Skip to content
2000
image of Ginsenoside Rg2 Ameliorates Alzheimer's Disease by Alleviating Neuroinflammation in APP/PS1 Mice

Abstract

Introduction

Ginsenoside Rg2 (GRg2), a naturally occurring triterpenoid derived from ginseng rhizomes, exhibits neuroprotective properties. Neuroinflammation is recognized as one of the key pathogenic mechanisms underlying Alzheimer's disease (AD). This research aims to investigate the beneficial effects of GRg2 on AD and explore its potential mechanisms.

Methods

In APP/PS1 mice, cognitive and behavioral assessments were first performed. Subsequently, brain tissue analyses were performed using immunohistochemical analysis and Western blot. A combined analysis of the gut microbiome and metabolomics was conducted to explore potential mechanisms. Finally, key findings were further validated through immunofluorescence and enzyme-linked immunosorbent assay.

Results

GRg2 enhanced learning, memory, and cognitive functions. And inhibits the deposition of β-amyloid and phosphorylated tau. GRg2 effectively inhibits the production of and . In addition, it reduced the levels of pyruvaldehyde and trimethylamine N-oxide, metabolites closely related to neuroinflammation. GRg2 effectively inhibited the activation of astrocytes and microglia in the brains of APP/PS1 mice, and also reduced the expression of neuroinflammatory mediators IL-6, IL-1β, and TNF-α.

Discussions

The findings of this study substantiate the neuroprotective efficacy of GRg2, providing a novel therapeutic strategy and theoretical foundation for natural product-based interventions against AD.

Conclusion

GRg2 improves cognitive function and mitigates AD pathology, which is at least partially attributed to its regulation of gut microbiota and metabolites, as well as its anti-neuroinflammatory effects.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode.
Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X395496250911104139
2025-09-26
2025-12-15
Loading full text...

Full text loading...

/deliver/fulltext/cn/10.2174/011570159X395496250911104139/BMS-CN-2025-HT17-7009-9.html?itemId=/content/journals/cn/10.2174/011570159X395496250911104139&mimeType=html&fmt=ahah

References

  1. Guo X. Yan L. Zhang D. Zhao Y. Passive immunotherapy for Alzheimer’s disease. Ageing Res. Rev. 2024 94 102192 10.1016/j.arr.2024.102192 38219962
    [Google Scholar]
  2. Li S. Wei Y. Liang Z. Guo L. Hao X. Zhang Y. Review on dietary supplements as an effective improvement of Alzheimer’s disease: Focus on structures and mechanisms. Food Sci. Hum. Wellness 2024 13 4 1787 1805 10.26599/FSHW.2022.9250150
    [Google Scholar]
  3. Bettcher B.M. Kramer J.H. Longitudinal inflammation, cognitive decline, and Alzheimer’s disease: A mini-review. Clin. Pharmacol. Ther. 2014 96 4 464 469 10.1038/clpt.2014.147 25009982
    [Google Scholar]
  4. Burns A. Iliffe S. Alzheimer’s disease. BMJ 2009 338 b158 10.1136/bmj.b158
    [Google Scholar]
  5. Ma J. Li M. Bao Y. Huang W. He X. Hong Y. Wei W. Liu Z. Gao X. Yang Y. Cui Z. Wang W. Wang J. Zhu W. Zheng N. Pan L. Wang D. Ke Z. Zhou B. Sheng L. Li H. Gut microbiota-brain bile acid axis orchestrates aging-related neuroinflammation and behavior impairment in mice. Pharmacol. Res. 2024 208 107361 10.1016/j.phrs.2024.107361 39159729
    [Google Scholar]
  6. Loh J.S. Mak W.Q. Tan L.K.S. Ng C.X. Chan H.H. Yeow S.H. Foo J.B. Ong Y.S. How C.W. Khaw K.Y. Microbiota–gut-brain axis and its therapeutic applications in neurodegenerative diseases. Signal Transduct. Target. Ther. 2024 9 1 37 10.1038/s41392‑024‑01743‑1 38360862
    [Google Scholar]
  7. Hong C.T. Chan L. Chen K.Y. Lee H.H. Huang L.K. Yang Y.C.S.H. Liu Y.R. Hu C.J. Rifaximin modifies gut microbiota and attenuates inflammation in parkinson’s disease: Preclinical and clinical studies. Cells 2022 11 21 3468 10.3390/cells11213468 36359864
    [Google Scholar]
  8. Song Z. Cheng L. Liu Y. Zhan S. Wu Z. Zhang X. Plant-derived bioactive components regulate gut microbiota to prevent depression and depressive-related neurodegenerative diseases: Focus on neurotransmitters. Trends Food Sci. Technol. 2022 129 581 590 10.1016/j.tifs.2022.10.019
    [Google Scholar]
  9. Zhu X. Li B. Lou P. Dai T. Chen Y. Zhuge A. Yuan Y. Li L. The relationship between the gut microbiome and neurodegenerative diseases. Neurosci. Bull. 2021 37 10 1510 1522 10.1007/s12264‑021‑00730‑8 34216356
    [Google Scholar]
  10. Sofroniew M.V. Vinters H.V. Astrocytes: Biology and pathology. Acta Neuropathol. 2010 119 1 7 35 10.1007/s00401‑009‑0619‑8 20012068
    [Google Scholar]
  11. Liddelow S.A. Guttenplan K.A. Clarke L.E. Bennett F.C. Bohlen C.J. Schirmer L. Bennett M.L. Münch A.E. Chung W.S. Peterson T.C. Wilton D.K. Frouin A. Napier B.A. Panicker N. Kumar M. Buckwalter M.S. Rowitch D.H. Dawson V.L. Dawson T.M. Stevens B. Barres B.A. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 2017 541 7638 481 487 10.1038/nature21029 28099414
    [Google Scholar]
  12. Liu C. Cardenas-Rivera A. Teitelbaum S. Birmingham A. Alfadhel M. Yaseen M.A. Neuroinflammation increases oxygen extraction in a mouse model of Alzheimer’s disease. Alzheimers Res. Ther. 2023 1678 10.1101/2023.10.16.562353
    [Google Scholar]
  13. Qian X. Song X. Liu X. Chen S. Tang H. Inflammatory pathways in Alzheimer’s disease mediated by gut microbiota. Ageing Res. Rev. 2021 68 101317 10.1016/j.arr.2021.101317 33711509
    [Google Scholar]
  14. Thu Thuy Nguyen V. Endres K. Targeting gut microbiota to alleviate neuroinflammation in Alzheimer’s disease. Adv. Drug Deliv. Rev. 2022 188 114418 10.1016/j.addr.2022.114418
    [Google Scholar]
  15. Liu Y. Si Z-Z. Zou C-J. Mei X. Li X-F. Luo H. Shen Y. Hu J. Li X-X. Wu L. Targeting neuroinflammation in Alzheimer’s disease: From mechanisms to clinical applications. Neural Regen. Res. 2023 18 4 708 715 10.4103/1673‑5374.353484 36204826
    [Google Scholar]
  16. Goshi N. Morgan R.K. Lein P.J. Seker E. A primary neural cell culture model to study neuron, astrocyte, and microglia interactions in neuroinflammation. J. Neuroinflammation 2022 19 1 155 10.1186/s12974‑022‑02391‑4 35715845
    [Google Scholar]
  17. Kiraly M. Foss J.F. Giordano T. Neuroinflammation, its role in Alzheimer’s disease and therapeutic strategies. J. Prev. Alzheimers Dis. 2023 10 4 686 698 10.14283/jpad.2023.109 37874089
    [Google Scholar]
  18. Guo J-T. Inflammation dependent cerebral deposition of serum amyloid A proteins in amyloid mouse model. J. Neurosci. 2001 22 14 5900 5909 10.1523/JNEUROSCI.22‑14‑05900.2002 12122052
    [Google Scholar]
  19. Ott B.R. Jones R.N. Daiello L.A. de la Monte S.M. Stopa E.G. Johanson C.E. Denby C. Grammas P. Blood-cerebrospinal fluid barrier gradients in mild cognitive impairment and Alzheimer’s disease: Relationship to inflammatory cytokines and chemokines. Front. Aging Neurosci. 2018 10 245 10.3389/fnagi.2018.00245 30186149
    [Google Scholar]
  20. Morales I. Guzmán-Martínez L. Cerda-Troncoso C. Farías G.A. Maccioni R.B. Neuroinflammation in the pathogenesis of Alzheimer’s disease. A rational framework for the search of novel therapeutic approaches. Front. Cell. Neurosci. 2014 8 112 10.3389/fncel.2014.00112 24795567
    [Google Scholar]
  21. Lyman M. Lloyd D.G. Ji X. Vizcaychipi M.P. Ma D. Neuroinflammation: The role and consequences. Neurosci. Res. 2014 79 1 1 12 10.1016/j.neures.2013.10.004 24144733
    [Google Scholar]
  22. Kinney J.W. Bemiller S.M. Murtishaw A.S. Leisgang A.M. Salazar A.M. Lamb B.T. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimers Dement Transl. Res. Clin. Interv 2018 575 590 10.1016/j.trci.2018.06.01
    [Google Scholar]
  23. Biswas T. Mathur A.K. Mathur A. A literature update elucidating production of Panax ginsenosides with a special focus on strategies enriching the anti-neoplastic minor ginsenosides in ginseng preparations. Appl. Microbiol. Biotechnol. 2017 101 10 4009 4032 10.1007/s00253‑017‑8279‑4 28411325
    [Google Scholar]
  24. Fu W. Xu H. Yu X. Lyu C. Tian Y. Guo M. Sun J. Sui D. 20(S)-Ginsenoside Rg2 attenuates myocardial ischemia/reperfusion injury by reducing oxidative stress and inflammation: Role of SIRT1. RSC Advances 2018 8 42 23947 23962 10.1039/C8RA02316F 35540288
    [Google Scholar]
  25. Zhang G. Liu A. Zhou Y. San X. Jin T. Jin Y. Panax ginseng ginsenoside-Rg2 protects memory impairment via anti-apoptosis in a rat model with vascular dementia. J. Ethnopharmacol. 2008 115 3 441 448 10.1016/j.jep.2007.10.026 18083315
    [Google Scholar]
  26. Cui J. Wang J. Zheng M. Gou D. Liu C. Zhou Y. Ginsenoside Rg2 protects PC12 cells against β-amyloid25-35-induced apoptosis via the phosphoinositide 3-kinase/Akt pathway. Chem. Biol. Interact. 2017 275 152 161 10.1016/j.cbi.2017.07.021 28756148
    [Google Scholar]
  27. Cui J. Shan R. Cao Y. Zhou Y. Liu C. Fan Y. Protective effects of ginsenoside Rg2 against memory impairment and neuronal death induced by Aβ25-35 in rats. J. Ethnopharmacol. 2021 266 113466 10.1016/j.jep.2020.113466 33049344
    [Google Scholar]
  28. Yin P. Wang H. Xue T. Yu X. Meng X. Mi Q. Song S. Xiong B. Bi Y. Yu L. Four-dimensional label-free quantitative proteomics of ginsenoside rg 2 ameliorated scopolamine-induced memory impairment in mice through the lysosomal pathway. J. Agric. Food Chem. 2024 72 26 14640 14652 10.1021/acs.jafc.4c00181 38885433
    [Google Scholar]
  29. Gou D. Pei X. Wang J. Wang Y. Hu C. Song C. Cui S. Zhou Y. Antiarrhythmic effects of ginsenoside Rg2 on calcium chloride-induced arrhythmias without oral toxicity. J. Ginseng Res. 2020 44 5 717 724 10.1016/j.jgr.2019.06.005 32913401
    [Google Scholar]
  30. Wang D. Jiang X. Teng S. Zhang Y. Liu Y. Li X. Li Y. The antidiabetic and antinephritic activities of Auricularia cornea (an albino mutant strain) via modulation of oxidative stress in the db/db mice. Front. Immunol. 2019 10 1039 10.3389/fimmu.2019.01039 31134090
    [Google Scholar]
  31. Guan Y. Shi D. Wang S. Sun Y. Song W. Liu S. Wang C. Hericium coralloides ameliorates Alzheimer’s disease pathologies and cognitive disorders by activating NRF2 signaling and regulating gut microbiota. Nutrients 2023 15 17 3799 10.3390/nu15173799 37686830
    [Google Scholar]
  32. Wang C. Chen S. Guo H. Jiang H. Liu H. Fu H. Wang D. Forsythoside A. Forsythoside a mitigates Alzheimer’s-like pathology by inhibiting ferroptosis-mediated neuroinflammation via nrf2/gpx4 axis activation. Int. J. Biol. Sci. 2022 18 5 2075 2090 10.7150/ijbs.69714 35342364
    [Google Scholar]
  33. Wang C. Jiang H. Liu H. Chen S. Guo H. Ma S. Han W. Li Y. Wang D. Isoforsythiaside confers neuroprotection against Alzheimer’s disease by attenuating ferroptosis and neuroinflammation in vivo and in vitro. Food Sci. Hum. Wellness 2023 12 5 1730 1742 10.1016/j.fshw.2023.02.035
    [Google Scholar]
  34. Song J. Zhang Y. Zhu Y. Jin X. Li L. Wang C. Zhou Y. Li Y. Wang D. Hu M. Structural characterization and anti-osteoporosis effects of polysaccharide purified from Eucommia ulmoides Oliver cortex based on its modulation on bone metabolism. Carbohydr. Polym. 2023 306 120601 10.1016/j.carbpol.2023.120601 36746570
    [Google Scholar]
  35. Li S. Yang H. Li L. Wang W. Tan H.Y. Qu Y. Wang D. The involvement of gut microbiota in the anti-tumor effect of carnosic acid via IL-17 suppression in colorectal cancer. Chem. Biol. Interact. 2022 365 110080 10.1016/j.cbi.2022.110080 35926579
    [Google Scholar]
  36. Chen Y. Li Y. Fan Y. Chen S. Chen L. Chen Y. Chen Y. Gut microbiota-driven metabolic alterations reveal gut-brain communication in Alzheimer’s disease model mice. Gut Microbes 2024 16 1 2302310 10.1080/19490976.2024.2302310 38261437
    [Google Scholar]
  37. Seo D. Holtzman D.M. Current understanding of the Alzheimer’s disease-associated microbiome and therapeutic strategies. Exp. Mol. Med. 2024 56 1 86 94 10.1038/s12276‑023‑01146‑2 38172602
    [Google Scholar]
  38. Brunt V.E. LaRocca T.J. Bazzoni A.E. Sapinsley Z.J. Miyamoto-Ditmon J. Gioscia-Ryan R.A. Neilson A.P. Link C.D. Seals D.R. The gut microbiome-derived metabolite trimethylamine N-oxide modulates neuroinflammation and cognitive function with aging. Geroscience 2021 43 1 377 394 10.1007/s11357‑020‑00257‑2 32862276
    [Google Scholar]
  39. Li X.H. Xie J.Z. Jiang X. Lv B.L. Cheng X.S. Du L.L. Zhang J.Y. Wang J.Z. Zhou X.W. Methylglyoxal induces tau hyperphosphorylation via promoting AGEs formation. Neuromolecular Med. 2012 14 4 338 348 10.1007/s12017‑012‑8191‑0 22798221
    [Google Scholar]
  40. Vogt N.M. Romano K.A. Darst B.F. Engelman C.D. Johnson S.C. Carlsson C.M. Asthana S. Blennow K. Zetterberg H. Bendlin B.B. Rey F.E. The gut microbiota-derived metabolite trimethylamine N-oxide is elevated in Alzheimer’s disease. Alzheimers Res. Ther. 2018 10 1 124 10.1186/s13195‑018‑0451‑2 30579367
    [Google Scholar]
  41. Davies A. Lüscher T.F. The red and the white, and the difference it makes. Eur. Heart J. 2019 40 7 595 597 10.1093/eurheartj/ehy905 30649383
    [Google Scholar]
  42. Wu D. Cao M. Li N. Zhang A. Yu Z. Cheng J. Xie X. Wang Z. Lu S. Yan S. Zhou J. Peng J. Zhao J. Effect of trimethylamine N-oxide on inflammation and the gut microbiota in Helicobacter pylori-infected mice. Int. Immunopharmacol. 2020 81 0 106026 10.1016/j.intimp.2019.106026 31759863
    [Google Scholar]
  43. Kim J. Lim J. Yoo I.D. Park S. Moon J.S. TXNIP contributes to induction of pro-inflammatory phenotype and caspase-3 activation in astrocytes during Alzheimer’s diseases. Redox Biol. 2023 63 102735 10.1016/j.redox.2023.102735 37172394
    [Google Scholar]
  44. Jurga A.M. Paleczna M. Kuter K.Z. Overview of general and discriminating markers of differential microglia phenotypes. Front. Cell. Neurosci. 2020 14 198 10.3389/fncel.2020.00198 32848611
    [Google Scholar]
  45. Pinto M.V. Fernandes A. Microglial phagocytosis—rational but challenging therapeutic target in multiple sclerosis. Int. J. Mol. Sci. 2020 21 17 5960 10.3390/ijms21175960 32825077
    [Google Scholar]
  46. Chen Y. Qin C. Huang J. Tang X. Liu C. Huang K. Xu J. Guo G. Tong A. Zhou L. The role of astrocytes in oxidative stress of central nervous system: A mixed blessing. Cell Prolif. 2020 53 3 e12781 10.1111/cpr.12781 32035016
    [Google Scholar]
  47. Lu Y. Wang Y. Wang Z. Ren S. Gong X. Hu J. Zhang J. Li W. Ginsenoside Rg2 alleviates astrocyte inflammation and ameliorates the permeability of the Alzheimer’s disease related blood-brain barrier. Phytomedicine 2024 135 156063 10.1016/j.phymed.2024.156063 39305744
    [Google Scholar]
  48. Chidambaram S.B. Essa M.M. Rathipriya A.G. Bishir M. Ray B. Mahalakshmi A.M. Tousif A.H. Sakharkar M.K. Kashyap R.S. Friedland R.P. Monaghan T.M. Gut dysbiosis, defective autophagy and altered immune responses in neurodegenerative diseases: Tales of a vicious cycle. Pharmacol. Ther. 2022 231 107988 10.1016/j.pharmthera.2021.107988 34536490
    [Google Scholar]
  49. Chen C. Liao J. Xia Y. Liu X. Jones R. Haran J. McCormick B. Sampson T.R. Alam A. Ye K. Gut microbiota regulate Alzheimer’s disease pathologies and cognitive disorders via PUFA-associated neuroinflammation. Gut 2022 71 11 2233 2252 10.1136/gutjnl‑2021‑326269 35017199
    [Google Scholar]
  50. Cheng W.Y. Ho Y.S. Chang R.C.C. Linking circadian rhythms to microbiome-gut-brain axis in aging-associated neurodegenerative diseases. Ageing Res. Rev. 2022 78 101620 10.1016/j.arr.2022.101620 35405323
    [Google Scholar]
  51. Xia Y. Xiao Y. Wang Z.H. Liu X. Alam A.M. Haran J.P. McCormick B.A. Shu X. Wang X. Ye K. Bacteroides Fragilis in the gut microbiomes of Alzheimer’s disease activates microglia and triggers pathogenesis in neuronal C/EBPβ transgenic mice. Nat. Commun. 2023 14 1 5471 10.1038/s41467‑023‑41283‑w 37673907
    [Google Scholar]
  52. Killingsworth J. Sawmiller D. Shytle R.D. Propionate and Alzheimer’s Disease. Front. Aging Neurosci. 2021 12 580001 10.3389/fnagi.2020.580001 33505301
    [Google Scholar]
  53. Xie J. Cools L. Van Imschoot G. Van Wonterghem E. Pauwels M.J. Vlaeminck I. De Witte C. Andaloussi E.L. S.; Wierda, K.; De Groef, L.; Haesebrouck, F.; Van Hoecke, L.; Vandenbroucke, R.E. Helicobacter pylori ‐derived outer membrane vesicles contribute to Alzheimer’s disease pathogenesis via C3‐C3aR signalling. J. Extracell. Vesicles 2023 12 2 12306 10.1002/jev2.12306 36792546
    [Google Scholar]
  54. Kountouras J. Boziki M. Zavos C. Gavalas E. Giartza-Taxidou E. Venizelos I. Deretzi G. Grigoriadis N. Tsiaousi E. Vardaka E. A potential impact of chronic Helicobacter pylori infection on Alzheimer’s disease pathobiology and course. Neurobiol. Aging 2012 33 7 e3 e4 10.1016/j.neurobiolaging.2012.01.003 22325590
    [Google Scholar]
  55. Zhang Y. Jian W. Signal pathways and intestinal flora through trimethylamine n-oxide in Alzheimer’s disease. Curr. Protein Pept. Sci. 2023 24 9 721 736 10.2174/1389203724666230717125406 37461349
    [Google Scholar]
  56. Buawangpong N. Pinyopornpanish K. Siri-Angkul N. Chattipakorn N. Chattipakorn S.C. The role of trimethylamine‐N‐Oxide in the development of Alzheimer’s disease. J. Cell. Physiol. 2022 237 3 1661 1685 10.1002/jcp.30646 34812510
    [Google Scholar]
  57. Qiao C.M. Quan W. Zhou Y. Niu G.Y. Hong H. Wu J. Zhao L.P. Li T. Cui C. Zhao W.J. Shen Y.Q. Orally induced high serum level of trimethylamine n-oxide worsened glial reaction and neuroinflammation on mptp-induced acute parkinson’s disease model mice. Mol. Neurobiol. 2023 60 9 5137 5154 10.1007/s12035‑023‑03392‑x 37266763
    [Google Scholar]
  58. Haddad M. Khedher M. Khedher M.R.B. Fulop T. Ramassamy C. Peripheral and total circulating extracellular vesicle levels of advanced glycation end‐products and RAGEs as possible biomarkers for mild cognitive impairment and Alzheimer’s patients. Alzheimers Dement. 2020 16 S4 e044127 10.1002/alz.044127
    [Google Scholar]
  59. Cai W. Uribarri J. Zhu L. Chen X. Swamy S. Zhao Z. Grosjean F. Simonaro C. Kuchel G.A. Schnaider-Beeri M. Woodward M. Striker G.E. Vlassara H. Oral glycotoxins are a modifiable cause of dementia and the metabolic syndrome in mice and humans. Proc. Natl. Acad. Sci. USA 2014 111 13 4940 4945 10.1073/pnas.1316013111 24567379
    [Google Scholar]
  60. Novoa C. Salazar P. Cisternas P. Gherardelli C. Vera-Salazar R. Zolezzi J.M. Inestrosa N.C. Inflammation context in Alzheimer’s disease, a relationship intricate to define. Biol. Res. 2022 55 1 39 10.1186/s40659‑022‑00404‑3 36550479
    [Google Scholar]
  61. Champagne-Jorgensen K. Gommerman J. Astrocytes ACLYmate to chronic neuroinflammation. Trends Immunol. 2024 45 5 320 321 10.1016/j.it.2024.04.003 38632002
    [Google Scholar]
  62. Laurent C. Buée L. Blum D. Tau and neuroinflammation: What impact for Alzheimer’s Disease and Tauopathies? Biomed. J. 2018 41 1 21 33 10.1016/j.bj.2018.01.003 29673549
    [Google Scholar]
  63. Li C. Wang J. Fang Y. Liu Y. Chen T. Sun H. Zhou X.F. Liao H. Nafamostat mesilate improves function recovery after stroke by inhibiting neuroinflammation in rats. Brain Behav. Immun. 2016 56 230 245 10.1016/j.bbi.2016.03.019 27033633
    [Google Scholar]
  64. Gruol D.L. IL-6 regulation of synaptic function in the CNS. Neuropharmacology 2015 96 Pt A 42 54 10.1016/j.neuropharm.2014.10.023 25445486
    [Google Scholar]
/content/journals/cn/10.2174/011570159X395496250911104139
Loading
/content/journals/cn/10.2174/011570159X395496250911104139
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keywords: astrocytes ; Ginsenoside Rg2 ; neuroinflammation ; microglia ; Alzheimer's disease ; β-amyloid
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test