Skip to content
2000
image of Neural Circuit Mechanisms of General Anaesthesia Induction: Current Advances and Future Directions

Abstract

General anaesthesia is traditionally divided into three distinct stages: induction, maintenance, and recovery. However, much of the existing literature has primarily focused on elucidating the mechanisms involved in the recovery phase, yielding several notable advancements. It is essential to recognize, however, that the induction and recovery phases represent two distinct processes. Studies in the induction phase have mainly centred on the impact of inhalational and intravenous anaesthetics on neural circuits, particularly those in the cortical and subcortical nuclei, as well as their specific effects on various neurotransmitters. Yet, the precise neural circuit mechanisms underlying anaesthetic induction still require further exploration. General anaesthetics influence neural circuitry by targeting neurons in particular nuclei, with their effects varying according to the distinct properties of individual anaesthetic agents. During the induction of anaesthesia, both the cortex and subcortical nuclei are significantly involved, with the inhibition of the subthalamic nucleus considered a core mechanism underlying this process. Notably, the periventricular thalamus, as part of the thalamus structure, holds particular importance in regulating the loss of consciousness. Additionally, the spinal cord and peripheral nervous system may play a potentially important role during the induction phase of general anaesthesia. Gaining a deeper understanding of the mechanisms underlying anaesthetic induction could reveal potential neuroanatomical targets that elucidate the alterations in consciousness during this phase of general anaesthesia. Such insights are invaluable in the quest for more effective, precise, and controllable anaesthetic practices, thereby enhancing the selection and combination of anaesthetic agents.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X387168250912070856
2025-09-24
2025-12-15
Loading full text...

Full text loading...

References

  1. Brown E.N. Lydic R. Schiff N.D. General anesthesia, sleep, and coma. N. Engl. J. Med. 2010 363 27 2638 2650 10.1056/NEJMra0808281 21190458
    [Google Scholar]
  2. Bao W.W. Jiang S. Qu W.M. Li W.X. Miao C.H. Huang Z.L. Understanding the neural mechanisms of general anesthesia from interaction with sleep-wake state: A decade of discovery. Pharmacol. Rev. 2023 75 3 532 553 10.1124/pharmrev.122.000717 36627210
    [Google Scholar]
  3. Mashour G.A. Anesthesia and the neurobiology of consciousness. Neuron 2024 112 10 1553 1567 10.1016/j.neuron.2024.03.002 38579714
    [Google Scholar]
  4. Li K. Zhou Y. Fu B. Dopaminergic D1 receptors in the nucleus basalis modulate recovery from propofol anesthesia in rats. Iran. J. Basic Med. Sci. 2020 23 3 298 302 10.22038/ijbms.2019.37716.8962 32440315
    [Google Scholar]
  5. Taylor N.E. Chemali J.J. Brown E.N. Solt K. Activation of D1 dopamine receptors induces emergence from isoflurane general anesthesia. Anesthesiology 2013 118 1 30 39 10.1097/ALN.0b013e318278c896 23221866
    [Google Scholar]
  6. Song X.J. Hu J.J. Neurobiological basis of emergence from anesthesia. Trends Neurosci. 2024 47 5 355 366 10.1016/j.tins.2024.02.006 38490858
    [Google Scholar]
  7. Kelz M.B. García P.S. Mashour G.A. Solt K. Escape from oblivion: Neural mechanisms of emergence from general anesthesia. Anesth. Analg. 2019 128 4 726 736 10.1213/ANE.0000000000004006 30883418
    [Google Scholar]
  8. Nir T. Raizman R. Meningher I. Jacob Y. Huang K.H. Schwartz A.E. Brallier J.W. Ahn H. Kundu P. Tang C.Y. Delman B.N. McCormick P.J. Scarpa J. Sano M. Deiner S.G. Livny A. Baxter M.G. Mincer J.S. Lateralisation of subcortical functional connectivity during and after general anaesthesia. Br. J. Anaesth. 2022 128 1 65 76 10.1016/j.bja.2021.08.033 34802696
    [Google Scholar]
  9. Ku S.W. Lee U. Noh G.J. Jun I.G. Mashour G.A. Preferential inhibition of frontal-to-parietal feedback connectivity is a neurophysiologic correlate of general anesthesia in surgical patients. PLoS One 2011 6 10 25155 10.1371/journal.pone.0025155 21998638
    [Google Scholar]
  10. Lee U. Ku S. Noh G. Baek S. Choi B. Mashour G.A. Disruption of frontal-parietal communication by ketamine, propofol, and sevoflurane. Anesthesiology 2013 118 6 1264 1275 10.1097/ALN.0b013e31829103f5 23695090
    [Google Scholar]
  11. Untergehrer G. Jordan D. Eyl S. Schneider G. Effects of propofol, sevoflurane, remifentanil, and (S)-ketamine in subanesthetic concentrations on visceral and somatosensory pain-evoked potentials. Anesthesiology 2013 118 2 308 317 10.1097/ALN.0b013e318279fb21 23254146
    [Google Scholar]
  12. Hudetz A.G. Mashour G.A. Disconnecting consciousness: Is there a common anesthetic end point? Anesth. Analg. 2016 123 5 1228 1240 10.1213/ANE.0000000000001353 27331780
    [Google Scholar]
  13. Ranft A. Golkowski D. Kiel T. Riedl V. Kohl P. Rohrer G. Pientka J. Berger S. Thul A. Maurer M. Preibisch C. Zimmer C. Mashour G.A. Kochs E.F. Jordan D. Ilg R. Neural correlates of sevoflurane-induced unconsciousness identified by simultaneous functional magnetic resonance imaging and electroencephalography. Anesthesiology 2016 125 5 861 872 10.1097/ALN.0000000000001322 27617689
    [Google Scholar]
  14. Vlisides P.E. Bel-Bahar T. Lee U. Li D. Kim H. Janke E. Tarnal V. Pichurko A.B. McKinney A.M. Kunkler B.S. Picton P. Mashour G.A. Neurophysiologic correlates of ketamine sedation and anesthesia. Anesthesiology 2017 127 1 58 69 10.1097/ALN.0000000000001671 28486269
    [Google Scholar]
  15. Uhrig L. Sitt J.D. Jacob A. Tasserie J. Barttfeld P. Dupont M. Dehaene S. Jarraya B. Resting-state dynamics as a cortical signature of anesthesia in monkeys. Anesthesiology 2018 129 5 942 958 10.1097/ALN.0000000000002336 30028727
    [Google Scholar]
  16. Hemmings H.C. Riegelhaupt P.M. Kelz M.B. Solt K. Eckenhoff R.G. Orser B.A. Goldstein P.A. Towards a comprehensive understanding of anesthetic mechanisms of action: A decade of discovery. Trends Pharmacol. Sci. 2019 40 7 464 481 10.1016/j.tips.2019.05.001 31147199
    [Google Scholar]
  17. Zhou H. Xie Z. Brambrink A.M. Yang G. Behavioural impairments after exposure of neonatal mice to propofol are accompanied by reductions in neuronal activity in cortical circuitry. Br. J. Anaesth. 2021 126 6 1141 1156 10.1016/j.bja.2021.01.017 33641936
    [Google Scholar]
  18. Kelz M.B. Mashour G.A. The biology of general anesthesia from paramecium to primate. Curr. Biol. 2019 29 22 R1199 R1210 10.1016/j.cub.2019.09.071 31743680
    [Google Scholar]
  19. Moody O.A. Zhang E.R. Vincent K.F. Kato R. Melonakos E.D. Nehs C.J. Solt K. The neural circuits underlying general anesthesia and sleep. Anesth. Analg. 2021 132 5 1254 1264 10.1213/ANE.0000000000005361 33857967
    [Google Scholar]
  20. Hu Y. Wang Y. Zhang L. Luo M. Wang Y. Neural network mechanisms underlying general anesthesia: Cortical and subcortical nuclei. Neurosci. Bull. 2024 40 12 1995 2011 10.1007/s12264‑024‑01286‑z 39168960
    [Google Scholar]
  21. Scharf M.T. Kelz M.B. Sleep and anesthesia interactions: A pharmacological appraisal. Curr. Anesthesiol. Rep. 2013 3 1 1 9 10.1007/s40140‑012‑0007‑0 23440738
    [Google Scholar]
  22. Vazey E.M. Aston-Jones G. Designer receptor manipulations reveal a role of the locus coeruleus noradrenergic system in isoflurane general anesthesia. Proc. Natl. Acad. Sci. USA 2014 111 10 3859 3864 10.1073/pnas.1310025111 24567395
    [Google Scholar]
  23. Ao Y. Yang B. Zhang C. Wu B. Zhang X. Xing D. Xu H. Locus coeruleus to paraventricular thalamus projections facilitate emergence from isoflurane anesthesia in mice. Front. Pharmacol. 2021 12 643172 10.3389/fphar.2021.643172 33986675
    [Google Scholar]
  24. Vanini G. Watson C.J. Lydic R. Baghdoyan H.A. γ-aminobutyric acid-mediated neurotransmission in the pontine reticular formation modulates hypnosis, immobility, and breathing during isoflurane anesthesia. Anesthesiology 2008 109 6 978 988 10.1097/ALN.0b013e31818e3b1b 19034094
    [Google Scholar]
  25. Liu C. Zhou X. Zhu Q. Fu B. Cao S. Zhang Y. Zhang L. Zhang Y. Yu T. Dopamine neurons in the ventral periaqueductal gray modulate isoflurane anesthesia in rats. CNS Neurosci. Ther. 2020 26 11 1121 1133 10.1111/cns.13447 32881314
    [Google Scholar]
  26. Zhang K. Pan J. Yu Y. Regulation of neural circuitry under general anesthesia: New methods and findings. Biomolecules 2022 12 7 898 10.3390/biom12070898 35883456
    [Google Scholar]
  27. Yin L. Li L. Deng J. Wang D. Guo Y. Zhang X. Li H. Zhao S. Zhong H. Dong H. Optogenetic/chemogenetic activation of gabaergic neurons in the ventral tegmental area facilitates general anesthesia via projections to the lateral hypothalamus in mice. Front. Neural Circuits 2019 13 73 10.3389/fncir.2019.00073 31798420
    [Google Scholar]
  28. Zhou X. Wang Y. Zhang C. Wang M. Zhang M. Yu L. Yan M. The role of dopaminergic vta neurons in general anesthesia. PLoS One 2015 10 9 0138187 10.1371/journal.pone.0138187 26398236
    [Google Scholar]
  29. Li A. Li R. Ouyang P. Li H. Wang S. Zhang X. Wang D. Ran M. Zhao G. Yang Q. Zhu Z. Dong H. Zhang H. Dorsal raphe serotonergic neurons promote arousal from isoflurane anesthesia. CNS Neurosci. Ther. 2021 27 8 941 950 10.1111/cns.13656 33973716
    [Google Scholar]
  30. Luo T.Y. Cai S. Qin Z.X. Yang S.C. Shu Y. Liu C.X. Zhang Y. Zhang L. Zhou L. Yu T. Yu S.Y. Basal forebrain cholinergic activity modulates isoflurane and propofol anesthesia. Front. Neurosci. 2020 14 559077 10.3389/fnins.2020.559077 33192246
    [Google Scholar]
  31. Cai S. Tang A.C. Luo T.Y. Yang S.C. Yang H. Liu C.X. Shu Y. Pan Y.C. Zhang Y. Zhou L. Yu T. Yu S.Y. Effect of basal forebrain somatostatin and parvalbumin neurons in propofol and isoflurane anesthesia. CNS Neurosci. Ther. 2021 27 7 792 804 10.1111/cns.13635 33764684
    [Google Scholar]
  32. Lin J. Cheng X. Wang H. Du L. Li X. Zhao G. Xie C. Activation of astrocytes in the basal forebrain in mice facilitates isoflurane-induced loss of consciousness and prolongs recovery. BMC Anesthesiol. 2023 23 1 213 10.1186/s12871‑023‑02166‑1 37340348
    [Google Scholar]
  33. Gao H. Wang J. Zhang R. Luo T. Recent advances in neural mechanism of general anesthesia induced unconsciousness: Insights from optogenetics and chemogenetics. Front. Pharmacol. 2024 15 1360864 10.3389/fphar.2024.1360864 38655183
    [Google Scholar]
  34. Scammell T.E. Arrigoni E. Lipton J.O. Neural Circuitry of Wakefulness and Sleep. Neuron 2017 93 4 747 765 10.1016/j.neuron.2017.01.014 28231463
    [Google Scholar]
  35. Luo T. Yu S. Cai S. Zhang Y. Jiao Y. Yu T. Yu W. Parabrachial neurons promote behavior and electroencephalographic arousal from general anesthesia. Front. Mol. Neurosci. 2018 11 420 10.3389/fnmol.2018.00420 30564094
    [Google Scholar]
  36. Moore J.T. Chen J. Han B. Meng Q.C. Veasey S.C. Beck S.G. Kelz M.B. Direct activation of sleep-promoting VLPO neurons by volatile anesthetics contributes to anesthetic hypnosis. Curr. Biol. 2012 22 21 2008 2016 10.1016/j.cub.2012.08.042 23103189
    [Google Scholar]
  37. Mashour G.A. Top-down mechanisms of anesthetic-induced unconsciousness. Front. Syst. Neurosci. 2014 8 115 10.3389/fnsys.2014.00115 25002838
    [Google Scholar]
  38. McCarren H.S. Chalifoux M.R. Han B. Moore J.T. Meng Q.C. Baron-Hionis N. Sedigh-Sarvestani M. Contreras D. Beck S.G. Kelz M.B. α2-Adrenergic stimulation of the ventrolateral preoptic nucleus destabilizes the anesthetic state. J. Neurosci. 2014 34 49 16385 16396 10.1523/JNEUROSCI.1135‑14.2014 25471576
    [Google Scholar]
  39. Chung S. Weber F. Zhong P. Tan C.L. Nguyen T.N. Beier K.T. Hörmann N. Chang W.C. Zhang Z. Do J.P. Yao S. Krashes M.J. Tasic B. Cetin A. Zeng H. Knight Z.A. Luo L. Dan Y. Identification of preoptic sleep neurons using retrograde labelling and gene profiling. Nature 2017 545 7655 477 481 10.1038/nature22350 28514446
    [Google Scholar]
  40. Luo T. Leung L.S. Involvement of tuberomamillary histaminergic neurons in isoflurane anesthesia. Anesthesiology 2011 115 1 36 43 10.1097/ALN.0b013e3182207655 21562401
    [Google Scholar]
  41. Yin J. Qin J. Lin Z. Li A. Liu D. Jiang Y. Zhao Q. Chen L. Liu C. Glutamatergic neurons in the paraventricular hypothalamic nucleus regulate isoflurane anesthesia in mice. FASEB J. 2023 37 3 22762 10.1096/fj.202200974RR 36719765
    [Google Scholar]
  42. Xu Z. Hu S.W. Zhou Y. Guo Q. Wang D. Gao Y.H. Zhao W.N. Tang H.M. Yang J.X. Yu X. Ding H.L. Cao J.L. Corticotropin-releasing factor neurones in the paraventricular nucleus of the hypothalamus modulate isoflurane anaesthesia and its responses to acute stress in mice. Br. J. Anaesth. 2023 130 4 446 458 10.1016/j.bja.2022.12.020 36737387
    [Google Scholar]
  43. Liu C. Liu J. Zhou L. He H. Zhang Y. Cai S. Yuan C. Luo T. Zheng J. Yu T. Zhang M. Lateral habenula glutamatergic neurons modulate isoflurane anesthesia in mice. Front. Mol. Neurosci. 2021 14 628996 10.3389/fnmol.2021.628996 33746711
    [Google Scholar]
  44. Jiang-Xie L.F. Yin L. Zhao S. Prevosto V. Han B.X. Dzirasa K. Wang F. A common neuroendocrine substrate for diverse general anesthetics and sleep. Neuron 2019 102 5 1053 1065.e4 10.1016/j.neuron.2019.03.033 31006556
    [Google Scholar]
  45. Yi R. Chen S. Zhong F. Luo D. You Y. Yu T. Wang H. Zhou L. Zhang Y. GABAergic neurons of anterior thalamic reticular nucleus regulate states of consciousness in propofol‐ and isoflurane‐mediated general anesthesia. CNS Neurosci. Ther. 2024 30 6 14782 10.1111/cns.14782 38828651
    [Google Scholar]
  46. Ren S. Wang Y. Yue F. Cheng X. Dang R. Qiao Q. Sun X. Li X. Jiang Q. Yao J. Qin H. Wang G. Liao X. Gao D. Xia J. Zhang J. Hu B. Yan J. Wang Y. Xu M. Han Y. Tang X. Chen X. He C. Hu Z. The paraventricular thalamus is a critical thalamic area for wakefulness. Science 2018 362 6413 429 434 10.1126/science.aat2512 30361367
    [Google Scholar]
  47. Yang D. Yang X.J. Shao C. Yang K. Isoflurane decreases substantia gelatinosa neuron excitability and synaptic transmission from periphery in the rat spinal dorsal horn. Neuroreport 2021 32 2 77 81 10.1097/WNR.0000000000001557 33323835
    [Google Scholar]
  48. Wang X. Yi R. Liang X. Zhang N. Zhong F. Lu Y. Chen W. Yu T. Zhang L. Wang H. Zhou L. Myelin modulates the process of isoflurane anesthesia through the regulation of neural activity. CNS Neurosci. Ther. 2024 30 8 14922 10.1111/cns.14922 39138640
    [Google Scholar]
  49. Taylor N.E. Van Dort C.J. Kenny J.D. Pei J. Guidera J.A. Vlasov K.Y. Lee J.T. Boyden E.S. Brown E.N. Solt K. Optogenetic activation of dopamine neurons in the ventral tegmental area induces reanimation from general anesthesia. Proc. Natl. Acad. Sci. USA 2016 113 45 12826 12831 10.1073/pnas.1614340113 27791160
    [Google Scholar]
  50. Ross S. Peselow E. The neurobiology of addictive disorders. Clin. Neuropharmacol. 2009 32 5 269 276 10.1097/WNF.0b013e3181a9163c 19834992
    [Google Scholar]
  51. Gui H. Liu C. He H. Zhang J. Chen H. Zhang Y. Dopaminergic projections from the ventral tegmental area to the nucleus accumbens modulate sevoflurane anesthesia in mice. Front. Cell. Neurosci. 2021 15 671473 10.3389/fncel.2021.671473 33994950
    [Google Scholar]
  52. Song Y. Chu R. Cao F. Wang Y. Liu Y. Cao J. Guo Y. Mi W. Tong L. Dopaminergic neurons in the ventral tegmental-prelimbic pathway promote the emergence of rats from sevoflurane anesthesia. Neurosci. Bull. 2022 38 4 417 428 10.1007/s12264‑021‑00809‑2 34954810
    [Google Scholar]
  53. Leung L.S. Dopamine in the ventral tegmental area facilitates emergence from general anesthesia. Ann. Transl. Med. 2017 5 4 86 10.21037/atm.2017.01.61 28275631
    [Google Scholar]
  54. Vlasov K. Pei J. Nehs C.J. Guidera J.A. Zhang E.R. Kenny J.D. Houle T.T. Brenner G.J. Taylor N.E. Solt K. Activation of GABAergic neurons in the rostromedial tegmental nucleus and other brainstem regions promotes sedation and facilitates sevoflurane anesthesia in mice. Anesth. Analg. 2021 132 4 e50 e55 10.1213/ANE.0000000000005387 33560660
    [Google Scholar]
  55. Li J. Hu R. Tan W. Li J. Huang W. Wang Z. Activation of glutamatergic neurones in the pedunculopontine tegmental nucleus promotes cortical activation and behavioural emergence from sevoflurane-induced unconsciousness in mice. Br. J. Anaesth. 2024 132 2 320 333 10.1016/j.bja.2023.08.033 37953203
    [Google Scholar]
  56. Bao W.W. Xu W. Pan G.J. Wang T.X. Han Y. Qu W.M. Li W.X. Huang Z.L. Nucleus accumbens neurons expressing dopamine D1 receptors modulate states of consciousness in sevoflurane anesthesia. Curr. Biol. 2021 31 9 1893 1902.e5 10.1016/j.cub.2021.02.011
    [Google Scholar]
  57. Zhang J. Peng Y. Liu C. Zhang Y. Liang X. Yuan C. Shi W. Zhang Y. Dopamine D1 ‐receptor‐expressing pathway from the nucleus accumbens to ventral pallidum‐mediated sevoflurane anesthesia in mice. CNS Neurosci. Ther. 2023 29 11 3364 3377 10.1111/cns.14267 37208941
    [Google Scholar]
  58. Niu L. Hao M. Wang Y. Wu K. Yuan C. Zhang Y. Zhang J. Liang X. Zhang Y. Dopamine D2-receptor neurons in nucleus accumbens regulate sevoflurane anesthesia in mice. Front. Mol. Neurosci. 2023 16 1287160 10.3389/fnmol.2023.1287160 38089676
    [Google Scholar]
  59. Yang L. Fang F. Wang W.X. Xie Y. Cang J. Li S.B. Substantia innominata glutamatergic neurons modulate sevoflurane anesthesia in male mice. Anesth. Analg. 2025 140 2 353 365 10.1213/ANE.0000000000007092 39008422
    [Google Scholar]
  60. Zhang Y. Li H. Zhang X. Wang S. Wang D. Wang J. Tong T. Zhang Z. Yang Q. Dong H. Estrogen receptor-a in medial preoptic area contributes to sex difference of mice in response to sevoflurane anesthesia. Neurosci. Bull. 2022 38 7 703 719 10.1007/s12264‑022‑00825‑w 35175557
    [Google Scholar]
  61. Xia J.M. Fan B.Q. Yi X.W. Ni W.W. Zhou Y. Chen D.D. Yi W.J. Feng L.L. Xia Y. Li S.S. Qu W.M. Han Y. Huang Z.L. Li W.X. Medial septal glutamatergic neurons modulate states of consciousness during sevoflurane anesthesia in mice. Anesthesiology 2024 140 1 102 115 10.1097/ALN.0000000000004798 37812765
    [Google Scholar]
  62. Liu J. Liu X. Zhou W.Y. Gan J. Wang J. Zhang Q. Li J.L. Shen Z.S. Zhang Y.Y. Tang Q.Y. Zhang Z. The activation of GABAergic neurons in the hypothalamic tuberomammillary nucleus attenuates sevoflurane and propofol-induced anesthesia in mice. Front. Pharmacol. 2023 14 1153735 10.3389/fphar.2023.1153735 37426823
    [Google Scholar]
  63. Wang Y. Song Y. Tong L. Wang L. Cao J. Qin G. Liu X. Mi W. Wang E. Guo Y. GABAergic neurons in the dorsomedial hypothalamus regulate states of consciousness in sevoflurane anesthesia. iScience 2023 26 1 105913 10.1016/j.isci.2022.105913 36686391
    [Google Scholar]
  64. Clark S.D. Duangdao D.M. Schulz S. Zhang L. Liu X. Xu Y.L. Reinscheid R.K. Anatomical characterization of the neuropeptide S system in the mouse brain by in situ hybridization and immunohistochemistry. J. Comp. Neurol. 2011 519 10 1867 1893 10.1002/cne.22606 21452235
    [Google Scholar]
  65. Kaur S. Pedersen N.P. Yokota S. Hur E.E. Fuller P.M. Lazarus M. Chamberlin N.L. Saper C.B. Glutamatergic signaling from the parabrachial nucleus plays a critical role in hypercapnic arousal. J. Neurosci. 2013 33 18 7627 7640 10.1523/JNEUROSCI.0173‑13.2013 23637157
    [Google Scholar]
  66. Xu W. Wang L. Yuan X.S. Wang T.X. Li W.X. Qu W.M. Hong Z.Y. Huang Z.L. Sevoflurane depresses neurons in the medial parabrachial nucleus by potentiating postsynaptic GABAA receptors and background potassium channels. Neuropharmacology 2020 181 108249 10.1016/j.neuropharm.2020.108249 32931816
    [Google Scholar]
  67. Wang T.X. Xiong B. Xu W. Wei H.H. Qu W.M. Hong Z.Y. Huang Z.L. Activation of parabrachial nucleus glutamatergic neurons accelerates reanimation from sevoflurane anesthesia in mice. Anesthesiology 2019 130 1 106 118 10.1097/ALN.0000000000002475 30325744
    [Google Scholar]
  68. Li J. Zhu Q. Xiang J. Wei Y. Zhang D. Involvement of the parabrachial nucleus in emergence from general anesthesia. Front. Neurosci. 2024 18 1500353 10.3389/fnins.2024.1500353 39723422
    [Google Scholar]
  69. Li J.Y. Gao S.J. Li R.R. Wang W. Sun J. Zhang L.Q. Wu J.Y. Liu D.Q. Zhang P. Tian B. Mei W. A neural circuit from the paraventricular thalamus to the bed nucleus of the stria terminalis for the regulation of states of consciousness during sevoflurane anesthesia in mice. Anesthesiology 2022 136 5 709 731 10.1097/ALN.0000000000004195 35263424
    [Google Scholar]
  70. Cao F. Guo Y. Guo S. Zhou Z. Cao J. Tong L. Mi W. Activation of GABAergic neurons in the zona incerta accelerates anesthesia induction with sevoflurane and propofol without affecting anesthesia maintenance or awakening in mice. Nan Fang Yi Ke Da Xue Xue Bao 2023 43 5 718 726 10.12122/j.issn.1673‑4254.2023.05.06 37313812
    [Google Scholar]
  71. Zhou L. Ran Q. Yi R. Tang H. Zhang Y. Yu T. Glutamatergic neurons of piriform cortex delay induction of inhalational general anesthesia. Fundamental Research 2024 4 4 829 840 10.1016/j.fmre.2022.12.014 39156577
    [Google Scholar]
  72. Yang Y. Qiu J. Liu J. Zhang D. Ou M. Huang H. Liang P. Zhu T. Zhou C. Sodium leak channels in the central amygdala modulate the analgesic potency of volatile anaesthetics in mice. Br. J. Anaesth. 2024 133 5 983 997 10.1016/j.bja.2024.06.049 39322470
    [Google Scholar]
  73. Lu J. Nelson L.E. Franks N. Maze M. Chamberlin N.L. Saper C.B. Role of endogenous sleep‐wake and analgesic systems in anesthesia. J. Comp. Neurol. 2008 508 4 648 662 10.1002/cne.21685 18383504
    [Google Scholar]
  74. Yue X.F. Wang A.Z. Hou Y.P. Fan K. Effects of propofol on sleep architecture and sleep-wake systems in rats. Behav. Brain Res. 2021 411 113380 10.1016/j.bbr.2021.113380 34033853
    [Google Scholar]
  75. Zecharia A.Y. Nelson L.E. Gent T.C. Schumacher M. Jurd R. Rudolph U. Brickley S.G. Maze M. Franks N.P. The involvement of hypothalamic sleep pathways in general anesthesia: Testing the hypothesis using the GABAA receptor β3N265M knock-in mouse. J. Neurosci. 2009 29 7 2177 2187 10.1523/JNEUROSCI.4997‑08.2009 19228970
    [Google Scholar]
  76. Du W. Zhang R. Li J. Zhang B. Peng X. Cao S. Yuan J. Yuan C. Yu T. Du J. The locus coeruleus modulates intravenous general anesthesia of zebrafish via a cooperative mechanism. Cell Rep. 2018 24 12 3146 3155.e3 10.1016/j.celrep.2018.08.046 30231998
    [Google Scholar]
  77. Vanini G. Nemanis K. Baghdoyan H.A. Lydic R. GABA ergic transmission in rat pontine reticular formation regulates the induction phase of anesthesia and modulates hyperalgesia caused by sleep deprivation. Eur. J. Neurosci. 2014 40 1 2264 2273 10.1111/ejn.12571 24674578
    [Google Scholar]
  78. Minert A. Yatziv S.L. Devor M. Location of the mesopontine neurons responsible for maintenance of anesthetic loss of consciousness. J. Neurosci. 2017 37 38 9320 9331 10.1523/JNEUROSCI.0544‑17.2017 28821646
    [Google Scholar]
  79. Baron M. Vaso K. Ibraheem A. Minert A. Devor M. Molecular and cellular targets of GABAergic anesthetics in the mesopontine tegmentum that enable pain-free surgery. Pain 2025 166 7 1549 1564 10.1097/j.pain.0000000000003504 39792547
    [Google Scholar]
  80. Minert A. Baron M. Devor M. Reduced sensitivity to anesthetic agents upon lesioning the mesopontine tegmental anesthesia area in rats depends on anesthetic type. Anesthesiology 2020 132 3 535 550 10.1097/ALN.0000000000003087 31850942
    [Google Scholar]
  81. Laalou F.Z. de Vasconcelos A.P. Oberling P. Jeltsch H. Cassel J.C. Pain L. Involvement of the basal cholinergic forebrain in the mediation of general (propofol) anesthesia. Anesthesiology 2008 108 5 888 896 10.1097/ALN.0b013e31816d919b 18431125
    [Google Scholar]
  82. Wang L. Zhang W. Wu Y. Gao Y. Sun N. Ding H. Ren J. Yu L. Wang L. Yang F. Xi W. Yan M. Cholinergic-induced specific oscillations in the medial prefrontal cortex to reverse propofol anesthesia. Front. Neurosci. 2021 15 664410 10.3389/fnins.2021.664410 34121993
    [Google Scholar]
  83. Liu C. Shi F. Fu B. Luo T. Zhang L. Zhang Y. Zhang Y. Yu S. Yu T. GABAA receptors in the basal forebrain mediates emergence from propofol anaesthesia in rats. Int. J. Neurosci. 2022 132 8 802 814 10.1080/00207454.2020.1840375 33174773
    [Google Scholar]
  84. Zhang Y. Gui H. Duan Z. Yu T. Zhang J. Liang X. Liu C. Dopamine D1 receptor in the nucleus accumbens modulates the emergence from propofol anesthesia in rat. Neurochem. Res. 2021 46 6 1435 1446 10.1007/s11064‑021‑03284‑3 33683630
    [Google Scholar]
  85. Li J. Yu T. Shi F. Zhang Y. Duan Z. Fu B. Zhang Y. Involvement of ventral periaqueductal gray dopaminergic neurons in propofol anesthesia. Neurochem. Res. 2018 43 4 838 847 10.1007/s11064‑018‑2486‑y 29417470
    [Google Scholar]
  86. Boveroux P. Vanhaudenhuyse A. Bruno M.A. Noirhomme Q. Lauwick S. Luxen A. Degueldre C. Plenevaux A. Schnakers C. Phillips C. Brichant J.F. Bonhomme V. Maquet P. Greicius M.D. Laureys S. Boly M. Breakdown of within- and between-network resting state functional magnetic resonance imaging connectivity during propofol-induced loss of consciousness. Anesthesiology 2010 113 5 1038 1053 10.1097/ALN.0b013e3181f697f5 20885292
    [Google Scholar]
  87. Yuan J. Luo Z. Zhang Y. Zhang Y. Wang Y. Cao S. Fu B. Yang H. Zhang L. Zhou W. Yu T. GABAergic ventrolateral pre-optic nucleus neurons are involved in the mediation of the anesthetic hypnosis induced by propofol. Mol. Med. Rep. 2017 16 3 3179 3186 10.3892/mmr.2017.7035 28765955
    [Google Scholar]
  88. Zhang Y. Yu T. Liu Y. Qian K. Yu B.W. Muscarinic M1 receptors regulate propofol modulation of GABAergic transmission in rat ventrolateral preoptic neurons. J. Mol. Neurosci. 2015 55 4 830 835 10.1007/s12031‑014‑0435‑z 25294312
    [Google Scholar]
  89. Yang X. Zhu S. Xia M. Sun L. Li S. Xiang P. Li F. Deng Q. Chen L. Zhang W. Wang Y. Li Q. Lyu Z. Du X. Du J. Yang Q. Luo Y. The serotonergic dorsal raphe promotes emergence from propofol anesthesia in zebrafish. J. Neurosci. 2025 45 15 2125232025 10.1523/JNEUROSCI.2125‑23.2025 39947921
    [Google Scholar]
  90. Zhang Y. Yu T. Yuan J. Yu B.W. The ventrolateral preoptic nucleus is required for propofol-induced inhibition of locus coeruleus neuronal activity. Neurol. Sci. 2015 36 12 2177 2184 10.1007/s10072‑015‑2292‑0 26306695
    [Google Scholar]
  91. Zhang L.N. Li Z.J. Tong L. Guo C. Niu J.Y. Hou W.G. Dong H.L. Orexin-A facilitates emergence from propofol anesthesia in the rat. Anesth. Analg. 2012 115 4 789 796 10.1213/ANE.0b013e3182645ea3 22798527
    [Google Scholar]
  92. Yang Q. Zhou F. Li A. Dong H. Neural substrates for the regulation of sleep and general anesthesia. Curr. Neuropharmacol. 2022 20 1 72 84 10.2174/1570159X19666211214144639 34906058
    [Google Scholar]
  93. Huang Y. Xiao Y. Li L. Feng X. Ding W. Cai F. Propofol-induced anesthesia involves the direct inhibition of glutamatergic neurons in the lateral hypothalamus. Front. Neurosci. 2024 18 1327293 10.3389/fnins.2024.1327293 38282977
    [Google Scholar]
  94. Shirasaka T. Yoshimura Y. Qiu D.L. Takasaki M. The effects of propofol on hypothalamic paraventricular nucleus neurons in the rat. Anesth. Analg. 2004 98 4 1017 1023 10.1213/01.ANE.0000107960.89818.35 15041591
    [Google Scholar]
  95. Gelegen C. Miracca G. Ran M.Z. Harding E.C. Ye Z. Yu X. Tossell K. Houston C.M. Yustos R. Hawkins E.D. Vyssotski A.L. Dong H.L. Wisden W. Franks N.P. Excitatory pathways from the lateral habenula enable propofol-induced sedation. Curr. Biol. 2018 28 4 580 587.e5 10.1016/j.cub.2017.12.050 29398217
    [Google Scholar]
  96. Wang Y.L. Wang L. Xu W. He M. Dong H. Shi H.Y. Chen Y.Q. Huang Z.L. Paraventricular thalamus controls consciousness transitions during propofol anaesthesia in mice. Br. J. Anaesth. 2023 130 6 698 708 10.1016/j.bja.2023.01.016 36828739
    [Google Scholar]
  97. Qin C. Gao J. Fu B. Glutamatergic neurons in paraventricular nucleus of the thalamus promote wakefulness during propofol anesthesia. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue 2025 37 2 140 145 10.3760/cma.j.cn121430‑20241017‑00850 40017361
    [Google Scholar]
  98. Zhang Y. Li Z. Dong H. Yu T. Effects of general anesthesia with propofol on thalamocortical sensory processing in rats. J. Pharmacol. Sci. 2014 126 4 370 381 10.1254/jphs.14153FP 25427432
    [Google Scholar]
  99. Baker R. Gent T.C. Yang Q. Parker S. Vyssotski A.L. Wisden W. Brickley S.G. Franks N.P. Altered activity in the central medial thalamus precedes changes in the neocortex during transitions into both sleep and propofol anesthesia. J. Neurosci. 2014 34 40 13326 13335 10.1523/JNEUROSCI.1519‑14.2014 25274812
    [Google Scholar]
  100. Fu B. Yu T. Yuan J. Gong X. Zhang M. Noradrenergic transmission in the central medial thalamic nucleus modulates the electroencephalographic activity and emergence from propofol anesthesia in rats. J. Neurochem. 2017 140 6 862 873 10.1111/jnc.13939 28092095
    [Google Scholar]
  101. Ching S. Cimenser A. Purdon P.L. Brown E.N. Kopell N.J. Thalamocortical model for a propofol-induced α-rhythm associated with loss of consciousness. Proc. Natl. Acad. Sci. USA 2010 107 52 22665 22670 10.1073/pnas.1017069108 21149695
    [Google Scholar]
  102. Xie G. Deschamps A. Backman S.B. Fiset P. Chartrand D. Dagher A. Plourde G. Critical involvement of the thalamus and precuneus during restoration of consciousness with physostigmine in humans during propofol anaesthesia: A positron emission tomography study. Br. J. Anaesth. 2011 106 4 548 557 10.1093/bja/aeq415 21285081
    [Google Scholar]
  103. Leon-Dominguez U. Izzetoglu M. Leon-Carrion J. Solís-Marcos I. Garcia-Torrado F.J. Forastero-Rodríguez A. Mellado-Miras P. Villegas-Duque D. Lopez-Romero J.L. Onaral B. Izzetoglu K. Molecular concentration of deoxyHb in human prefrontal cortex predicts the emergence and suppression of consciousness. Neuroimage 2014 85 Pt 1 616 625 10.1016/j.neuroimage.2013.07.023 23872157
    [Google Scholar]
  104. Wang Y. Yu T. Yuan C. Yuan J. Luo Z. Pan Y. Zhang Y. Zhang Y. Yu B. Effects of propofol on the dopamine, metabolites and GABAA receptors in media prefrontal cortex in freely moving rats. Am. J. Transl. Res. 2016 8 5 2301 2308 27347337
    [Google Scholar]
  105. Patel S. Wohlfeil E.R. Rademacher D.J. Carrier E.J. Perry L.J. Kundu A. Falck J.R. Nithipatikom K. Campbell W.B. Hillard C.J. The general anesthetic propofol increases brain N ‐arachidonylethanolamine (anandamide) content and inhibits fatty acid amide hydrolase. Br. J. Pharmacol. 2003 139 5 1005 1013 10.1038/sj.bjp.0705334 12839875
    [Google Scholar]
  106. Zhong H. Tong L. Gu N. Gao F. Lu Y. Xie R. Liu J. Li X. Bergeron R. Pomeranz L.E. Mackie K. Wang F. Luo C.X. Ren Y. Wu S.X. Xie Z. Xu L. Li J. Dong H. Xiong L. Zhang X. Endocannabinoid signaling in hypothalamic circuits regulates arousal from general anesthesia in mice. J. Clin. Invest. 2017 127 6 2295 2309 10.1172/JCI91038 28463228
    [Google Scholar]
  107. Wang Y. Wu J. Lin Q. Nauta H.J. Yue Y. Fang L. Effects of general anesthetics on visceral pain transmission in the spinal cord. Mol. Pain 2008 4 1744-8069-4-50 10.1186/1744‑8069‑4‑50 18973669
    [Google Scholar]
  108. Hu Y. Du W. Qi J. Luo H. Zhang Z. Luo M. Wang Y. Comparative brain-wide mapping of ketamine- and isoflurane-activated nuclei and functional networks in the mouse brain. eLife 2024 12 RP88420 10.7554/eLife.88420 38512722
    [Google Scholar]
  109. Chen X. Shu S. Bayliss D.A. HCN1 channel subunits are a molecular substrate for hypnotic actions of ketamine. J. Neurosci. 2009 29 3 600 609 10.1523/JNEUROSCI.3481‑08.2009 19158287
    [Google Scholar]
  110. Tose R. Kushikata T. Yoshida H. Kudo M. Furukawa K. Ueno S. Hirota K. Orexin A decreases ketamine-induced anesthesia time in the rat: The relevance to brain noradrenergic neuronal activity. Anesth. Analg. 2009 108 2 491 495 10.1213/ane.0b013e31819000c8 19151277
    [Google Scholar]
  111. Akeju O. Brown E.N. Neural oscillations demonstrate that general anesthesia and sedative states are neurophysiologically distinct from sleep. Curr. Opin. Neurobiol. 2017 44 178 185 10.1016/j.conb.2017.04.011 28544930
    [Google Scholar]
  112. Suzuki M. Larkum M.E. General anesthesia decouples cortical pyramidal neurons. Cell 2020 180 4 666 676.e13 10.1016/j.cell.2020.01.024 32084339
    [Google Scholar]
  113. Fu B. Liu C. Zhang Y. Fu X. Zhang L. Yu T. Ketamine attenuates the glutamatergic neurotransmission in the ventral posteromedial nucleus slices of rats. BMC Anesthesiol. 2017 17 1 111 10.1186/s12871‑017‑0404‑5 28835217
    [Google Scholar]
  114. Yuan C. Zhang Y. Zhang Y. Cao S. Wang Y. Fu B. Yu T. Effects of ketamine on neuronal spontaneous excitatory postsynaptic currents and miniature excitatory postsynaptic currents in the somatosensory cortex of rats. Iran. J. Med. Sci. 2016 41 4 275 282 27365548
    [Google Scholar]
  115. Dinis-Oliveira R.J. Metabolism and metabolomics of ketamine: A toxicological approach. Forensic Sci. Res. 2017 2 1 2 10 10.1080/20961790.2017.1285219 30483613
    [Google Scholar]
  116. Duan W.Y. Peng K. Qin H.M. Li B.M. Xu Y.X. Wang D.J. Yu L. Wang H. Hu J. Wang Q.X. Esketamine accelerates emergence from isoflurane general anaesthesia by activating the paraventricular thalamus glutamatergic neurones in mice. Br. J. Anaesth. 2024 132 2 334 342 10.1016/j.bja.2023.10.038 38044237
    [Google Scholar]
  117. Mashour G.A. Ketamine and the paradox of anaesthetic state transitions. Br. J. Anaesth. 2024 132 2 224 226 10.1016/j.bja.2023.11.030 38092601
    [Google Scholar]
  118. Yu X. Franks N.P. Wisden W. Sleep and sedative states induced by targeting the histamine and noradrenergic systems. Front. Neural Circuits 2018 12 4 10.3389/fncir.2018.00004 29434539
    [Google Scholar]
  119. Zhang Z. Ferretti V. Güntan İ. Moro A. Steinberg E.A. Ye Z. Zecharia A.Y. Yu X. Vyssotski A.L. Brickley S.G. Yustos R. Pillidge Z.E. Harding E.C. Wisden W. Franks N.P. Neuronal ensembles sufficient for recovery sleep and the sedative actions of α2 adrenergic agonists. Nat. Neurosci. 2015 18 4 553 561 10.1038/nn.3957 25706476
    [Google Scholar]
  120. Qiu G. Wu Y. Yang Z. Li L. Zhu X. Wang Y. Sun W. Dong H. Li Y. Hu J. Dexmedetomidine activation of dopamine neurons in the ventral tegmental area attenuates the depth of sedation in mice. Anesthesiology 2020 133 2 377 392 10.1097/ALN.0000000000003347 32412932
    [Google Scholar]
  121. Vacas S. Kurien P. Maze M. Sleep and anesthesia. Sleep Med. Clin. 2013 8 1 1 9 10.1016/j.jsmc.2012.11.009 28747855
    [Google Scholar]
  122. Akeju O. Loggia M.L. Catana C. Pavone K.J. Vazquez R. Rhee J. Contreras Ramirez V. Chonde D.B. Izquierdo-Garcia D. Arabasz G. Hsu S. Habeeb K. Hooker J.M. Napadow V. Brown E.N. Purdon P.L. Disruption of thalamic functional connectivity is a neural correlate of dexmedetomidine-induced unconsciousness. eLife 2014 3 04499 10.7554/eLife.04499 25432022
    [Google Scholar]
  123. Zhang L. Fan S. Zhang J. Fang K. Wang L. Cao Y. Chen L. Liu X. Gu E. Electroencephalographic dynamics of etomidate‐induced loss of consciousness. BMC Anesthesiol. 2021 21 1 108 10.1186/s12871‑021‑01308‑7 33832426
    [Google Scholar]
  124. Gu L. Shao W. Liu L. Xu Q. Wang Y. Gu J. Yang Y. Zhang Z. Wu Y. Shen Y. Yu Q. Lian X. Ma H. Zhang Y. Zhang H. NE contribution to rebooting unconsciousness caused by midazolam. eLife 2024 13 RP97954 10.7554/eLife.97954.3 39565190
    [Google Scholar]
  125. Muheyati A. Jiang S. Wang N. Yu G. Su R. Extrasynaptic GABAA receptors in central medial thalamus mediate anesthesia in rats. Eur. J. Pharmacol. 2024 972 176561 10.1016/j.ejphar.2024.176561 38580182
    [Google Scholar]
  126. Abulafia R. Zalkind V. Devor M. Cerebral activity during the anesthesia-like state induced by mesopontine microinjection of pentobarbital. J. Neurosci. 2009 29 21 7053 7064 10.1523/JNEUROSCI.1357‑08.2009 19474332
    [Google Scholar]
  127. Yin G. Duan K. Dong D. Du F. Guo C. Zhang C. Liu X. Sun Y. Huang T. Cui G. Cheng L. Central control of opioid-induced mechanical hypersensitivity and tolerance in mice. Neuron 2024 112 23 3897 3923.e10 10.1016/j.neuron.2024.09.014 39406237
    [Google Scholar]
  128. Golkowski D. Larroque S.K. Vanhaudenhuyse A. Plenevaux A. Boly M. Di Perri C. Ranft A. Schneider G. Laureys S. Jordan D. Bonhomme V. Ilg R. Changes in whole brain dynamics and connectivity patterns during sevoflurane- and propofol-induced unconsciousness identified by functional magnetic resonance imaging. Anesthesiology 2019 130 6 898 911 10.1097/ALN.0000000000002704 31045899
    [Google Scholar]
  129. Zhou Y. Huang S. Zhang T. Deng D. Huang L. Chen X. Deciphering consciousness: The role of corticothalamocortical interactions in general anesthesia. Pharmacol. Res. 2025 212 107593 10.1016/j.phrs.2025.107593 39788339
    [Google Scholar]
  130. Palanca B.J.A. Avidan M.S. Mashour G.A. Human neural correlates of sevoflurane-induced unconsciousness. Br. J. Anaesth. 2017 119 4 573 582 10.1093/bja/aex244 29121298
    [Google Scholar]
  131. MacDonald A.A. Naci L. MacDonald P.A. Owen A.M. Anesthesia and neuroimaging: Investigating the neural correlates of unconsciousness. Trends Cogn. Sci. 2015 19 2 100 107 10.1016/j.tics.2014.12.005 25592916
    [Google Scholar]
  132. Miao J. Tantawi M. Alizadeh M. Thalheimer S. Vedaei F. Romo V. Mohamed F.B. Wu C. Characteristic dynamic functional connectivity during sevoflurane-induced general anesthesia. Sci. Rep. 2023 13 1 21014 10.1038/s41598‑023‑43832‑1 38030651
    [Google Scholar]
  133. Banks M.I. Krause B.M. Endemann C.M. Campbell D.I. Kovach C.K. Dyken M.E. Kawasaki H. Nourski K.V. Cortical functional connectivity indexes arousal state during sleep and anesthesia. Neuroimage 2020 211 116627 10.1016/j.neuroimage.2020.116627 32045640
    [Google Scholar]
  134. Huang Z. Mashour G.A. Hudetz A.G. Propofol disrupts the functional core-matrix architecture of the thalamus in humans. Nat. Commun. 2024 15 1 7496 10.1038/s41467‑024‑51837‑1 39251579
    [Google Scholar]
  135. Chen X. Cramer S.R. Chan D.C.Y. Han X. Zhang N. Sequential deactivation across the hippocampus‐thalamus‐mpfc pathway during loss of consciousness. Adv. Sci. 2024 11 42 2406320 10.1002/advs.202406320 39248326
    [Google Scholar]
  136. Leng Y. Teng Y. Liu J. Zou X. Ou M. Zhu T. Liang P. Zhou C. The modulatory effects of anesthetics and analgesics on neurophysiological monitoring and underlying mechanisms. Curr. Neuropharmacol. 2025 ••• 23 10.2174/011570159X349119250127104107 39976041
    [Google Scholar]
  137. Luppi A.I. Golkowski D. Ranft A. Ilg R. Jordan D. Menon D.K. Stamatakis E.A. Brain network integration dynamics are associated with loss and recovery of consciousness induced by sevoflurane. Hum. Brain Mapp. 2021 42 9 2802 2822 10.1002/hbm.25405 33738899
    [Google Scholar]
  138. Jang H. Mashour G.A. Hudetz A.G. Huang Z. Measuring the dynamic balance of integration and segregation underlying consciousness, anesthesia, and sleep in humans. Nat. Commun. 2024 15 1 9164 10.1038/s41467‑024‑53299‑x 39448600
    [Google Scholar]
  139. Standage D. Areshenkoff C.N. Nashed J.Y. Hutchison R.M. Hutchison M. Heinke D. Menon R.S. Everling S. Gallivan J.P. Dynamic reconfiguration, fragmentation, and integration of whole-brain modular structure across depths of unconsciousness. Cereb. Cortex 2020 30 10 5229 5241 10.1093/cercor/bhaa085 32469053
    [Google Scholar]
  140. Nishikawa K. Roles of glutamatergic and GABAergic nervous system in hypnotic and analgesic actions of general anesthetics. Masui 2011 60 5 534 543 21626857
    [Google Scholar]
  141. Eaton M.M. Germann A.L. Arora R. Cao L.Q. Gao X. Shin D.J. Wu A. Chiara D.C. Cohen J.B. Steinbach J.H. Evers A.S. Akk G. Multiple non-equivalent interfaces mediate direct activation of gabaa receptors by propofol. Curr. Neuropharmacol. 2016 14 7 772 780 10.2174/1570159X14666160202121319 26830963
    [Google Scholar]
  142. Luo W. Duan M. Liang E. Wang S. Yuan J. The regulation of glutamatergic nervous system in sleep-wake states and general anesthesia. Brain Res. Bull. 2025 221 111220 10.1016/j.brainresbull.2025.111220 39842646
    [Google Scholar]
  143. Crone J.S. Lutkenhoff E.S. Bio B.J. Laureys S. Monti M.M. Testing proposed neuronal models of effective connectivity within the cortico-basal ganglia-thalamo-cortical loop during loss of consciousness. Cereb. Cortex 2016 27 4 bhw112 10.1093/cercor/bhw112 27114177
    [Google Scholar]
  144. Shao Y.F. Lin J.S. Hou Y.P. Paraventricular thalamus as a major thalamic structure for wake control. Neurosci. Bull. 2019 35 5 946 948 10.1007/s12264‑019‑00364‑x 30879175
    [Google Scholar]
  145. Nascimento A.I. Mar F.M. Sousa M.M. The intriguing nature of dorsal root ganglion neurons: Linking structure with polarity and function. Prog. Neurobiol. 2018 168 86 103 10.1016/j.pneurobio.2018.05.002 29729299
    [Google Scholar]
  146. Lian Y. Wu C. Liu L. Li X. Prediction of cell-cell communication patterns of dorsal root ganglion cells: Single-cell RNA sequencing data analysis. Neural Regen. Res. 2024 19 6 1367 1374 10.4103/1673‑5374.384067 37905887
    [Google Scholar]
  147. Sun M. Mao S. Wu C. Zhao X. Guo C. Hu J. Xu S. Zheng F. Zhu G. Tao H. He S. Hu J. Zhang Y. Piezo1-mediated neurogenic inflammatory cascade exacerbates ventricular remodeling after myocardial infarction. Circulation 2024 149 19 1516 1533 10.1161/CIRCULATIONAHA.123.065390 38235590
    [Google Scholar]
  148. Brown E.N. Pavone K.J. Naranjo M. Multimodal general anesthesia: Theory and practice. Anesth. Analg. 2018 127 5 1246 1258 10.1213/ANE.0000000000003668 30252709
    [Google Scholar]
  149. Kohno T. Wakai A. Ataka T. Ikoma M. Yamakura T. Baba H. Actions of midazolam on excitatory transmission in dorsal horn neurons of adult rat spinal cord. Anesthesiology 2006 104 2 338 343 10.1097/00000542‑200602000‑00020 16436854
    [Google Scholar]
/content/journals/cn/10.2174/011570159X387168250912070856
Loading
/content/journals/cn/10.2174/011570159X387168250912070856
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test