Skip to content
2000
image of Celastrol Ameliorates Vincristine-induced Neuropathic Pain by Inhibiting Spinal Astrocyte Hyperactivation-mediated Inflammation, Oxidative Stress, and Apoptosis

Abstract

Background

Neurotoxicity is the severe adverse reaction induced by chemotherapy drugs, characterized by neuropathic pain. However, there is a notable lack of therapeutic drugs for chemotherapy-induced neuropathic pain (CINP). Celastrol, a naturally occurring terpenoid active compound extracted from the roots of Hook f., exhibits a neuroprotective effect, yet its therapeutic potential in CINP has not been reported.

Objective

In this study, with vincristine-induced neuropathic pain (VINP) as a model, we aimed to investigate the therapeutic effect of celastrol on VINP and its specific mechanisms.

Methods

Vincristine (VCR, 0.1 mg/kg, intraperitoneal injection) was used to induce a neuropathic pain model. Celastrol (0.5, 1.0, and 2.0 mg/kg, intraperitoneal injection) was administered to assess its therapeutic effects on VINP. Transmission electron microscopy (TEM) was employed to examine damage to the sciatic nerve fibers and mitochondria. Flow cytometry was used to detect mitochondrial membrane potential (MMP), reactive oxygen species (ROS), and cell apoptosis. Primary astrocyte cultures were utilized further to validate the therapeutic mechanisms of celastrol in VINP.

Results

Here, we demonstrate that celastrol inhibits VCR-induced activation of spinal astrocytes by suppressing CaMKII phosphorylation. Additionally, celastrol alleviates the Cx43-dependent inflammation caused by VCR through the inhibition of the CaMKII/NF-κB signaling pathway. Concurrently, celastrol modulates the production of reactive oxygen species (ROS) and the expression of apoptosis-related proteins (Cleaved Caspase-3, Bax, and Bcl-2) by suppressing the phosphorylation of CaMKII in astrocytes, thereby ameliorating the mitochondrial damage and cell apoptosis caused by VCR.

Discussion

This study delves into the efficacy of celastrol in treating VINP and elucidates its underlying mechanisms. The findings demonstrate that celastrol elevates pain thresholds in mice, ameliorates neuropathy, and inhibits VCR-induced astrocyte activation, as well as spinal dorsal horn inflammation, oxidative stress, and apoptosis, by blocking CaMKII phosphorylation. Unlike first-line CINP drugs, celastrol targets multiple CINP-related pathological pathways. However, this study primarily focuses on male mice and lacks a naive group, which may affect the interpretation of baseline physiological parameters. Therefore, future research will incorporate female mice and naive groups to further enhance the study's comprehensiveness and reliability.

Conclusion

Our findings reveal that celastrol exerts therapeutic effects on VINP through its anti-inflammatory, antioxidant, and anti-apoptotic properties. Furthermore, we preliminarily explore the molecular mechanisms underlying these effects, thereby providing a scientific basis for celastrol as a potential therapeutic agent for CINP.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X385690250509050208
2025-03-10
2025-10-30
Loading full text...

Full text loading...

/deliver/fulltext/cn/10.2174/011570159X385690250509050208/BMS-CN-2025-24.html?itemId=/content/journals/cn/10.2174/011570159X385690250509050208&mimeType=html&fmt=ahah

References

  1. Hershman D.L. Till C. Wright J.D. Awad D. Ramsey S.D. Barlow W.E. Minasian L.M. Unger J. Comorbidities and risk of chemotherapy-induced peripheral neuropathy among participants 65 years or older in southwest oncology group clinical trials. J. Clin. Oncol. 2016 34 25 3014 3022 10.1200/JCO.2015.66.2346 27325863
    [Google Scholar]
  2. Park S.B. Goldstein D. Krishnan A.V. Lin C.S.Y. Friedlander M.L. Cassidy J. Koltzenburg M. Kiernan M.C. Chemotherapy‐induced peripheral neurotoxicity: A critical analysis. CA Cancer J. Clin. 2013 63 6 419 437 10.3322/caac.21204 24590861
    [Google Scholar]
  3. Rosenthal S. Kaufman S. Vincristine neurotoxicity. Ann. Intern. Med. 1974 80 6 733 737 10.7326/0003‑4819‑80‑6‑733 4364934
    [Google Scholar]
  4. Greenberg H.S. Chamberlain M.C. Glantz M.J. Wang S. Adult medulloblastoma: Multiagent chemotherapy. Neuro-oncol. 2001 3 1 29 34 10.1215/15228517‑3‑1‑29 11305414
    [Google Scholar]
  5. Li G. Hu Y. Li D. Zhang Y. Guo H. Li Y. Chen F. Xu J. Vincristine-induced peripheral neuropathy: A mini-review. Neurotoxicology 2020 81 161 171 10.1016/j.neuro.2020.10.004 33053366
    [Google Scholar]
  6. Shen Y. Zhang Z.J. Zhu M.D. Jiang B.C. Yang T. Gao Y.J. Exogenous induction of HO-1 alleviates vincristine-induced neuropathic pain by reducing spinal glial activation in mice. Neurobiol. Dis. 2015 79 100 110 10.1016/j.nbd.2015.04.012 25956228
    [Google Scholar]
  7. Li G. Hu Y. Lu Y. Yang Q. Fu D. Chen F. Li Y. CaMKII and CaV3.2 T-type calcium channel mediate Connexin-43-dependent inflammation by activating astrocytes in vincristine-induced neuropathic pain. Cell Biol. Toxicol. 2023 39 3 679 702 10.1007/s10565‑021‑09631‑y 34286406
    [Google Scholar]
  8. Sisignano M. Baron R. Scholich K. Geisslinger G. Mechanism-based treatment for chemotherapy-induced peripheral neuropathic pain. Nat. Rev. Neurol. 2014 10 12 694 707 10.1038/nrneurol.2014.211 25366108
    [Google Scholar]
  9. Quintão N.L.M. Santin J.R. Stoeberl L.C. Corrêa T.P. Melato J. Costa R. Pharmacological treatment of chemotherapy-induced neuropathic pain: PPARγ agonists as a promising tool. Front. Neurosci. 2019 13 907 10.3389/fnins.2019.00907 31555078
    [Google Scholar]
  10. Staff N.P. Grisold A. Grisold W. Windebank A.J. Chemotherapy‐induced peripheral neuropathy: A current review. Ann. Neurol. 2017 81 6 772 781 10.1002/ana.24951 28486769
    [Google Scholar]
  11. Wolf S. Barton D. Kottschade L. Grothey A. Loprinzi C. Chemotherapy-induced peripheral neuropathy: Prevention and treatment strategies. Eur. J. Cancer 2008 44 11 1507 1515 10.1016/j.ejca.2008.04.018 18571399
    [Google Scholar]
  12. Stockstill K. Wahlman C. Braden K. Chen Z. Yosten G.L. Tosh D.K. Jacobson K.A. Doyle T.M. Samson W.K. Salvemini D. Sexually dimorphic therapeutic response in bortezomib-induced neuropathic pain reveals altered pain physiology in female rodents. Pain 2020 161 1 177 184 10.1097/j.pain.0000000000001697 31490328
    [Google Scholar]
  13. Richardson P.G. Weller E. Lonial S. Jakubowiak A.J. Jagannath S. Raje N.S. Avigan D.E. Xie W. Ghobrial I.M. Schlossman R.L. Mazumder A. Munshi N.C. Vesole D.H. Joyce R. Kaufman J.L. Doss D. Warren D.L. Lunde L.E. Kaster S. DeLaney C. Hideshima T. Mitsiades C.S. Knight R. Esseltine D.L. Anderson K.C. Lenalidomide, bortezomib, and dexamethasone combination therapy in patients with newly diagnosed multiple myeloma. Blood 2010 116 5 679 686 10.1182/blood‑2010‑02‑268862 20385792
    [Google Scholar]
  14. Sethi G. Ahn K.S. Pandey M.K. Aggarwal B.B. Celastrol, a novel triterpene, potentiates TNF-induced apoptosis and suppresses invasion of tumor cells by inhibiting NF-κB–regulated gene products and TAK1-mediated NF-κB activation. Blood 2007 109 7 2727 2735 10.1182/blood‑2006‑10‑050807 17110449
    [Google Scholar]
  15. Hu M. Luo Q. Alitongbieke G. Chong S. Xu C. Xie L. Chen X. Zhang D. Zhou Y. Wang Z. Ye X. Cai L. Zhang F. Chen H. Jiang F. Fang H. Yang S. Liu J. Diaz-Meco M.T. Su Y. Zhou H. Moscat J. Lin X. Zhang X. Celastrol-induced Nur77 interaction with TRAF2 alleviates inflammation by promoting mitochondrial ubiquitination and autophagy. Mol. Cell 2017 66 1 141 153.e6 10.1016/j.molcel.2017.03.008 28388439
    [Google Scholar]
  16. Yang X. Chen A. Liang Q. Dong Q. Fu M. Liu X. Wang S. Li Y. Ye Y. Lan Z. Ou J.S. Lu L. Yan J. Up-regulation of heme oxygenase-1 by celastrol alleviates oxidative stress and vascular calcification in chronic kidney disease. Free Radic. Biol. Med. 2021 172 530 540 10.1016/j.freeradbiomed.2021.06.020 34174395
    [Google Scholar]
  17. Zhang C. Zhao M. Wang B. Su Z. Guo B. Qin L. Zhang W. Zheng R. The Nrf2-NLRP3-caspase-1 axis mediates the neuroprotective effects of Celastrol in Parkinson’s disease. Redox Biol. 2021 47 102134 10.1016/j.redox.2021.102134 34600334
    [Google Scholar]
  18. Lin M.W. Lin C.C. Chen Y.H. Yang H.B. Hung S.Y. Celastrol Inhibits dopaminergic neuronal death of parkinson’s disease through activating mitophagy. Antioxidants 2019 9 1 37 10.3390/antiox9010037 31906147
    [Google Scholar]
  19. Jung H.W. Chung Y.S. Kim Y.S. Park Y.K. Celastrol inhibits production of nitric oxide and proinflammatory cytokines through MAPK signal transduction and NF-κB in LPS-stimulated BV-2 microglial cells. Exp. Mol. Med. 2007 39 6 715 721 10.1038/emm.2007.78 18160842
    [Google Scholar]
  20. Nakayama T. Okimura K. Shen J. Guh Y.J. Tamai T.K. Shimada A. Minou S. Okushi Y. Shimmura T. Furukawa Y. Kadofusa N. Sato A. Nishimura T. Tanaka M. Nakayama K. Shiina N. Yamamoto N. Loudon A.S. Nishiwaki-Ohkawa T. Shinomiya A. Nabeshima T. Nakane Y. Yoshimura T. Seasonal changes in NRF2 antioxidant pathway regulates winter depression-like behavior. Proc. Natl. Acad. Sci. USA 2020 117 17 9594 9603 10.1073/pnas.2000278117 32277035
    [Google Scholar]
  21. Meesawatsom P. Hathway G. Bennett A. Constantin-Teodosiu D. Chapman V. Spinal neuronal excitability and neuroinflammation in a model of chemotherapeutic neuropathic pain: targeting the resolution pathways. J. Neuroinflammation 2020 17 1 316 10.1186/s12974‑020‑01997‑w 33097087
    [Google Scholar]
  22. Wahlman C. Doyle T.M. Little J.W. Luongo L. Janes K. Chen Z. Esposito E. Tosh D.K. Cuzzocrea S. Jacobson K.A. Salvemini D. Chemotherapy-induced pain is promoted by enhanced spinal adenosine kinase levels through astrocyte-dependent mechanisms. Pain 2018 159 6 1025 1034 10.1097/j.pain.0000000000001177 29419652
    [Google Scholar]
  23. Chen X. Mi W. Gao T. Ding F. Wang W. Astrocytes in the rostral ventromedial medulla mediate the analgesic effect of electroacupuncture in a rodent model of chemotherapy-induced peripheral neuropathic pain. Pain 2025 166 4 916 926 10.1097/j.pain.0000000000003433 39432736
    [Google Scholar]
  24. Kim S.K. Hayashi H. Ishikawa T. Shibata K. Shigetomi E. Shinozaki Y. Inada H. Roh S.E. Kim S.J. Lee G. Bae H. Moorhouse A.J. Mikoshiba K. Fukazawa Y. Koizumi S. Nabekura J. Cortical astrocytes rewire somatosensory cortical circuits for peripheral neuropathic pain. J. Clin. Invest. 2016 126 5 1983 1997 10.1172/JCI82859 27064281
    [Google Scholar]
  25. Xu C. Wang X. Gu C. Zhang H. Zhang R. Dong X. Liu C. Hu X. Ji X. Huang S. Chen L. Celastrol ameliorates Cd‐induced neuronal apoptosis by targeting NOX2‐derived ROS‐dependent PP5‐JNK signaling pathway. J. Neurochem. 2017 141 1 48 62 10.1111/jnc.13966 28129433
    [Google Scholar]
  26. Watkins L.R. Maier S.F. GLIA: A novel drug discovery target for clinical pain. Nat. Rev. Drug Discov. 2003 2 12 973 985 10.1038/nrd1251 14654796
    [Google Scholar]
  27. Milligan E.D. Watkins L.R. Pathological and protective roles of glia in chronic pain. Nat. Rev. Neurosci. 2009 10 1 23 36 10.1038/nrn2533 19096368
    [Google Scholar]
  28. Ji R.R. Donnelly C.R. Nedergaard M. Astrocytes in chronic pain and itch. Nat. Rev. Neurosci. 2019 20 11 667 685 10.1038/s41583‑019‑0218‑1 31537912
    [Google Scholar]
  29. Cheng G. Kong R. Zhang L. Zhang J. Mitochondria in traumatic brain injury and mitochondrial‐targeted multipotential therapeutic strategies. Br. J. Pharmacol. 2012 167 4 699 719 10.1111/j.1476‑5381.2012.02025.x 23003569
    [Google Scholar]
  30. Circu M.L. Aw T.Y. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic. Biol. Med. 2010 48 6 749 762 10.1016/j.freeradbiomed.2009.12.022 20045723
    [Google Scholar]
  31. Zhang T. Zhang Y. Cui M. Jin L. Wang Y. Lv F. Liu Y. Zheng W. Shang H. Zhang J. Zhang M. Wu H. Guo J. Zhang X. Hu X. Cao C.M. Xiao R.P. CaMKII is a RIP3 substrate mediating ischemia- and oxidative stress–induced myocardial necroptosis. Nat. Med. 2016 22 2 175 182 10.1038/nm.4017 26726877
    [Google Scholar]
  32. Mayoral V. Galvez R. Ferrándiz M. Miguéns Vázquez X. Cordero-García C. Alcántara Montero A. Pérez C. Pérez-Páramo M. Pregabalin vs. gabapentin in the treatment of neuropathic pain: A comprehensive systematic review and meta-analysis of effectiveness and safety. Frontiers in Pain Research 2025 5 1513597 10.3389/fpain.2024.1513597 39839199
    [Google Scholar]
  33. Moore A. Derry S. Wiffen P. Gabapentin for chronic neuropathic pain. JAMA 2018 319 8 818 819 10.1001/jama.2017.21547 29486015
    [Google Scholar]
  34. Goodman C.W. Brett A.S. Gabapentin and pregabalin for pain: Is increased prescribing a cause for concern? N. Engl. J. Med. 2017 377 5 411 414 10.1056/NEJMp1704633 28767350
    [Google Scholar]
  35. Vinik A. Rosenstock J. Sharma U. Feins K. Hsu C. Merante D. Efficacy and safety of mirogabalin (DS-5565) for the treatment of diabetic peripheral neuropathic pain: a randomized, double-blind, placebo- and active comparator-controlled, adaptive proof-of-concept phase 2 study. Diabetes Care 2014 37 12 3253 3261 10.2337/dc14‑1044 25231896
    [Google Scholar]
/content/journals/cn/10.2174/011570159X385690250509050208
Loading
/content/journals/cn/10.2174/011570159X385690250509050208
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Review Article
Keywords: VINP ; astrocyte ; apoptosis ; Celastrol ; inflammation ; oxidative stress
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test