K.E. Moody J.N. Hayes S.M. Hayes J.P. Posttraumatic stress symptom severity predicts cognitive decline beyond the effect of Alzheimer’s disease biomarkers in Veterans. Transl. Psychiatry 2023 13 1 102 10.1038/s41398‑023‑02354‑0 36990983
    [Google Scholar]
  10. Ribeiro A.C.A.F. Batista T.H. Ferrari M.S. Giusti-Paiva A. Vilela F.C. The accentuation in post-traumatic stress disorder-like symptoms induced by diabetes in rats is not associated with a further increase in astrocyte activation in the hippocampus. Neurosci. Lett. 2021 762 136174 10.1016/j.neulet.2021.136174 34400287
    [Google Scholar]
  11. Brown L.C. Murphy A.R. Lalonde C.S. Subhedar P.D. Miller A.H. Stevens J.S. Posttraumatic stress disorder and breast cancer: Risk factors and the role of inflammation and endocrine function. Cancer 2020 126 14 3181 3191 10.1002/cncr.32934 32374431
    [Google Scholar]
  12. Yang J. Zhang S. Wu Q. Chen P. Dai Y. Long J. Wu Y. Lin Y. T cell-mediated skin-brain axis: Bridging the gap between psoriasis and psychiatric comorbidities. J. Autoimmun. 2024 144 103176 10.1016/j.jaut.2024.103176 38364575
    [Google Scholar]
  13. Zepf S. Zepf F.D. Trauma and traumatic neurosis: Freud’s concepts revisited. Int. J. Psychoanal. 2008 89 2 331 353 10.1111/j.1745‑8315.2008.00038.x 18405287
    [Google Scholar]
  14. Averill L.A. Jiang L. Purohit P. Coppoli A. Averill C.L. Roscoe J. Kelmendi B. De Feyter H.M. de Graaf R.A. Gueorguieva R. Sanacora G. Krystal J.H. Rothman D.L. Mason G.F. Abdallah C.G. Prefrontal glutamate neurotransmission in PTSD: A novel approach to estimate synaptic strength in vivo in humans. Chronic Stress 2022 6 24705470221092734 10.1177/24705470221092734 35434443
    [Google Scholar]
  15. Santello M. Volterra A. TNFα in synaptic function: Switching gears. Trends Neurosci. 2012 35 10 638 647 10.1016/j.tins.2012.06.001 22749718
    [Google Scholar]
  16. Haroon E. Miller A.H. Sanacora G. Inflammation, glutamate, and glia: A trio of trouble in mood disorders. Neuropsychopharmacology 2017 42 1 193 215 10.1038/npp.2016.199 27629368
    [Google Scholar]
  17. Pinna G. Kmita H. Lushchak V.I. Editorial: Role of mitochondria in post-traumatic stress disorder (PTSD). Front. Physiol. 2023 14 1341204 10.3389/fphys.2023.1341204 38162825
    [Google Scholar]
  18. He M. Wei J.X. Mao M. Zhao G.Y. Tang J.J. Feng S. Lu X.M. Wang Y.T. Synaptic plasticity in PTSD and associated comorbidities: the function and mechanism for diagnostics and therapy. Curr. Pharm. Des. 2019 24 34 4051 4059 10.2174/1381612824666181120094749 30457048
    [Google Scholar]
  19. Golia M.T. Poggini S. Alboni S. Garofalo S. Ciano Albanese N. Viglione A. Ajmone-Cat M.A. St-Pierre A. Brunello N. Limatola C. Branchi I. Maggi L. Interplay between inflammation and neural plasticity: Both immune activation and suppression impair LTP and BDNF expression. Brain Behav. Immun. 2019 81 484 494 10.1016/j.bbi.2019.07.003 31279682
    [Google Scholar]
  20. Bauer M.E. Wieck A. Lopes R.P. Teixeira A.L. Grassi-Oliveira R. Interplay between neuroimmunoendocrine systems during post-traumatic stress disorder: A minireview. Neuroimmunomodulation 2010 17 3 192 195 10.1159/000258721 20134200
    [Google Scholar]
  21. Godoy L.D. Rossignoli M.T. Delfino-Pereira P. Garcia-Cairasco N. de Lima Umeoka E.H. A comprehensive overview on stress neurobiology: Basic concepts and clinical implications. Front. Behav. Neurosci. 2018 12 127 10.3389/fnbeh.2018.00127 30034327
    [Google Scholar]
  22. Raise-Abdullahi P. Meamar M. Vafaei A.A. Alizadeh M. Dadkhah M. Shafia S. Ghalandari-Shamami M. Naderian R. Samaei A.S. Rashidy-Pour A. Hypothalamus and post-traumatic stress disorder: A review. Brain Sci. 2023 13 7 1010 10.3390/brainsci13071010 37508942
    [Google Scholar]
  23. Vedhara K. Cox N.K.M. Wilcock G.K. Perks P. Hunt M. Anderson S. Lightman S.L. Shanks N.M. Chronic stress in elderly carers of dementia patients and antibody response to influenza vaccination. Lancet 1999 353 9153 627 631 10.1016/S0140‑6736(98)06098‑X 10030328
    [Google Scholar]
  24. Schoorlemmer R.M.M. Peeters G.M.E.E. Van Schoor N.M. Lips P. Relationships between cortisol level, mortality and chronic diseases in older persons. Clin. Endocrinol. 2009 71 6 779 786 10.1111/j.1365‑2265.2009.03552.x 19226268
    [Google Scholar]
  25. Ogłodek E.A. Changes in the serum concentration levels of serotonin, tryptophan and cortisol among stress-resilient and stress-susceptible individuals after experiencing traumatic stress. Int. J. Environ. Res. Public Health 2022 19 24 16517 10.3390/ijerph192416517 36554398
    [Google Scholar]
  26. Pan W. Blood-brain barrier interfaces: from ontogeny to artificial barriers. Q. Rev. Biol. 2006 81 423
    [Google Scholar]
  27. Cohen S. Janicki-Deverts D. Doyle W.J. Miller G.E. Frank E. Rabin B.S. Turner R.B. Chronic stress, glucocorticoid receptor resistance, inflammation, and disease risk. Proc. Natl. Acad. Sci. USA 2012 109 16 5995 5999 10.1073/pnas.1118355109 22474371
    [Google Scholar]
  28. Cernackova A. Durackova Z. Trebaticka J. Mravec B. Neuroinflammation and depressive disorder: The role of the hypothalamus. J. Clin. Neurosci. 2020 75 5 10 10.1016/j.jocn.2020.03.005 32217047
    [Google Scholar]
  29. Murphy F. Nasa A. Cullinane D. Raajakesary K. Gazzaz A. Sooknarine V. Haines M. Roman E. Kelly L. O’Neill A. Cannon M. Roddy D.W. Childhood trauma, the HPA axis and psychiatric illnesses: A targeted literature synthesis. Front. Psychiatry 2022 13 748372 10.3389/fpsyt.2022.748372 35599780
    [Google Scholar]
  30. Pan W. Stone K.P. Hsuchou H. Manda V.K. Zhang Y. Kastin A.J. Cytokine signaling modulates blood-brain barrier function. Curr. Pharm. Des. 2011 17 33 3729 3740 10.2174/138161211798220918 21834767
    [Google Scholar]
  31. Lindqvist D. Dhabhar F.S. Mellon S.H. Yehuda R. Grenon S.M. Flory J.D. Bierer L.M. Abu-Amara D. Coy M. Makotkine I. Reus V.I. Bersani F.S. Marmar C.R. Wolkowitz O.M. Increased pro-inflammatory milieu in combat related PTSD – A new cohort replication study. Brain Behav. Immun. 2017 59 260 264 10.1016/j.bbi.2016.09.012 27638184
    [Google Scholar]
  32. Waheed A. Dalton B. Wesemann U. Ibrahim M.A.A. Himmerich H. A systematic review of interleukin-1β in post-traumatic stress disorder: Evidence from human and animal studies. J. Interferon Cytokine Res. 2018 38 1 1 11 10.1089/jir.2017.0088 29328883
    [Google Scholar]
  33. Yarlagadda A. Alfson E. Clayton A.H. The blood brain barrier and the role of cytokines in neuropsychiatry. Psychiatry 2009 6 11 18 22 20049146
    [Google Scholar]
  34. Huang X. Hussain B. Chang J. Peripheral inflammation and blood-brain barrier disruption: Effects and mechanisms. CNS Neurosci. Ther. 2021 27 1 36 47 10.1111/cns.13569 33381913
    [Google Scholar]
  35. Wilson E.H. Weninger W. Hunter C.A. Trafficking of immune cells in the central nervous system. J. Clin. Invest. 2010 120 5 1368 1379 10.1172/JCI41911 20440079
    [Google Scholar]
  36. Banks W.A. Erickson M.A. The blood–brain barrier and immune function and dysfunction. Neurobiol. Dis. 2010 37 1 26 32 10.1016/j.nbd.2009.07.031 19664708
    [Google Scholar]
  37. Pan X. Kaminga A.C. Wu Wen S. Liu A. Chemokines in post-traumatic stress disorder: A network meta-analysis. Brain Behav. Immun. 2021 92 115 126 10.1016/j.bbi.2020.11.033 33242653
    [Google Scholar]
  38. Qin L. Wu X. Block M.L. Liu Y. Breese G.R. Hong J.S. Knapp D.J. Crews F.T. Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 2007 55 5 453 462 10.1002/glia.20467 17203472
    [Google Scholar]
  39. Kellermann N.P. Epigenetic transmission of Holocaust trauma: Can nightmares be inherited? Isr. J. Psychiatry Relat. Sci. 2013 50 1 33 39 24029109
    [Google Scholar]
  40. Zannas A.S. Wiechmann T. Gassen N.C. Binder E.B. Gene-stress-epigenetic regulation of FKBP5: Clinical and translational implications. Neuropsychopharmacology 2016 41 1 261 274 10.1038/npp.2015.235 26250598
    [Google Scholar]
  41. Li H. Su P. Lai T.K.Y. Jiang A. Liu J. Zhai D. Campbell C.T.G. Lee F.H.F. Yong W. Pasricha S. Li S. Wong A.H.C. Ressler K.J. Liu F. The glucocorticoid receptor-FKBP51 complex contributes to fear conditioning and posttraumatic stress disorder. J. Clin. Invest. 2020 130 2 877 889 10.1172/JCI130363 31929189
    [Google Scholar]
  42. Jiang A. Zhou C. Samsom J. Yan S. Yu D.Z. Jia Z. Wong A.H.C. Liu F. The GR-FKBP51 interaction modulates fear memory but not spatial or recognition memory. Prog. Neuropsychopharmacol. Biol. Psychiatry 2022 119 110604 10.1016/j.pnpbp.2022.110604 35839967
    [Google Scholar]
  43. Geuze E. van Berckel B.N.M. Lammertsma A.A. Boellaard R. de Kloet C.S. Vermetten E. Westenberg H.G.M. Reduced GABAA benzodiazepine receptor binding in veterans with post-traumatic stress disorder. Mol. Psychiatry, 2008 13 1 74 83 10.1038/sj.mp.4002054 17667960
    [Google Scholar]
  44. Huang J. Xu F. Yang L. Tuolihong L. Wang X. Du Z. Zhang Y. Yin X. Li Y. Lu K. Wang W. Involvement of the GABAergic system in PTSD and its therapeutic significance. Front. Mol. Neurosci. 2023 16 1052288 10.3389/fnmol.2023.1052288 36818657
    [Google Scholar]
  45. Gan Y.L. Wang C.Y. He R.H. Hsu P.C. Yeh H.H. Hsieh T.H. Lin H.C. Cheng M.Y. Jeng C.J. Huang M.C. Lee Y.H. FKBP51 mediates resilience to inflammation-induced anxiety through regulation of glutamic acid decarboxylase 65 expression in mouse hippocampus. J. Neuroinflammation 2022 19 1 152 10.1186/s12974‑022‑02517‑8 35705957
    [Google Scholar]
  46. Codagnone M.G. Kara N. Ratsika A. Levone B.R. van de Wouw M. Tan L.A. Cunningham J.I. Sanchez C. Cryan J.F. O’Leary O.F. Inhibition of FKBP51 induces stress resilience and alters hippocampal neurogenesis. Mol. Psychiatry 2022 27 12 4928 4938 10.1038/s41380‑022‑01755‑9 36104438
    [Google Scholar]
  47. Binder E.B. Bradley R.G. Liu W. Epstein M.P. Deveau T.C. Mercer K.B. Tang Y. Gillespie C.F. Heim C.M. Nemeroff C.B. Schwartz A.C. Cubells J.F. Ressler K.J. Association of FKBP5 polymorphisms and childhood abuse with risk of posttraumatic stress disorder symptoms in adults. JAMA 2008 299 11 1291 1305 10.1001/jama.299.11.1291 18349090
    [Google Scholar]
  48. Hawn S.E. Sheerin C.M. Lind M.J. Hicks T.A. Marraccini M.E. Bountress K. Bacanu S.A. Nugent N.R. Amstadter A.B. GxE effects of FKBP5 and traumatic life events on PTSD: A meta-analysis. J. Affect. Disord. 2019 243 455 462 10.1016/j.jad.2018.09.058 30273884
    [Google Scholar]
  49. Xie P. Kranzler H.R. Poling J. Stein M.B. Anton R.F. Farrer L.A. Gelernter J. Interaction of FKBP5 with childhood adversity on risk for post-traumatic stress disorder. Neuropsychopharmacology 2010 35 8 1684 1692 10.1038/npp.2010.37 20393453
    [Google Scholar]
  50. Galatzer-Levy I.R. Andero R. Sawamura T. Jovanovic T. Papini S. Ressler K.J. Norrholm S.D. A cross species study of heterogeneity in fear extinction learning in relation to FKBP5 variation and expression: Implications for the acute treatment of posttraumatic stress disorder. Neuropharmacology 2017 116 188 195 10.1016/j.neuropharm.2016.12.023 28025095
    [Google Scholar]
  51. Zoladz P.R. Dailey A.M. Nagle H.E. Fiely M.K. Mosley B.E. Brown C.M. Duffy T.J. Scharf A.R. Earley M.B. Rorabaugh B.R. FKBP5polymorphisms influence pre‐learning stress‐induced alterations of learning and memory. Eur. J. Neurosci. 2017 45 5 648 659 10.1111/ejn.13514 28002634
    [Google Scholar]
  52. Zannas A.S. Binder E.B. Gene-environment interactions at the FKBP5locus: Sensitive periods, mechanisms and pleiotropism. Genes Brain Behav. 2014 13 1 25 37 10.1111/gbb.12104 24219237
    [Google Scholar]
  53. Bortsov A.V. Smith J.E. Diatchenko L. Soward A.C. Ulirsch J.C. Rossi C. Swor R.A. Hauda W.E. Peak D.A. Jones J.S. Holbrook D. Rathlev N.K. Foley K.A. Lee D.C. Collette R. Domeier R.M. Hendry P.L. McLean S.A. Polymorphisms in the glucocorticoid receptor co-chaperone FKBP5 predict persistent musculoskeletal pain after traumatic stress exposure. Pain 2013 154 8 1419 1426 10.1016/j.pain.2013.04.037 23707272
    [Google Scholar]
  54. Jadhakhan F. Evans D. Falla D. Role of post-trauma stress symptoms in the development of chronic musculoskeletal pain and disability: A protocol for a systematic review. BMJ Open 2021 11 12 e058386 10.1136/bmjopen‑2021‑058386 34853117
    [Google Scholar]
  55. Kline N.K. Berke D.S. Rhodes C.A. Steenkamp M.M. Litz B.T. Self-blame and PTSD following sexual assault: A longitudinal analysis. J. Interpers. Violence 2021 36 5-6 NP3153 NP3168 10.1177/0886260518770652 29683081
    [Google Scholar]
  56. Clausen A.N. Francisco A.J. Thelen J. Bruce J. Martin L.E. McDowd J. Simmons W.K. Aupperle R.L. PTSD and cognitive symptoms relate to inhibition-related prefrontal activation and functional connectivity. Depress. Anxiety 2017 34 5 427 436 10.1002/da.22613 28370684
    [Google Scholar]
  57. Blackburn T.P. Depressive disorders: Treatment failures and poor prognosis over the last 50 years. Pharmacol. Res. Perspect. 2019 7 3 e00472 10.1002/prp2.472 31065377
    [Google Scholar]
  58. Aday J.S. Mitzkovitz C.M. Bloesch E.K. Davoli C.C. Davis A.K. Long-term effects of psychedelic drugs: A systematic review. Neurosci. Biobehav. Rev. 2020 113 179 189 10.1016/j.neubiorev.2020.03.017 32194129
    [Google Scholar]
  59. Carbonaro T.M. Bradstreet M.P. Barrett F.S. MacLean K.A. Jesse R. Johnson M.W. Griffiths R.R. Survey study of challenging experiences after ingesting psilocybin mushrooms: Acute and enduring positive and negative consequences. J. Psychopharmacol. 2016 30 12 1268 1278 10.1177/0269881116662634 27578767
    [Google Scholar]
  60. Palhano-Fontes F. Barreto D. Onias H. Andrade K.C. Novaes M.M. Pessoa J.A. Mota-Rolim S.A. Osório F.L. Sanches R. dos Santos R.G. Tófoli L.F. de Oliveira Silveira G. Yonamine M. Riba J. Santos F.R. Silva-Junior A.A. Alchieri J.C. Galvão-Coelho N.L. Lobão-Soares B. Hallak J.E.C. Arcoverde E. Maia-de-Oliveira J.P. Araújo D.B. Rapid antidepressant effects of the psychedelic ayahuasca in treatment-resistant depression: A randomized placebo-controlled trial. Psychol. Med. 2019 49 4 655 663 10.1017/S0033291718001356 29903051
    [Google Scholar]
  61. Galvão-Coelho N.L. de Menezes Galvão A.C. de Almeida R.N. Palhano-Fontes F. Campos Braga I. Lobão Soares B. Maia-de-Oliveira J.P. Perkins D. Sarris J. de Araujo D.B. Changes in inflammatory biomarkers are related to the antidepressant effects of Ayahuasca. J. Psychopharmacol. 2020 34 10 1125 1133 10.1177/0269881120936486 32648790
    [Google Scholar]
  62. dos Santos R.G. Osório F.L. Rocha J.M. Rossi G.N. Bouso J.C. Rodrigues L.S. de Oliveira Silveira G. Yonamine M. Hallak J.E.C. Ayahuasca improves self-perception of speech performance in subjects with social anxiety disorder: A pilot, proof-of-concept, randomized, placebo-controlled trial. J. Clin. Psychopharmacol. 2021 41 5 540 550 10.1097/JCP.0000000000001428 34166299
    [Google Scholar]
  63. Weiss B. Dinh-Williams L.A.L. Beller N. Raugh I.M. Strauss G.P. Campbell W.K. Ayahuasca in the treatment of posttraumatic stress disorder: Mixed-methods case series evaluation in military combat veterans. Psychol. Trauma 2024 16 S718 S722 10.1037/tra0001625 38059941
    [Google Scholar]
  64. Mitchell J.M. Ot’alora G. M.; van der Kolk, B.; Shannon, S.; Bogenschutz, M.; Gelfand, Y.; Paleos, C.; Nicholas, C.R.; Quevedo, S.; Balliett, B.; Hamilton, S.; Mithoefer, M.; Kleiman, S.; Parker-Guilbert, K.; Tzarfaty, K.; Harrison, C.; de Boer, A.; Doblin, R.; Yazar-Klosinski, B.; Harrison, C.; Yazar-Klosinski, B.; Garas, W.; May, D.; Marta, C.; Walker, S.; Nielson, E.; Wells, G.; Brown, R.; Amiaz, R.; Wallach, Y.; Worthy, R.; Lilienstein, A.; Emerson, A. MDMA-assisted therapy for moderate to severe PTSD: A randomized, placebo-controlled phase 3 trial. Nat. Med. 2023 29 10 2473 2480 10.1038/s41591‑023‑02565‑4 37709999
    [Google Scholar]
  65. Feduccia A.A. Jerome L. Yazar-Klosinski B. Emerson A. Mithoefer M.C. Doblin R. Breakthrough for trauma treatment: Safety and efficacy of MDMA-assisted psychotherapy compared to paroxetine and sertraline. Front. Psychiatry 2019 10 650 10.3389/fpsyt.2019.00650 31572236
    [Google Scholar]
  66. Bolsoni L.M. Crippa J.A.S. Hallak J.E.C. Guimarães F.S. Zuardi A.W. Effects of cannabidiol on symptoms induced by the recall of traumatic events in patients with posttraumatic stress disorder. Psychopharmacology 2022 239 5 1499 1507 10.1007/s00213‑021‑06043‑y 35029706
    [Google Scholar]
  67. Telch M.J. Fischer C.M. Zaizar E.D. Rubin M. Papini S. Use of Cannabidiol (CBD) oil in the treatment of PTSD: Study design and rationale for a placebo-controlled randomized clinical trial. Contemp. Clin. Trials 2022 122 106933 10.1016/j.cct.2022.106933 36154908
    [Google Scholar]
  68. Jakovljevic M. Jakab M. Gerdtham U. McDaid D. Ogura S. Varavikova E. Merrick J. Adany R. Okunade A. Getzen T.E. Comparative financing analysis and political economy of noncommunicable diseases. J. Med. Econ. 2019 22 8 722 727 10.1080/13696998.2019.1600523 30913928
    [Google Scholar]
  69. Mackenbach J.P. The rise and fall of diseases: Reflections on the history of population health in Europe since ca. 1700. Eur. J. Epidemiol. 2021 36 12 1199 1205 10.1007/s10654‑021‑00719‑7 33611677
    [Google Scholar]
  70. Shaw A.C. Goldstein D.R. Montgomery R.R. Age-dependent dysregulation of innate immunity. Nat. Rev. Immunol. 2013 13 12 875 887 10.1038/nri3547 24157572
    [Google Scholar]
  71. Miller M.W. Sadeh N. Traumatic stress, oxidative stress and post-traumatic stress disorder: Neurodegeneration and the accelerated-aging hypothesis. Mol. Psychiatry 2014 19 11 1156 1162 10.1038/mp.2014.111 25245500
    [Google Scholar]
  72. Smith K.L. Kassem M.S. Clarke D.J. Kuligowski M.P. Bedoya-Pérez M.A. Todd S.M. Lagopoulos J. Bennett M.R. Arnold J.C. Microglial cell hyper-ramification and neuronal dendritic spine loss in the hippocampus and medial prefrontal cortex in a mouse model of PTSD. Brain Behav. Immun. 2019 80 889 899 10.1016/j.bbi.2019.05.042 31158497
    [Google Scholar]
  73. Kinney J.W. Bemiller S.M. Murtishaw A.S. Leisgang A.M. Salazar A.M. Lamb B.T. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimers Dement. 2018 4 1 575 590 10.1016/j.trci.2018.06.014 30406177
    [Google Scholar]
  74. Hampel H. Hardy J. Blennow K. Chen C. Perry G. Kim S.H. Villemagne V.L. Aisen P. Vendruscolo M. Iwatsubo T. Masters C.L. Cho M. Lannfelt L. Cummings J.L. Vergallo A. The amyloid-β pathway in Alzheimer’s disease. Mol. Psychiatry 2021 26 10 5481 5503 10.1038/s41380‑021‑01249‑0 34456336
    [Google Scholar]
  75. White S. Mauer R. Lange C. Klimecki O. Huijbers W. Wirth M. The effect of plasma cortisol on hippocampal atrophy and clinical progression in mild cognitive impairment. Alzheimers Dement. 2023 15 3 e12463 10.1002/dad2.12463 37583892
    [Google Scholar]
  76. P, S.; Vellapandian, C. Hypothalamic-pituitary-adrenal (HPA) axis: Unveiling the potential mechanisms involved in stress-induced Alzheimer’s disease and depression. Cureus 2024 16 8 e67595 10.7759/cureus.67595 39310640
    [Google Scholar]
  77. Wang A. Wei Z. Yuan H. Zhu Y. Peng Y. Gao Z. Liu Y. Shen J. Xu H. Guan J. Yin S. Liu F. Li X. FKBP5genetic variants are associated with respiratory- and sleep-related parameters in Chinese patients with obstructive sleep apnea. Front. Neurosci. 2023 17 1170889 10.3389/fnins.2023.1170889 37274192
    [Google Scholar]
  78. Jinwal U.K. Koren J. Borysov S.I. Schmid A.B. Abisambra J.F. Blair L.J. Johnson A.G. Jones J.R. Shults C.L. O’Leary J.C. Jin Y. Buchner J. Cox M.B. Dickey C.A. The Hsp90 cochaperone, FKBP51, increases Tau stability and polymerizes microtubules. J. Neurosci. 2010 30 2 591 599 10.1523/JNEUROSCI.4815‑09.2010 20071522
    [Google Scholar]
  79. Albu S. Romanowski C.P.N. Letizia Curzi M. Jakubcakova V. Flachskamm C. Gassen N.C. Hartmann J. Schmidt M.V. Schmidt U. Rein T. Holsboer F. Hausch F. Paez-Pereda M. Kimura M. Deficiency of FK 506‐binding protein (FKBP) 51 alters sleep architecture and recovery sleep responses to stress in mice. J. Sleep Res. 2014 23 2 176 185 10.1111/jsr.12112 24354785
    [Google Scholar]
  80. Bailus B.J. Scheeler S.M. Simons J. Sanchez M.A. Tshilenge K.T. Creus-Muncunill J. Naphade S. Lopez-Ramirez A. Zhang N. Lakshika Madushani K. Moroz S. Loureiro A. Schreiber K.H. Hausch F. Kennedy B.K. Ehrlich M.E. Ellerby L.M. Modulating FKBP5/FKBP51 and autophagy lowers HTT (huntingtin) levels. Autophagy 2021 17 12 4119 4140 10.1080/15548627.2021.1904489 34024231
    [Google Scholar]
  81. Wei X.E. Zhang F.Y. Wang K. Zhang Q.X. Rong L.Q. Assembly of the FKBP51–PHLPP2–AKT signaling complex in cerebral ischemia/reperfusion injury in rats. Brain Res. 2014 1566 60 68 10.1016/j.brainres.2014.04.009 24746496
    [Google Scholar]
  82. Maatouk L. Yi C. Carrillo-de Sauvage M.A. Compagnion A.C. Hunot S. Ezan P. Hirsch E.C. Koulakoff A. Pfrieger F.W. Tronche F. Leybaert L. Giaume C. Vyas S. Glucocorticoid receptor in astrocytes regulates midbrain dopamine neurodegeneration through connexin hemichannel activity. Cell Death Differ. 2019 26 3 580 596 10.1038/s41418‑018‑0150‑3 30006609
    [Google Scholar]
  83. Zhang W. Xiao D. Mao Q. Xia H. Role of neuroinflammation in neurodegeneration development. Signal Transduct. Target. Ther. 2023 8 1 267 10.1038/s41392‑023‑01486‑5 37433768
    [Google Scholar]
  84. Werle I. Nascimento L.M.M. dos Santos A.L.A. Soares L.A. dos Santos R.G. Hallak J.E.C. Bertoglio L.J. Ayahuasca‐enhanced extinction of fear behaviour: Role of infralimbic cortex 5‐HT2A and 5‐HT1A receptors. Br. J. Pharmacol. 2024 181 11 1671 1689 10.1111/bph.16315 38320596
    [Google Scholar]
  85. Ji L.L. Peng J.B. Fu C.H. Cao D. Li D. Tong L. Wang Z.Y. Activation of Sigma-1 receptor ameliorates anxiety-like behavior and cognitive impairments in a rat model of post-traumatic stress disorder. Behav. Brain Res. 2016 311 408 415 10.1016/j.bbr.2016.05.056 27275520
    [Google Scholar]
  86. Morales-Garcia J.A. Calleja-Conde J. Lopez-Moreno J.A. Alonso-Gil S. Sanz-SanCristobal M. Riba J. Perez-Castillo A.N. N-dimethyltryptamine compound found in the hallucinogenic tea ayahuasca, regulates adult neurogenesis in vitro and in vivo. Transl. Psychiatry 2020 10 1 331 10.1038/s41398‑020‑01011‑0 32989216
    [Google Scholar]
  87. Wang Y.H. Samoylenko V. Tekwani B.L. Khan I.A. Miller L.S. Chaurasiya N.D. Rahman M.M. Tripathi L.M. Khan S.I. Joshi V.C. Wigger F.T. Muhammad I. Composition, standardization and chemical profiling of Banisteriopsis caapi, a plant for the treatment of neurodegenerative disorders relevant to Parkinson’s disease. J. Ethnopharmacol. 2010 128 3 662 671 10.1016/j.jep.2010.02.013 20219660
    [Google Scholar]
  88. Samoylenko V. Rahman M.M. Tekwani B.L. Tripathi L.M. Wang Y.H. Khan S.I. Khan I.A. Miller L.S. Joshi V.C. Muhammad I. Banisteriopsis caapi, a unique combination of MAO inhibitory and antioxidative constituents for the activities relevant to neurodegenerative disorders and Parkinson’s disease. J. Ethnopharmacol. 2010 127 2 357 367 10.1016/j.jep.2009.10.030 19879939
    [Google Scholar]
  89. Schwarz M.J. Houghton P.J. Rose S. Jenner P. Lees A.D. Activities of extract and constituents of Banisteriopsis caapi relevant to parkinsonism. Pharmacol. Biochem. Behav. 2003 75 3 627 633 10.1016/S0091‑3057(03)00129‑1 12895680
    [Google Scholar]
  90. Calderón-Garcidueñas L. Rajkumar R.P. Stommel E.W. Kulesza R. Mansour Y. Rico-Villanueva A. Flores-Vázquez J.O. Brito-Aguilar R. Ramírez-Sánchez S. García-Alonso G. Chávez-Franco D.A. Luévano-Castro S.C. García-Rojas E. Revueltas-Ficachi P. Villarreal-Ríos R. Mukherjee P.S. Brainstem quadruple aberrant hyperphosphorylated tau, beta-amyloid, alpha-synuclein and TDP-43 pathology, stress and sleep behavior disorders. Int. J. Environ. Res. Public Health 2021 18 13 6689 10.3390/ijerph18136689 34206224
    [Google Scholar]
  91. Hernández-Díaz Y. Genis-Mendoza A.D. González-Castro T.B. Tovilla-Zárate C.A. Juárez-Rojop I.E. López-Narváez M.L. Nicolini H. Association and genetic expression between genes involved in HPA axis and suicide behavior: A systematic review. Genes 2021 12 10 1608 10.3390/genes12101608 34681002
    [Google Scholar]
  92. Gebru N.T. Guergues J. Verdina L.A. Wohlfahrt J. Wang S. Armendariz D.S. Gray M. Beaulieu-Abdelahad D. Stevens S.M. Gulick D. Blair L.J. Fkbp5gene deletion: Circadian rhythm profile and brain proteomics in aged mice. Aging Cell 2024 23 12 e14314 10.1111/acel.14314 39225086
    [Google Scholar]
  93. Stechschulte L.A. Qiu B. Warrier M. Hinds T.D. Zhang M. Gu H. Xu Y. Khuder S.S. Russo L. Najjar S.M. Lecka-Czernik B. Yong W. Sanchez E.R. FKBP51 null mice are resistant to diet-induced obesity and the PPARγ agonist rosiglitazone. Endocrinology 2016 157 10 3888 3900 10.1210/en.2015‑1996 27442117
    [Google Scholar]
  94. Criado-Marrero M. Gebru N.T. Gould L.A. Blazier D.M. Vidal-Aguiar Y. Smith T.M. Abdelmaboud S.S. Shelton L.B. Wang X. Dahrendorff J. Beaulieu-Abdelahad D. Dickey C.A. Blair L.J. FKBP52 overexpression accelerates hippocampal-dependent memory impairments in a tau transgenic mouse model. NPJ Aging Mech. Dis. 2021 7 1 9 10.1038/s41514‑021‑00062‑x 33941782
    [Google Scholar]
  95. Ribeiro T.O. Bueno-de-Camargo L.M. Waltrick A.P.F. de Oliveira A.R. Brandão M.L. Munhoz C.D. Zanoveli J.M. Activation of mineralocorticoid receptors facilitate the acquisition of fear memory extinction and impair the generalization of fear memory in diabetic animals. Psychopharmacology 2020 237 2 529 542 10.1007/s00213‑019‑05388‑9 31713655
    [Google Scholar]
  96. Jelenik T. Dille M. Müller-Lühlhoff S. Kabra D.G. Zhou Z. Binsch C. Hartwig S. Lehr S. Chadt A. Peters E.M.J. Kruse J. Roden M. Al-Hasani H. Castañeda T.R. FGF21 regulates insulin sensitivity following long-term chronic stress. Mol. Metab. 2018 16 126 138 10.1016/j.molmet.2018.06.012 29980484
    [Google Scholar]
  97. Musumeci G. Sciarretta C. Rodríguez-Moreno A. Al Banchaabouchi M. Negrete-Díaz V. Costanzi M. Berno V. Egorov A.V. von Bohlen und Halbach, O.; Cestari, V.; Delgado-García, J.M.; Minichiello, L. TrkB modulates fear learning and amygdalar synaptic plasticity by specific docking sites. J. Neurosci. 2009 29 32 10131 10143 10.1523/JNEUROSCI.1707‑09.2009 19675247
    [Google Scholar]
  98. Taylor K.R. Barron T. Hui A. Spitzer A. Yalçin B. Ivec A.E. Geraghty A.C. Hartmann G.G. Arzt M. Gillespie S.M. Kim Y.S. Maleki Jahan S. Zhang H. Shamardani K. Su M. Ni L. Du P.P. Woo P.J. Silva-Torres A. Venkatesh H.S. Mancusi R. Ponnuswami A. Mulinyawe S. Keough M.B. Chau I. Aziz-Bose R. Tirosh I. Suvà M.L. Monje M. Glioma synapses recruit mechanisms of adaptive plasticity. Nature 2023 623 7986 366 374 10.1038/s41586‑023‑06678‑1 37914930
    [Google Scholar]
  99. Kim M.S. Lee W.S. Jin W. TrkB promotes breast cancer metastasis via suppression of Runx3 and keap1 expression. Mol. Cells 2016 39 3 258 265 10.14348/molcells.2016.2310 26657794
    [Google Scholar]
  100. Darenskaya M.A. Kolesnikova L.I. Kolesnikov S.I. Oxidative stress: Pathogenetic role in diabetes mellitus and its complications and therapeutic approaches to correction. Bull. Exp. Biol. Med. 2021 171 2 179 189 10.1007/s10517‑021‑05191‑7 34173093
    [Google Scholar]
  101. Wellen K.E. Hotamisligil G.S. Inflammation, stress, and diabetes. J. Clin. Invest. 2005 115 5 1111 1119 10.1172/JCI25102 15864338
    [Google Scholar]
  102. Rorabaugh B.R. Mabe N.W. Seeley S.L. Stoops T.S. Mucher K.E. Ney C.P. Goodman C.S. Hertenstein B.J. Rush A.E. Kasler C.D. Sargeant A.M. Zoladz P.R. Myocardial fibrosis, inflammation, and altered cardiac gene expression profiles in rats exposed to a predator-based model of posttraumatic stress disorder. Stress 2020 23 2 125 135 10.1080/10253890.2019.1641081 31347429
    [Google Scholar]
  103. Mattes R.G. Espinosa M.L. Oh S.S. Anatrella E.M. Urteaga E.M. Cannabidiol (CBD) use in type 2 diabetes: A case report. Diabetes Spectr. 2021 34 2 198 201 10.2337/ds20‑0023 34149261
    [Google Scholar]
  104. de Lima Silva A.H.B. Radulski D.R. Pereira G.S. Acco A. Zanoveli J.M. A single injection of pregabalin induces short- and long-term beneficial effects on fear memory and anxiety-like behavior in rats with experimental type-1 diabetes mellitus. Metab. Brain Dis. 2022 37 4 1095 1110 10.1007/s11011‑022‑00936‑3 35239142
    [Google Scholar]
  105. Luo L. Li L. Guo M. Chen X. Lin Y. Wu D. Genetic variation in NRG 1 gene and risk of post‐traumatic stress disorders in patients with hepatocellular carcinoma. J. Clin. Lab. Anal. 2020 34 5 e23187 10.1002/jcla.23187 31944381
    [Google Scholar]
  106. Kim M.S. Lee W.S. Jin W. TrkB inhibition of DJ-1 degradation promotes the growth and maintenance of cancer stem cell characteristics in hepatocellular carcinoma. Cell. Mol. Life Sci. 2023 80 10 303 10.1007/s00018‑023‑04960‑z 37749450
    [Google Scholar]
  107. Green C. R. Corsi-Travali S. Neumeister A. The role of BDNFTrkB signaling in the pathogenesis of PTSD. J. Depress Anxiety 2013 2013 S4 006 10.4172/2167‑1044.S4‑006 25226879
    [Google Scholar]
  108. Ishikawa R.Z. Steere R. Conteh N. Cramer M.A. Rao V. Sprich S. Cohen J.N. Treating PTSD and alcohol use disorder. J. Clin. Psychiatry 2022 84( 1 22ct14636 10.4088/JCP.22ct14636 36350590
    [Google Scholar]
  109. Batki S.L. Pennington D.L. Lasher B. Neylan T.C. Metzler T. Waldrop A. Delucchi K. Herbst E. Topiramate treatment of alcohol use disorder in veterans with posttraumatic stress disorder: A randomized controlled pilot trial. Alcohol. Clin. Exp. Res. 2014 38 8 2169 2177 10.1111/acer.12496 25092377
    [Google Scholar]
/content/journals/cn/10.2174/011570159X392154250730072830
Loading
/content/journals/cn/10.2174/011570159X392154250730072830
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test