Skip to content
2000
image of A Novel Network Pharmacology Strategy for Retrieving a Key Functional Component Group and Mechanisms in the Di-Huang-Yin-Zi Treatment of Parkinson's Disease

Abstract

Introduction

Parkinson’s Disease (PD) is a common and difficult-to-cure chronic neurodegenerative disorder. Current medications often target a single pathway and can have certain side effects. In contrast, traditional Chinese medicine formulas, such as Di-Huang-Yin-Zi (DHYZ), with their multi-component and multi-target characteristics, offer potential advantages by addressing these limitations, making them worthy of in-depth study.

Methods

Components of DHYZ were collected from public databases and literature. After screening, the remaining components underwent target prediction, and the predicted component-target pairs were used to construct the complex component-target network. A novel node importance algorithm, known as the fusion model, was applied to construct an effective space from the component-target network, thereby reducing redundancy. Meanwhile, the pathological genes were extracted from DisGeNET and GeneCards to judge the quality of effective space. The effective space was compared with other widely used network parameters to validate its efficiency, and the Key Functional Compound Group (KFCG) was inferred from the effective space. Finally, the protective mechanism of DHYZ was inferred based on the KFCG and was validated in the PD model.

Results

Compared to other commonly used algorithms, the effective space identified by the fusion model more accurately represented the full spectrum of DHYZ’s targets and demonstrated stronger correlation with PD. Additionally, we utilized the component contribution ratio algorithm to identify the KFCG within the effective space. Through enrichment analysis, we hypothesized that KFCG may exert its anti-PD effects the PI3K-Akt, MAPK, and AMPK pathways and validated these mechanisms .

Discussion

Collectively, the results of this study not only deepen our understanding of the therapeutic potential of DHYZ in the treatment of PD but also enhance the clinical translatability of DHYZ through formula optimization. However, this study has certain limitations. For instance, the pathogenic genes of PD were not incorporated into the network in this study, and the use of an undirected network may offer lower biological interpretability compared to a directed network.

Conclusion

This robust and precise algorithm allowed us to optimize Di-Huang-Yin-Zi. This provided preliminary insights into its potential molecular mechanisms for treating PD, laying a foundation for the secondary development of other formulas.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X378077250822115218
2025-10-02
2025-11-08
Loading full text...

Full text loading...

References

  1. Armstrong M.J. Okun M.S. Diagnosis and treatment of parkinson disease. JAMA 2020 323 6 548 560 10.1001/jama.2019.22360 32044947
    [Google Scholar]
  2. Dorsey E.R. Elbaz A. Nichols E. Abbasi N. Abd-Allah F. Abdelalim A. Adsuar J.C. Ansha M.G. Brayne C. Choi J-Y.J. Collado-Mateo D. Dahodwala N. Do H.P. Edessa D. Endres M. Fereshtehnejad S-M. Foreman K.J. Gankpe F.G. Gupta R. Hamidi S. Hankey G.J. Hay S.I. Hegazy M.I. Hibstu D.T. Kasaeian A. Khader Y. Khalil I. Khang Y-H. Kim Y.J. Kokubo Y. Logroscino G. Massano J. Mohamed Ibrahim N. Mohammed M.A. Mohammadi A. Moradi-Lakeh M. Naghavi M. Nguyen B.T. Nirayo Y.L. Ogbo F.A. Owolabi M.O. Pereira D.M. Postma M.J. Qorbani M. Rahman M.A. Roba K.T. Safari H. Safiri S. Satpathy M. Sawhney M. Shafieesabet A. Shiferaw M.S. Smith M. Szoeke C.E.I. Tabarés-Seisdedos R. Truong N.T. Ukwaja K.N. Venketasubramanian N. Villafaina S. weldegwergs K. Westerman R. Wijeratne T. Winkler A.S. Xuan B.T. Yonemoto N. Feigin v.L. Vos T. Murray C.J.L. Global, regional, and national burden of Parkinson’s disease, 1990-2016: A systematic analysis for the global burden of disease study 2016. Lancet Neurol. 2018 17 11 939 953.GBD 2016 Parkinson’s Disease Collaborators 10.1016/S1474‑4422(18)30295‑3 30287051
    [Google Scholar]
  3. Dorsey E.R. Bloem B.R. The Parkinson pandemic—A call to action. JAMA Neurol. 2018 75 1 9 10 10.1001/jamaneurol.2017.3299 29131880
    [Google Scholar]
  4. Jankovic J. Parkinson’s disease: Clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatry 2008 79 4 368 376 10.1136/jnnp.2007.131045 18344392
    [Google Scholar]
  5. Postuma R.B. Aarsland D. Barone P. Burn D.J. Hawkes C.H. Oertel W. Ziemssen T. Identifying prodromal Parkinson’s disease: Pre‐motor disorders in Parkinson’s disease. Mov. Disord. 2012 27 5 617 626 10.1002/mds.24996 22508280
    [Google Scholar]
  6. Healy D.G. Falchi M. O’Sullivan S.S. Bonifati V. Durr A. Bressman S. Brice A. Aasly J. Zabetian C.P. Goldwurm S. Ferreira J.J. Tolosa E. Kay D.M. Klein C. Williams D.R. Marras C. Lang A.E. Wszolek Z.K. Berciano J. Schapira A.H.V. Lynch T. Bhatia K.P. Gasser T. Lees A.J. Wood N.W. Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson’s disease: A case-control study. Lancet Neurol. 2008 7 7 583 590.International LRRK2 Consortium 10.1016/S1474‑4422(08)70117‑0 18539534
    [Google Scholar]
  7. Sidransky E. Nalls M.A. Aasly J.O. Aharon-Peretz J. Annesi G. Barbosa E.R. Bar-Shira A. Berg D. Bras J. Brice A. Chen C.M. Clark L.N. Condroyer C. De Marco E.V. Dürr A. Eblan M.J. Fahn S. Farrer M.J. Fung H.C. Gan-Or Z. Gasser T. Gershoni-Baruch R. Giladi N. Griffith A. Gurevich T. Januario C. Kropp P. Lang A.E. Lee-Chen G.J. Lesage S. Marder K. Mata I.F. Mirelman A. Mitsui J. Mizuta I. Nicoletti G. Oliveira C. Ottman R. Orr-Urtreger A. Pereira L.V. Quattrone A. Rogaeva E. Rolfs A. Rosenbaum H. Rozenberg R. Samii A. Samaddar T. Schulte C. Sharma M. Singleton A. Spitz M. Tan E.K. Tayebi N. Toda T. Troiano A.R. Tsuji S. Wittstock M. Wolfsberg T.G. Wu Y.R. Zabetian C.P. Zhao Y. Ziegler S.G. Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease. N. Engl. J. Med. 2009 361 17 1651 1661 10.1056/NEJMoa0901281 19846850
    [Google Scholar]
  8. Tanner C.M. Kamel F. Ross G.W. Hoppin J.A. Goldman S.M. Korell M. Marras C. Bhudhikanok G.S. Kasten M. Chade A.R. Comyns K. Richards M.B. Meng C. Priestley B. Fernandez H.H. Cambi F. Umbach D.M. Blair A. Sandler D.P. Langston J.W. Rotenone, paraquat, and Parkinson’s disease. Environ. Health Perspect. 2011 119 6 866 872 10.1289/ehp.1002839 21269927
    [Google Scholar]
  9. Goldman S.M. Quinlan P.J. Ross G.W. Marras C. Meng C. Bhudhikanok G.S. Comyns K. Korell M. Chade A.R. Kasten M. Priestley B. Chou K.L. Fernandez H.H. Cambi F. Langston J.W. Tanner C.M. Solvent exposures and Parkinson disease risk in twins. Ann. Neurol. 2012 71 6 776 784 10.1002/ana.22629 22083847
    [Google Scholar]
  10. Chang K.H. Chen C.M. The role of oxidative stress in Parkinson’s disease. Antioxidants 2020 9 7 597 10.3390/antiox9070597 32650609
    [Google Scholar]
  11. Gao C. Jiang J. Tan Y. Chen S. Microglia in neurodegenerative diseases: Mechanism and potential therapeutic targets. Signal Transduct. Target. Ther. 2023 8 1 359 10.1038/s41392‑023‑01588‑0 37735487
    [Google Scholar]
  12. Wang Y. Xu E. Musich P.R. Lin F. Mitochondrial dysfunction in neurodegenerative diseases and the potential countermeasure. CNS Neurosci. Ther. 2019 25 7 816 824 10.1111/cns.13116 30889315
    [Google Scholar]
  13. Jankovic J. Tan E.K. Parkinson’s disease: Etiopathogenesis and treatment. J. Neurol. Neurosurg. Psychiatry 2020 91 8 795 808 10.1136/jnnp‑2019‑322338 32576618
    [Google Scholar]
  14. Espay A.J. Morgante F. Merola A. Fasano A. Marsili L. Fox S.H. Bezard E. Picconi B. Calabresi P. Lang A.E. Levodopa‐induced dyskinesia in Parkinson disease: Current and evolving concepts. Ann. Neurol. 2018 84 6 797 811 10.1002/ana.25364 30357892
    [Google Scholar]
  15. Chen P. Zhang J. Wang C. Chai Y. Wu A. Huang N. Wang L. The pathogenesis and treatment mechanism of Parkinson’s disease from the perspective of traditional chinese medicine. Phytomedicine 2022 100 154044 10.1016/j.phymed.2022.154044 35338993
    [Google Scholar]
  16. Zhang Y. Gong X.G. Sun H.M. Guo Z.Y. Hu J.H. Wang Y.Y. Feng W.D. Li L. Li P. Wang Z.Z. Chen N.H. Da-Bu-Yin-Wan improves the ameliorative effect of DJ-1 on mitochondrial dysfunction through augmenting the akt phosphorylation in a cellular model of Parkinson’s disease. Front. Pharmacol. 2018 9 1206 10.3389/fphar.2018.01206 30405418
    [Google Scholar]
  17. Zhang Y. Gong X.G. Wang Z.Z. Sun H.M. Guo Z.Y. Gai C. Hu J.H. Ma L. Li P. Chen N.H. Protective effects of DJ-1 medicated Akt phosphorylation on mitochondrial function are promoted by Da-Bu-Yin-Wan in 1-methyl-4-phenylpyridinium-treated human neuroblastoma SH-SY5Y cells. J. Ethnopharmacol. 2016 187 83 93 10.1016/j.jep.2016.04.029 27114059
    [Google Scholar]
  18. Yuan C-X. Yang X-M. Ye Q. Yuan X-L. Zhang H-Z. Zishenpingchan granules for the treatment of Parkinson’s disease: A randomized, double-blind, placebo-controlled clinical trial. Neural Regen. Res. 2018 13 7 1269 1275 10.4103/1673‑5374.235075 30028337
    [Google Scholar]
  19. Zhao H. Li W.W. Gao J.P. Clinical trial on treatment of Parkinson’s disease of Gan-Shen yin deficiency type by recipe for nourishing Gan-Shen. Chung Kuo Chung Hsi I Chieh Ho Tsa Chih 2007 27 9 780 784 [PMID: 17969886].
    [Google Scholar]
  20. Zhang J. Zhang Z. Zhang W. Li X. Wu T. Li T. Cai M. Yu Z. Xiang J. Cai D. Jia-Jian-Di-Huang-Yin-Zi decoction exerts neuroprotective effects on dopaminergic neurons and their microenvironment. Sci. Rep. 2018 8 1 9886 10.1038/s41598‑018‑27852‑w 29959371
    [Google Scholar]
  21. Zhang J. Zhang Z. Bao J. Yu Z. Cai M. Li X. Wu T. Xiang J. Cai D. Jia-Jian-Di-Huang-Yin-Zi decoction reduces apoptosis induced by both mitochondrial and endoplasmic reticulum caspase12 pathways in the mouse model of Parkinson’s disease. J. Ethnopharmacol. 2017 203 69 79 10.1016/j.jep.2016.12.053 28163115
    [Google Scholar]
  22. Wu Y. Bai Y. Lu Y. Zhang Z. Zhao Y. Huang S. Tang L. Liang Y. Hu Y. Xu C. Transcriptome sequencing and network pharmacology-based approach to reveal the effect and mechanism of JI CHUAN JIAN against Parkinson’s disease. BMC Complement. Med. Ther. 2023 23 1 182 10.1186/s12906‑023‑03999‑6 37270490
    [Google Scholar]
  23. Sun X. Yang S. He Z. Wang L. He J. Integrated network pharmacology and transcriptomics to explore the mechanism of compound Dihuang granule (CDG) protects dopaminergic neurons by regulating the Nrf2/HMOX1 pathway in the 6-OHDA/MPP+-induced model of Parkinson’s disease. Chin. Med. 2024 19 1 170 10.1186/s13020‑024‑01040‑7 39696456
    [Google Scholar]
  24. Zhou L. Yang C. Liu Z. Chen L. Wang P. Zhou Y. Yuan M. Zhou L.T. Wang X. Zhu L.Q. Neuroprotective effect of the traditional decoction Tian-Si-Yin against Alzheimer’s disease via suppression of neuroinflammation. J. Ethnopharmacol. 2024 321 117569 10.1016/j.jep.2023.117569 38086513
    [Google Scholar]
  25. Wang K. Li K. Chen Y. Wei G. Yu H. Li Y. Meng W. Wang H. Gao L. Lu A. Peng J. Guan D. Computational network pharmacology-based strategy to capture key functional components and decode the mechanism of Chai-Hu-Shu-Gan-San in treating depression. Front. Pharmacol. 2021 12 782060 10.3389/fphar.2021.782060 34867413
    [Google Scholar]
  26. Chen Y. Wang K. Cai J. Li Y. Yu H. Wu Q. Meng W. Wang H. Yin C. Wu J. Huang M. Li R. Guan D. Detecting key functional components group and speculating the potential mechanism of xiao-xu-ming decoction in treating stroke. Front. Cell Dev. Biol. 2022 10 753425 10.3389/fcell.2022.753425 35646921
    [Google Scholar]
  27. Liu Q. Luo Q. Fan Q. Li Y. Lu A. Guan D. Screening of the key response component groups and mechanism verification of Huangqi-Guizhi-Wuwu-Decoction in treating rheumatoid arthritis based on a novel computational pharmacological model. BMC Complement. Med. Ther. 2024 24 1 4 10.1186/s12906‑023‑04315‑y 38166916
    [Google Scholar]
  28. Nogales C. Mamdouh Z.M. List M. Kiel C. Casas A.I. Schmidt H.H.H.W. Network pharmacology: Curing causal mechanisms instead of treating symptoms. Trends Pharmacol. Sci. 2022 43 2 136 150 10.1016/j.tips.2021.11.004 34895945
    [Google Scholar]
  29. Wang X. Wang Z.Y. Zheng J.H. Li S. TCM network pharmacology: A new trend towards combining computational, experimental and clinical approaches. Chin. J. Nat. Med. 2021 19 1 1 11 10.1016/S1875‑5364(21)60001‑8 33516447
    [Google Scholar]
  30. Piñero J. Bravo À. Queralt-Rosinach N. Gutiérrez-Sacristán A. Deu-Pons J. Centeno E. García-García J. Sanz F. Furlong L.I. DisGeNET: A comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res. 2017 45 D1 D833 D839 10.1093/nar/gkw943 27924018
    [Google Scholar]
  31. Stelzer G Rosen N Plaschkes I Zimmerman S Twik M Fishilevich S Stein TI Nudel R Lieder I Mazor Y Kaplan S Dahary D Warshawsky D Guan-Golan Y Kohn A Rappaport N Safran M Lancet D The genecards suite: From gene data mining to disease genome sequence analyses. Curr. Protoc. Bioinformatics 2016 54 1.30.1 1.30.33 10.1002/cpbi.5 27322403
    [Google Scholar]
  32. Ru J. Li P. Wang J. Zhou W. Li B. Huang C. Li P. Guo Z. Tao W. Yang Y. Xu X. Li Y. Wang Y. Yang L. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform. 2014 6 1 13 10.1186/1758‑2946‑6‑13 24735618
    [Google Scholar]
  33. Chen C.Y.C. TCM Database@Taiwan: The world’s largest traditional Chinese medicine database for drug screening in silico. PLoS One 2011 6 1 e15939 10.1371/journal.pone.0015939 21253603
    [Google Scholar]
  34. Chen X. Zhou H. Liu Y.B. Wang J.F. Li H. Ung C.Y. Han L.Y. Cao Z.W. Chen Y.Z. Database of traditional chinese medicine and its application to studies of mechanism and to prescription validation. Br. J. Pharmacol. 2006 149 8 1092 1103 10.1038/sj.bjp.0706945 17088869
    [Google Scholar]
  35. Wu Y. Zhang F. Yang K. Fang S. Bu D. Li H. Sun L. Hu H. Gao K. Wang W. Zhou X. Zhao Y. Chen J. SymMap: An integrative database of traditional Chinese medicine enhanced by symptom mapping. Nucleic Acids Res. 2019 47 D1 D1110 D1117 10.1093/nar/gky1021 30380087
    [Google Scholar]
  36. Xu H.Y. Zhang Y.Q. Liu Z.M. Chen T. Lv C.Y. Tang S.H. Zhang X.B. Zhang W. Li Z.Y. Zhou R.R. Yang H.J. Wang X.J. Huang L.Q. ETCM: An encyclopaedia of traditional chinese medicine. Nucleic Acids Res. 2019 47 D1 D976 D982 10.1093/nar/gky987 30365030
    [Google Scholar]
  37. O’Boyle N.M. Banck M. James C.A. Morley C. Vandermeersch T. Hutchison G.R. Open Babel: An open chemical toolbox. J. Cheminform. 2011 3 1 33 10.1186/1758‑2946‑3‑33 21982300
    [Google Scholar]
  38. Kim S. Chen J. Cheng T. Gindulyte A. He J. He S. Li Q. Shoemaker B.A. Thiessen P.A. Yu B. Zaslavsky L. Zhang J. Bolton E.E. PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Res. 2021 49 D1 D1388 D1395 10.1093/nar/gkaa971 33151290
    [Google Scholar]
  39. Lee S. Lee I.H. Kim H.J. Chang G.S. Chung J.E. No K.T. The PreADME approach: Web-based program for rapid prediction of physico-chemical, drug absorption and drug-like properties. euro QSAR 2002 - Designing Drugs and Crop Protectants: Processes Problems and Solutions 2002
    [Google Scholar]
  40. Daina A. Michielin O. Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017 7 1 42717 10.1038/srep42717 28256516
    [Google Scholar]
  41. Daina A. Michielin O. Zoete V. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019 47 W1 W357 W364 10.1093/nar/gkz382 31106366
    [Google Scholar]
  42. Liu X. Vogt I. Haque T. Campillos M. HitPick: A web server for hit identification and target prediction of chemical screenings. Bioinformatics 2013 29 15 1910 1912 10.1093/bioinformatics/btt303 23716196
    [Google Scholar]
  43. Yu G. Wang L.G. Han Y. He Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS 2012 16 5 284 287 10.1089/omi.2011.0118 22455463
    [Google Scholar]
  44. Kanehisa M. Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000 28 1 27 30 10.1093/nar/28.1.27 10592173
    [Google Scholar]
  45. Conway J.R. Lex A. Gehlenborg N. UpSetR: An R package for the visualization of intersecting sets and their properties. Bioinformatics 2017 33 18 2938 2940 10.1093/bioinformatics/btx364 28645171
    [Google Scholar]
  46. Luo W. Brouwer C. Pathview: An R/Bioconductor package for pathway-based data integration and visualization. Bioinformatics 2013 29 14 1830 1831 10.1093/bioinformatics/btt285 23740750
    [Google Scholar]
  47. Blauwendraat C. Nalls M.A. Singleton A.B. The genetic architecture of Parkinson’s disease. Lancet Neurol. 2020 19 2 170 178 10.1016/S1474‑4422(19)30287‑X 31521533
    [Google Scholar]
  48. Latif S. Jahangeer M. Maknoon Razia D. Ashiq M. Ghaffar A. Akram M. El Allam A. Bouyahya A. Garipova L. Ali Shariati M. Thiruvengadam M. Azam Ansari M. Dopamine in Parkinson’s disease. Clin. Chim. Acta 2021 522 114 126 10.1016/j.cca.2021.08.009 34389279
    [Google Scholar]
  49. Xu K. Huang P. Wu Y. Liu T. Shao N. Zhao L. Hu X. Chang J. Peng Y. Qu S. Engineered selenium/human serum albumin nanoparticles for efficient targeted treatment of Parkinson’s disease via oral gavage. ACS Nano 2023 17 20 19961 19980 10.1021/acsnano.3c05011 37807265
    [Google Scholar]
  50. Dai Y. Wang Y. Kang Q. Wu Y. Liu Y. Su Y. Wang X. Xiu M. He J. The protective effect and bioactive compounds of astragalus membranaceus against neurodegenerative disorders via alleviating oxidative stress in drosophila. FASEB J. 2024 38 13 e23727 10.1096/fj.202400390R 38877845
    [Google Scholar]
  51. Ay M. Vanillic acid induces mitochondrial biogenesis in SH-SY5Y cells. Mol. Biol. Rep. 2022 49 6 4443 4449 10.1007/s11033‑022‑07284‑6 35249168
    [Google Scholar]
  52. Sharma N. Khurana N. Muthuraman A. Utreja P. Pharmacological evaluation of vanillic acid in rotenone-induced Parkinson’s disease rat model. Eur. J. Pharmacol. 2021 903 174112 10.1016/j.ejphar.2021.174112 33901458
    [Google Scholar]
  53. Idowu O.K. Dosumu O.O. Boboye A.S. Oremosu A.A. Mohammed A.A. Lauric acid with or without levodopa ameliorates Parkinsonism in genetically modified model of Drosophila melanogaster via the oxidative-inflammatory-apoptotic pathway. Brain Behav. 2024 14 9 e70001 10.1002/brb3.70001 39245995
    [Google Scholar]
  54. Kabuto H. Nishizawa M. Tada M. Higashio C. Shishibori T. Kohno M. Zingerone [4-(4-hydroxy-3-methoxyphenyl)-2-butanone] prevents 6-hydroxydopamine-induced dopamine depression in mouse striatum and increases superoxide scavenging activity in serum. Neurochem. Res. 2005 30 3 325 332 10.1007/s11064‑005‑2606‑3 16018576
    [Google Scholar]
  55. Rezazadeh-Shojaee F.S. Ramazani E. Kasaian J. Tayarani-Najaran Z. Protective effects of 6‐gingerol on 6‐hydroxydopamine‐induced apoptosis in PC12 cells through modulation of SAPK/JNK and survivin activation. J. Biochem. Mol. Toxicol. 2022 36 2 e22956 10.1002/jbt.22956 34783140
    [Google Scholar]
  56. Park G. Kim H.G. Ju M.S. Ha S.K. Park Y. Kim S.Y. Oh M.S. 6-Shogaol, an active compound of ginger, protects dopaminergic neurons in Parkinson’s disease models via anti-neuroinflammation. Acta Pharmacol. Sin. 2013 34 9 1131 1139 10.1038/aps.2013.57 23811724
    [Google Scholar]
  57. Choi J.S. Bae W.Y. Park C. Jeong J.W. Zingerone activates VMAT2 during MPP+‐induced cell death. Phytother. Res. 2015 29 11 1783 1790 10.1002/ptr.5435 26282055
    [Google Scholar]
  58. Zhang Z. Cui W. Li G. Yuan S. Xu D. Hoi M.P.M. Lin Z. Dou J. Han Y. Lee S.M.Y. Baicalein protects against 6-OHDA-induced neurotoxicity through activation of Keap1/Nrf2/HO-1 and involving PKCα and PI3K/AKT signaling pathways. J. Agric. Food Chem. 2012 60 33 8171 8182 10.1021/jf301511m 22838648
    [Google Scholar]
  59. Cao Q. Qin L. Huang F. Wang X. Yang L. Shi H. Wu H. Zhang B. Chen Z. Wu X. Amentoflavone protects dopaminergic neurons in MPTP-induced Parkinson’s disease model mice through PI3K/Akt and ERK signaling pathways. Toxicol. Appl. Pharmacol. 2017 319 80 90 10.1016/j.taap.2017.01.019 28185818
    [Google Scholar]
  60. Curry D.W. Stutz B. Andrews Z.B. Elsworth J.D. Targeting AMPK signaling as a neuroprotective strategy in Parkinson’s disease. J. Parkinsons Dis. 2018 8 2 161 181 10.3233/JPD‑171296 29614701
    [Google Scholar]
  61. Chen Y. Peng F. Xing Z. Chen J. Peng C. Li D. Beneficial effects of natural flavonoids on neuroinflammation. Front. Immunol. 2022 13 1006434 10.3389/fimmu.2022.1006434 36353622
    [Google Scholar]
  62. Yang J. Jia M. Zhang X. Wang P. Calycosin attenuates MPTP‐induced Parkinson’s disease by suppressing the activation of TLR/NF‐κB and MAPK pathways. Phytother. Res. 2019 33 2 309 318 10.1002/ptr.6221 30421460
    [Google Scholar]
  63. Wang L. Tian S. Ruan S. Wei J. Wei S. Chen W. Hu H. Qin W. Li Y. Yuan H. Mao J. Xu Y. Xie J. Neuroprotective effects of cordycepin on MPTP-induced Parkinson’s disease mice via suppressing PI3K/AKT/mTOR and MAPK-mediated neuroinflammation. Free Radic. Biol. Med. 2024 216 60 77 10.1016/j.freeradbiomed.2024.02.023 38479634
    [Google Scholar]
/content/journals/cn/10.2174/011570159X378077250822115218
Loading
/content/journals/cn/10.2174/011570159X378077250822115218
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test