Skip to content
2000
image of The Evolution of Machine Learning in Medicinal Chemistry: A Comprehensive Bibliometric Analysis

Abstract

Introduction

In the medicinal chemistry (MC) field, artificial intelligence (AI) has been used to establish quantitative structure-activity relationship (QSAR) classification models, virtual screening, drug discovery, drug design, and so on. In this investigation, MC AI studies (AI-MC) (from 2001-2023) underwent quantitative and qualitative modeling analyses.

Methods

Using a hybrid research strategy incorporating content analyses and bibliometric methods, we retrospectively analysed the AI-MC literature using a bibliometrix package (R software) combined with CiteSpace V and VOSviewer programs.

Results

Between 2001 and 2023, AI-MC articles were published in 92 countries or regions, with China and the United States leading in the number of publications. Also, 196 affiliations were added to AI-MC research; the CHINESE ACADEMY OF SCIENCES contributed the most. Reference clusters were categorized as follows: (1) QSAR, (2) virtual screening, (3) drug discovery, (4) drug design. Predictive model (2020-2021), molecular fingerprints (2021-2023) and scoring function (2021-2023) reflected research frontier keywords. As we look to the future, the ongoing progress and innovation in technology herald the promising development of multimodal and large language models (LLMs) within the realm of MC.

Discussion

The integration of AI into MC has significantly transformed the landscape of drug development. AI techniques, particularly machine learning, and deep learning algorithms, have demonstrated remarkable potential in accelerating the discovery and optimization of new drugs. By leveraging large datasets and advanced computational models, AI enhances the efficiency of virtual screening, improves the accuracy of QSAR models, and facilitates the design of novel therapeutic agents. As the technology continues to advance, the development of multimodal and large language models (LLMs) is expected to further revolutionize this field, offering new opportunities for more precise and efficient drug design and discovery.

Conclusion

We comprehensively characterized the AI-MC field and determined future trends and hotspots. Importantly, we provided a dynamic oversight of the AI-MC literature and identified key upcoming research areas.

© 2025 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X384988250430093924
2025-05-13
2025-09-10
Loading full text...

Full text loading...

/deliver/fulltext/cn/10.2174/011570159X384988250430093924/BMS-CN-2025-19.html?itemId=/content/journals/cn/10.2174/011570159X384988250430093924&mimeType=html&fmt=ahah

References

  1. Liang G.Q. Deng J. Wu C.X. Li W.J. Hu Y.F. Song Y.Q. Yin X.C. He Q. Xiao Y.C. Li G.B. Design, synthesis, and biological evaluation of boron-containing β-lactamase inhibitors: Closed-loop education experiences in an undergraduate medicinal chemistry course. J. Chem. Educ. 2023 100 2 803 810 10.1021/acs.jchemed.2c00692
    [Google Scholar]
  2. Fernandes J.P.S. The importance of medicinal chemistry knowledge in the clinical pharmacist’s education. Am. J. Pharm. Educ. 2018 82 2 6083 10.5688/ajpe6083 29606703
    [Google Scholar]
  3. Hann M.M. Keserü G.M. Finding the sweet spot: The role of nature and nurture in medicinal chemistry. Nat. Rev. Drug Discov. 2012 11 5 355 365 10.1038/nrd3701 22543468
    [Google Scholar]
  4. Gromek S. Balunas M. Natural products as exquisitely potent cytotoxic payloads for antibody- drug conjugates. Curr. Top. Med. Chem. 2015 14 24 2822 2834 10.2174/1568026615666141208111253 25487009
    [Google Scholar]
  5. Fosso Wamba S. Bawack R.E. Guthrie C. Queiroz M.M. Carillo K.D.A. Are we preparing for a good AI society? A bibliometric review and research agenda. Technol. Forecast. Soc. Change 2021 164 120482 10.1016/j.techfore.2020.120482
    [Google Scholar]
  6. Jiang F. Jiang Y. Zhi H. Dong Y. Li H. Ma S. Wang Y. Dong Q. Shen H. Wang Y. Artificial intelligence in healthcare: Past, present and future. Stroke Vasc. Neurol. 2017 2 4 230 243 10.1136/svn‑2017‑000101 29507784
    [Google Scholar]
  7. Lee S. Raza Shah S.A. Seok W. Moon J. Kim K. Raza Shah S.H. An optimal network-aware scheduling technique for distributed deep learning in distributed HPC platforms. Electronics 2023 12 14 3021 10.3390/electronics12143021
    [Google Scholar]
  8. Buccheri E. Dell’Aquila D. Russo M. Chiaramonte R. Vecchio M. Appendicular skeletal muscle mass in older adults can be estimated with a simple equation using a few zero-cost variables. J. Geriatr. Phys. Ther. 2024 47 4 E149 E158 10.1519/JPT.0000000000000420 39079022
    [Google Scholar]
  9. Dara S. Dhamercherla S. Jadav S.S. Babu C.H.M. Ahsan M.J. Machine learning in drug discovery: A review. Artif. Intell. Rev. 2022 55 3 1947 1999 10.1007/s10462‑021‑10058‑4 34393317
    [Google Scholar]
  10. Vamathevan J. Clark D. Czodrowski P. Dunham I. Ferran E. Lee G. Li B. Madabhushi A. Shah P. Spitzer M. Zhao S. Applications of machine learning in drug discovery and development. Nat. Rev. Drug Discov. 2019 18 6 463 477 10.1038/s41573‑019‑0024‑5 30976107
    [Google Scholar]
  11. Azar A.T. El-Metwally S.M. Decision tree classifiers for automated medical diagnosis. Neural Comput. Appl. 2013 23 7-8 2387 2403 10.1007/s00521‑012‑1196‑7
    [Google Scholar]
  12. Buccheri E. Dell’Aquila D. Russo M. Chiaramonte R. Musumeci G. Vecchio M. Can artificial intelligence simplify the screening of muscle mass loss? Heliyon 2023 9 5 e16323 10.1016/j.heliyon.2023.e16323 37251872
    [Google Scholar]
  13. Batool M. Ahmad B. Choi S. A structure-based drug discovery paradigm. Int. J. Mol. Sci. 2019 20 11 2783 10.3390/ijms20112783 31174387
    [Google Scholar]
  14. Yang X. Wang Y. Byrne R. Schneider G. Yang S. Concepts of artificial intelligence for computer-assisted drug discovery. Chem. Rev. 2019 119 18 10520 10594 10.1021/acs.chemrev.8b00728 31294972
    [Google Scholar]
  15. Merigó J.M. Gil-Lafuente A.M. Yager R.R. An overview of fuzzy research with bibliometric indicators. Appl. Soft Comput. 2015 27 420 433 10.1016/j.asoc.2014.10.035
    [Google Scholar]
  16. Mora L. Deakin M. Reid A. Combining co-citation clustering and text-based analysis to reveal the main development paths of smart cities. Technol. Forecast. Soc. Change 2019 142 56 69 10.1016/j.techfore.2018.07.019
    [Google Scholar]
  17. Wang S. Zhou H. Zheng L. Zhu W. Zhu L. Feng D. Wei J. Chen G. Jin X. Yang H. Shi X. Lv X. Global trends in research of macrophages associated with acute lung injury over past 10 years: A bibliometric analysis. Front. Immunol. 2021 12 669539 10.3389/fimmu.2021.669539 34093568
    [Google Scholar]
  18. Sun H.L. Bai W. Li X.H. Huang H. Cui X.L. Cheung T. Su Z.H. Yuan Z. Ng C.H. Xiang Y.T. Schizophrenia and inflammation research: A bibliometric analysis. Front. Immunol. 2022 13 907851 10.3389/fimmu.2022.907851 35757702
    [Google Scholar]
  19. Ma J. Sheridan R.P. Liaw A. Dahl G.E. Svetnik V. Deep neural nets as a method for quantitative structure-activity relationships. J. Chem. Inf. Model. 2015 55 2 263 274 10.1021/ci500747n 25635324
    [Google Scholar]
  20. Ragoza M. Hochuli J. Idrobo E. Sunseri J. Koes D.R. Protein–ligand scoring with convolutional neural networks. J. Chem. Inf. Model. 2017 57 4 942 957 10.1021/acs.jcim.6b00740 28368587
    [Google Scholar]
  21. Yang K. Swanson K. Jin W.G. Coley C. Eiden P. Gao H. Guzman-Perez A. Hopper T. Kelley B. Mathea M. Palmer A. Settels V. Jaakkola T. Jensen K. Barzilay R. Analyzing learned molecular representations for property prediction. J. Chem. Inf. Model. 2019 59 12 5304 5305 10.1021/acs.jcim.9b01076 31814400
    [Google Scholar]
  22. Lusci A. Pollastri G. Baldi P. Deep architectures and deep learning in chemoinformatics: The prediction of aqueous solubility for drug-like molecules. J. Chem. Inf. Model. 2013 53 7 1563 1575 10.1021/ci400187y 23795551
    [Google Scholar]
  23. Gupta A. Müller A.T. Huisman B.J.H. Fuchs J.A. Schneider P. Schneider G. Generative recurrent networks for De Novo drug design. Mol. Inform. 2018 37 1-2 1700111 10.1002/minf.201700111
    [Google Scholar]
  24. Brown N. Fiscato M. Segler M.H.S. Vaucher A.C. GuacaMol: Benchmarking Models for de novo molecular design. J. Chem. Inf. Model. 2019 59 3 1096 1108 10.1021/acs.jcim.8b00839 30887799
    [Google Scholar]
  25. Gawehn E. Hiss J.A. Schneider G. Deep learning in drug discovery. Mol. Inform. 2016 35 1 3 14 10.1002/minf.201501008 27491648
    [Google Scholar]
  26. Ramsundar B. Liu B. Wu Z. Verras A. Tudor M. Sheridan R.P. Pande V. Is multitask deep learning practical for pharma? J. Chem. Inf. Model. 2017 57 8 2068 2076 10.1021/acs.jcim.7b00146 28692267
    [Google Scholar]
  27. Jaeger S. Fulle S. Turk S. Mol2vec: Unsupervised machine learning approach with chemical intuition. J. Chem. Inf. Model. 2018 58 1 27 35 10.1021/acs.jcim.7b00616 29268609
    [Google Scholar]
  28. Pereira J.C. Caffarena E.R. dos Santos C.N. Boosting docking-based virtual screening with deep learning. J. Chem. Inf. Model. 2016 56 12 2495 2506 10.1021/acs.jcim.6b00355 28024405
    [Google Scholar]
  29. Cherkasov A. Muratov E.N. Fourches D. Varnek A. Baskin I.I. Cronin M. Dearden J. Gramatica P. Martin Y.C. Todeschini R. Consonni V. Kuz’min V.E. Cramer R. Benigni R. Yang C. Rathman J. Terfloth L. Gasteiger J. Richard A. Tropsha A. QSAR modeling: Where have you been? Where are you going to? J. Med. Chem. 2014 57 12 4977 5010 10.1021/jm4004285 24351051
    [Google Scholar]
  30. Moriwaki H. Tian Y.S. Kawashita N. Takagi T. Three-dimensional classification structure–activity relationship analysis using convolutional neural network. Chem. Pharm. Bull. (Tokyo) 2019 67 5 426 432 10.1248/cpb.c18‑00757 31061367
    [Google Scholar]
  31. Andrade C.H. Pasqualoto K.F.M. Ferreira E.I. Hopfinger A.J. 4D-QSAR: Perspectives in drug design. Molecules 2010 15 5 3281 3294 10.3390/molecules15053281 20657478
    [Google Scholar]
  32. Hameed R. Khan A. Khan S. Perveen S. Computational approaches towards kinases as attractive targets for anticancer drug discovery and development. Anticancer. Agents Med. Chem. 2019 19 5 592 598 10.2174/1871520618666181009163014 30306880
    [Google Scholar]
  33. Kurniawan I. Rosalinda M. Ikhsan N. Implementation of ensemble methods on QSAR Study of NS3 inhibitor activity as anti-dengue agent. SAR QSAR Environ. Res. 2020 31 6 477 492 10.1080/1062936X.2020.1773534 32546117
    [Google Scholar]
  34. Amoroso N. Quarto S. La Rocca M. Tangaro S. Monaco A. Bellotti R. An eXplainability artificial intelligence approach to brain connectivity in Alzheimer’s disease. Front. Aging Neurosci. 2023 15 1238065 10.3389/fnagi.2023.1238065 37719873
    [Google Scholar]
  35. Yaprakdal F. Varol Arısoy M. A multivariate time series analysis of electrical load forecasting based on a hybrid feature selection approach and explainable deep learning. Appl. Sci. 2023 13 23 12946 10.3390/app132312946
    [Google Scholar]
  36. AlMohimeed A. Saad R.M.A. Mostafa S. El-Rashidy N.M. Farrag S. Gaballah A. Elaziz M.A. El-Sappagh S. Saleh H. Explainable artificial intelligence of multi-level stacking ensemble for detection of alzheimer’s disease based on particle swarm optimization and the sub-scores of cognitive biomarkers. IEEE Access 2023 11 123173 123193 10.1109/ACCESS.2023.3328331
    [Google Scholar]
  37. Kamal M.S. Chowdhury L. Nimmy S.F. Hasan Rafi T.H. Chae D-K. An Interpretable Framework for Identifying Cerebral Microbleeds and Alzheimer’s Disease Severity using Multimodal Data. 2023 45th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Sydney, Australia, 24-27 July 2023, pp. 1-4 2023 10.1109/EMBC40787.2023.10340088
    [Google Scholar]
  38. Calabrese V. Scapagnini G. Ravagna A. Bella R. Butterfield D.A. Calvani M. Pennisi G. Stella G.A.M. Disruption of thiol homeostasis and nitrosative stress in the cerebrospinal fluid of patients with active multiple sclerosis: Evidence for a protective role of acetylcarnitine. Neurochem. Res. 2003 28 9 1321 1328 10.1023/A:1024984013069 12938853
    [Google Scholar]
  39. Calabrese V. Colombrita C. Guagliano E. Sapienza M. Ravagna A. Cardile V. Scapagnini G. Santoro A.M. Mangiameli A. Butterfield D.A. Stella A.M.G. Rizzarelli E. Protective effect of carnosine during nitrosative stress in astroglial cell cultures. Neurochem. Res. 2005 30 6-7 797 807 10.1007/s11064‑005‑6874‑8 16187215
    [Google Scholar]
  40. Sun H. Wang J. Wu H. Lin S. Chen J. Wei J. Lv S. Xiong Y. Wei D.Q. A multimodal deep learning framework for predicting PPI-modulator interactions. J. Chem. Inf. Model. 2023 63 23 7363 7372 10.1021/acs.jcim.3c01527 38037990
    [Google Scholar]
  41. Wei Y. Li W. Du T. Hong Z. Lin J. Targeting HIV/HCV coinfection using a machine learning-based multiple quantitative structure-activity relationships (Multiple QSAR) method. Int. J. Mol. Sci. 2019 20 14 3572 10.3390/ijms20143572 31336592
    [Google Scholar]
  42. Kumari M. Subbarao N. Convolutional neural network-based quantitative structure-activity relationship and fingerprint analysis against inhibitors of anthrax lethal factor. Future Med. Chem. 2023 15 10 853 866 10.4155/fmc‑2023‑0093 37248697
    [Google Scholar]
  43. Worachartcheewan A. Songtawee N. Siriwong S. Prachayasittikul S. Nantasenamat C. Prachayasittikul V. Rational design of colchicine derivatives as anti-HIV agents via QSAR and molecular docking. Med. Chem. 2019 15 4 328 340 10.2174/1573406414666180924163756 30251609
    [Google Scholar]
  44. Deng Y. Liu Y. Tang S. Zhou C. Han X. Xiao W. Pastur-Romay L.A. Vazquez-Naya J.M. Loureiro J.P. Munteanu C.R. Tan Z. General machine learning model, review, and experimental-theoretic study of magnolol activity in enterotoxigenic induced oxidative stress. Curr. Top. Med. Chem. 2017 17 26 2977 2988 28828993
    [Google Scholar]
  45. Abbasi-Radmoghaddam Z. Riahi S. Gharaghani S. Mohammadi-Khanaposhtanai M. Design of potential anti-tumor PARP-1 inhibitors by QSAR and molecular modeling studies. Mol. Divers. 2021 25 1 263 277 10.1007/s11030‑020‑10063‑9 32140890
    [Google Scholar]
  46. Patrício R.P.S. Videira P.A. Pereira F. A computer-aided drug design approach to discover tumour suppressor p53 protein activators for colorectal cancer therapy. Bioorg. Med. Chem. 2022 53 116530 10.1016/j.bmc.2021.116530 34861473
    [Google Scholar]
  47. Jayaprakash V. Saravanan T. Ravindran K. Prabha T. Selvaraj J. Jayapalan S. Chaitanya M.V.N.L. Sivakumar T. Relevance of machine learning to predict the inhibitory activity of small thiazole chemicals on estrogen receptor. Curr. Computeraided Drug Des. 2023 19 1 37 50 10.2174/1573409919666221121141646 36424784
    [Google Scholar]
  48. Shayanfar A. Ghasemi S. Soltani S. Asadpour-Zeynali K. Doerksen R.J. Jouyban A. Quantitative structure-activity relationships of imidazole-containing farnesyltransferase inhibitors using different chemometric methods. Med. Chem. 2013 9 3 434 448 10.2174/1573406411309030014 22920090
    [Google Scholar]
  49. Nayarisseri A. Khandelwal R. Tanwar P. Madhavi M. Sharma D. Thakur G. Speck-Planche A. Singh S.K. Artificial Intelligence, big data and machine learning approaches in precision medicine & drug discovery. Curr. Drug Targets 2021 22 6 631 655 10.2174/18735592MTEzsMDMnz 33397265
    [Google Scholar]
  50. Carpenter K.A. Cohen D.S. Jarrell J.T. Huang X. Deep learning and virtual drug screening. Future Med. Chem. 2018 10 21 2557 2567 10.4155/fmc‑2018‑0314 30288997
    [Google Scholar]
  51. Kumar S.A. Ananda Kumar T.D. Beeraka N.M. Pujar G.V. Singh M. Narayana Akshatha H.S. Bhagyalalitha M. Machine learning and deep learning in data-driven decision making of drug discovery and challenges in high-quality data acquisition in the pharmaceutical industry. Future Med. Chem. 2022 14 4 245 270 10.4155/fmc‑2021‑0243 34939433
    [Google Scholar]
  52. Xiao T. Qi X. Chen Y. Jiang Y. Development of ligand‐based big data deep neural network models for virtual screening of large compound libraries. Mol. Inform. 2018 37 11 1800031 10.1002/minf.201800031 29882343
    [Google Scholar]
  53. Hirohara M. Saito Y. Koda Y. Sato K. Sakakibara Y. Convolutional neural network based on SMILES representation of compounds for detecting chemical motif. BMC Bioinformatics 2018 19 S19 526 10.1186/s12859‑018‑2523‑5 30598075
    [Google Scholar]
  54. Torng W. Altman R.B. Graph convolutional neural networks for predicting drug-target interactions. J. Chem. Inf. Model. 2019 59 10 4131 4149 10.1021/acs.jcim.9b00628 31580672
    [Google Scholar]
  55. Kumari M. Subbarao N. A hybrid resampling algorithms SMOTE and ENN based deep learning models for identification of Marburg virus inhibitors. Future Med. Chem. 2022 14 10 701 715 10.4155/fmc‑2021‑0290 35393862
    [Google Scholar]
  56. Qin T. Zhu Z. Wang X.S. Xia J. Wu S. Computational representations of protein–ligand interfaces for structure-based virtual screening. Expert Opin. Drug Discov. 2021 16 10 1175 1192 10.1080/17460441.2021.1929921 34011222
    [Google Scholar]
  57. Ricci-Lopez J. Aguila S.A. Gilson M.K. Brizuela C.A. Improving structure-based virtual screening with ensemble docking and machine learning. J. Chem. Inf. Model. 2021 61 11 5362 5376 10.1021/acs.jcim.1c00511 34652141
    [Google Scholar]
  58. Jiang D. Hsieh C.Y. Wu Z. Kang Y. Wang J. Wang E. Liao B. Shen C. Xu L. Wu J. Cao D. Hou T. InteractionGraphNet: A novel and efficient deep graph representation learning framework for accurate protein–ligand interaction predictions. J. Med. Chem. 2021 64 24 18209 18232 10.1021/acs.jmedchem.1c01830 34878785
    [Google Scholar]
  59. Shimizu Y. Yonezawa T. Sakamoto J. Furuya T. Osawa M. Ikeda K. Identification of novel inhibitors of Keap1/Nrf2 by a promising method combining protein–protein interaction-oriented library and machine learning. Sci. Rep. 2021 11 1 7420 10.1038/s41598‑021‑86616‑1 33795749
    [Google Scholar]
  60. Zheng M. Liu Z. Yan X. Ding Q. Gu Q. Xu J. LBVS: An online platform for ligand-based virtual screening using publicly accessible databases. Mol. Divers. 2014 18 4 829 840 10.1007/s11030‑014‑9545‑3 25182364
    [Google Scholar]
  61. Bonanno E. Ebejer J.P. Applying machine learning to ultrafast shape recognition in ligand-based virtual screening. Front. Pharmacol. 2020 10 1675 10.3389/fphar.2019.01675 32140104
    [Google Scholar]
  62. Berrhail F. Belhadef H. Haddad M. Deep convolutional neural network to improve the performances of screening process in LBVS. Expert Syst. Appl. 2022 203 117287 10.1016/j.eswa.2022.117287
    [Google Scholar]
  63. Ani R. Deepa O.S. Graph convolutional neural network-based virtual screening of phytochemicals and in-silico docking studies of drug compounds for hemochromatosis. IEEE Access 2023 11 138687 138698 10.1109/ACCESS.2023.3338735
    [Google Scholar]
  64. Schneider M. Pons J.L. Bourguet W. Labesse G. Elofsson A. Towards accurate high-throughput ligand affinity prediction by exploiting structural ensembles, docking metrics and ligand similarity. Bioinformatics 2020 36 1 160 168 10.1093/bioinformatics/btz538 31350558
    [Google Scholar]
  65. Mubashir N. Fatima R. Naeem S. Identification of novel phyto-chemicals from Ocimum basilicum for the treatment of parkinson’s disease using in silico approach. Curr. Computeraided Drug Des. 2020 16 4 420 434 10.2174/1573409915666190503113617 32883197
    [Google Scholar]
  66. Wang Z. Belecciu T. Eaves J. Reimers M. Bachmann M.H. Woldring D. Phytochemical drug discovery for COVID-19 using high-resolution computational docking and machine learning assisted binder prediction. J. Biomol. Struct. Dyn. 2023 41 14 6643 6663 10.1080/07391102.2022.2112976 35993534
    [Google Scholar]
  67. Sahu A. Mishra J. Kushwaha N. Artificial Intelligence (AI) in drugs and pharmaceuticals. Comb. Chem. High Throughput Screen. 2022 25 11 1818 1837 10.2174/1386207325666211207153943 34875986
    [Google Scholar]
  68. Zhong F. Xing J. Li X. Liu X. Fu Z. Xiong Z. Lu D. Wu X. Zhao J. Tan X. Li F. Luo X. Li Z. Chen K. Zheng M. Jiang H. Artificial intelligence in drug design. Sci. China Life Sci. 2018 61 10 1191 1204 10.1007/s11427‑018‑9342‑2 30054833
    [Google Scholar]
  69. Tripathi N. Goshisht M.K. Sahu S.K. Arora C. Applications of artificial intelligence to drug design and discovery in the big data era: A comprehensive review. Mol. Divers. 2021 25 3 1643 1664 10.1007/s11030‑021‑10237‑z 34110579
    [Google Scholar]
  70. Piroozmand F. Mohammadipanah F. Sajedi H. Spectrum of deep learning algorithms in drug discovery. Chem. Biol. Drug Des. 2020 96 3 886 901 10.1111/cbdd.13674 33058458
    [Google Scholar]
  71. Born J. Manica M. Trends in deep learning for property-driven drug design. Curr. Med. Chem. 2021 28 38 7862 7886 10.2174/0929867328666210729115728 34325627
    [Google Scholar]
  72. Hudson I.L. Data integration using advances in machine learning in drug discovery and molecular biology. Artif. Neural. Networ 2021 2190 167 184 10.1007/978‑1‑0716‑0826‑5_7
    [Google Scholar]
  73. Lee J.W. Maria-Solano M.A. Vu T.N.L. Yoon S. Choi S. Big data and artificial intelligence (AI) methodologies for computer-aided drug design (CADD). Biochem. Soc. Trans. 2022 50 1 241 252 10.1042/BST20211240 35076690
    [Google Scholar]
  74. Goel M. Aggarwal R. Sridharan B. Pal P.K. Priyakumar U.D. Efficient and enhanced sampling of drug‐like chemical space for virtual screening and molecular design using modern machine learning methods. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2023 13 2 e1637 10.1002/wcms.1637
    [Google Scholar]
  75. Merchant J.P. Zhu K. Henrion M.Y.R. Zaidi S.S.A. Lau B. Moein S. Alamprese M.L. Pearse R.V. II Bennett D.A. Ertekin-Taner N. Young-Pearse T.L. Chang R. Predictive network analysis identifies JMJD6 and other potential key drivers in Alzheimer’s disease. Commun. Biol. 2023 6 1 503 10.1038/s42003‑023‑04791‑5 37188718
    [Google Scholar]
  76. Freyhult E. Gustafsson M.G. Strömbergsson H. A machine learning approach to explain drug selectivity to soluble and membrane protein targets. Mol. Inform. 2015 34 1 44 52 10.1002/minf.201400121 27490861
    [Google Scholar]
  77. Rifaioglu A.S. Nalbat E. Atalay V. Martin M.J. Cetin-Atalay R. Doğan T. DEEPScreen: High performance drug–target interaction prediction with convolutional neural networks using 2-D structural compound representations. Chem. Sci. (Camb.) 2020 11 9 2531 2557 10.1039/C9SC03414E 33209251
    [Google Scholar]
  78. Shao K. Zhang Y. Wen Y. Zhang Z. He S. Bo X. DTI-HETA: Prediction of drug–target interactions based on GCN and GAT on heterogeneous graph. Brief. Bioinform. 2022 23 3 bbac109 10.1093/bib/bbac109 35380622
    [Google Scholar]
  79. Jukič M. Bren U. Machine learning in antibacterial drug design. Front. Pharmacol. 2022 13 864412 10.3389/fphar.2022.864412 35592425
    [Google Scholar]
  80. Jing Y. Bian Y. Hu Z. Wang L. Xie X.Q.S. Deep learning for drug design: an artificial intelligence paradigm for drug discovery in the big data era. AAPS J. 2018 20 3 58 10.1208/s12248‑018‑0210‑0 29603063
    [Google Scholar]
  81. D’Souza S. Kv P. Balaji S. Training recurrent neural networks as generative neural networks for molecular structures: How does it impact drug discovery? Expert Opin. Drug Discov. 2022 17 10 1071 1079 10.1080/17460441.2023.2134340 36216812
    [Google Scholar]
  82. Bian Y. Wang J. Jun J.J. Xie X.Q. Deep Convolutional Generative Adversarial Network (dcGAN) models for screening and design of small molecules targeting cannabinoid receptors. Mol. Pharm. 2019 16 11 4451 4460 10.1021/acs.molpharmaceut.9b00500 31589460
    [Google Scholar]
  83. Peña-Guerrero J. Nguewa P.A. García-Sosa A.T. Machine learning, artificial intelligence, and data science breaking into drug design and neglected diseases. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2021 11 5 e1513 10.1002/wcms.1513
    [Google Scholar]
  84. Mouchlis V.D. Afantitis A. Serra A. Fratello M. Papadiamantis A.G. Aidinis V. Lynch I. Greco D. Melagraki G. Advances in de novo drug design: From conventional to machine learning methods. Int. J. Mol. Sci. 2021 22 4 1676 10.3390/ijms22041676 33562347
    [Google Scholar]
  85. Jiang P. Chi Y. Li X.S. Meng Z. Liu X. Hua X-S. Xia K. Molecular persistent spectral image (Mol-PSI) representation for machine learning models in drug design. Brief. Bioinform. 2022 23 1 bbab527 10.1093/bib/bbab527 34958660
    [Google Scholar]
  86. Gao H. Chen C. Li S. Wang C. Zhou W. Yu B. Prediction of protein-protein interactions based on ensemble residual convolutional neural network. Comput. Biol. Med. 2023 152 106471 10.1016/j.compbiomed.2022.106471
    [Google Scholar]
  87. Clayton E.A. Pujol T.A. McDonald J.F. Qiu P. Leveraging TCGA gene expression data to build predictive models for cancer drug response. BMC Bioinformatics 2020 21 S14 364 10.1186/s12859‑020‑03690‑4 32998700
    [Google Scholar]
  88. Schperberg A.V. Boichard A. Tsigelny I.F. Richard S.B. Kurzrock R. Machine learning model to predict oncologic outcomes for drugs in randomized clinical trials. Int. J. Cancer 2020 147 9 2537 2549 10.1002/ijc.33240 32745254
    [Google Scholar]
  89. Sharma A. Rani R. An integrated framework for identification of effective and synergistic anti-cancer drug combinations. J. Bioinform. Comput. Biol. 2018 16 5 1850017 10.1142/S0219720018500178 30304987
    [Google Scholar]
  90. Wang B. Tan X. Guo J. Xiao T. Jiao Y. Zhao J. Wu J. Wang Y. Drug-induced immune thrombocytopenia toxicity prediction based on machine learning. Pharmaceutics 2022 14 5 943 10.3390/pharmaceutics14050943 35631529
    [Google Scholar]
  91. Gong Y. Teng D. Wang Y. Gu Y. Wu Z. Li W. Tang Y. Liu G. In silico prediction of potential drug‐induced nephrotoxicity with machine learning methods. J. Appl. Toxicol. 2022 42 10 1639 1650 10.1002/jat.4331 35429013
    [Google Scholar]
  92. Murali V. Muralidhar Y.P. Königs C. Nair M. Madhu S. Nedungadi P. Srinivasa G. Athri P. Predicting clinical trial outcomes using drug bioactivities through graph database integration and machine learning. Chem. Biol. Drug Des. 2022 100 2 169 184 10.1111/cbdd.14092 35587730
    [Google Scholar]
  93. Sang S. Yang Z. Liu X. Wang L. Lin H. Wang J. Dumontier M. GrEDeL: A knowledge graph embedding based method for drug discovery from biomedical literatures. IEEE Access 2019 7 8404 8415 10.1109/ACCESS.2018.2886311
    [Google Scholar]
  94. Askr H. Elgeldawi E. Aboul Ella H. Elshaier Y.A.M.M. Gomaa M.M. Hassanien A.E. Deep learning in drug discovery: An integrative review and future challenges. Artif. Intell. Rev. 2023 56 7 5975 6037 10.1007/s10462‑022‑10306‑1 36415536
    [Google Scholar]
  95. Baskin I.I. The power of deep learning to ligand-based novel drug discovery. Expert Opin. Drug Discov. 2020 15 7 755 764 10.1080/17460441.2020.1745183 32228116
    [Google Scholar]
  96. Shi T. Yang Y. Huang S. Chen L. Kuang Z. Heng Y. Mei H. Molecular image-based convolutional neural network for the prediction of ADMET properties. Chemom. Intell. Lab. Syst. 2019 194 103853 10.1016/j.chemolab.2019.103853
    [Google Scholar]
  97. Tian Q. Ding M. Yang H. Yue C. Zhong Y. Du Z. Liu D. Liu J. Deng Y. Predicting drug-target affinity based on recurrent neural networks and graph convolutional neural networks. Comb. Chem. High Throughput Screen. 2022 25 4 634 641 10.2174/1386207324666210215101825 33588722
    [Google Scholar]
  98. Xu X. Xuan P. Zhang T. Chen B. Sheng N. Inferring drug-target interactions based on random walk and convolutional neural network. IEEE/ACM Trans. Comput. Biol. Bioinformatics 2022 19 4 2294 2304 10.1109/TCBB.2021.3066813 33729947
    [Google Scholar]
  99. Hu S. Xia D. Chen P. Wang B. Using novel convolutional neural networks architecture to predict drug-target interactions. Intelligent Computing Theories and Application. Springer 2018 432 437 10.1007/978‑3‑319‑95933‑7_52
    [Google Scholar]
  100. Kavipriya G. Manjula D. Drug–target interaction prediction model using optimal recurrent neural network. Intell. Aut. Soft. Comput. 2023 35 2 1675 1689 10.32604/iasc.2023.027670
    [Google Scholar]
  101. Wang S. Du Z. Ding M. Zhao R. Rodriguez-Paton A. Song T. LDCNN-DTI: A novel light deep convolutional neural network for drug-target interaction predictions. 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) Seoul, Korea (South), 16-19 December 2020, pp. 1132-1136 10.1109/BIBM49941.2020.9313585
    [Google Scholar]
  102. Son J. Kim D. Kim D. Development of a graph convolutional neural network model for efficient prediction of protein-ligand binding affinities. PLoS One 2021 16 4 e0249404 10.1371/journal.pone.0249404 33831016
    [Google Scholar]
  103. Wang X. Liu J. Zhang C. Wang S. SSGraphCPI: A novel model for predicting compound-protein interactions based on deep learning. Int. J. Mol. Sci. 2022 23 7 3780 10.3390/ijms23073780 35409140
    [Google Scholar]
  104. Wardah W. Dehzangi A. Taherzadeh G. Rashid M.A. Khan M.G.M. Tsunoda T. Sharma A. Predicting protein-peptide binding sites with a deep convolutional neural network. J. Theor. Biol. 2020 496 110278 10.1016/j.jtbi.2020.110278 32298689
    [Google Scholar]
  105. Yan X. Liu Y. Zhang W. Deep graph and sequence representation learning for drug response prediction. Artificial Neural Networks and Machine Learning – ICANN 2022. Springer 2022 97 108 10.1007/978‑3‑031‑15919‑0_9
    [Google Scholar]
  106. Jia P. Hu R. Pei G. Dai Y. Wang Y.Y. Zhao Z. Deep generative neural network for accurate drug response imputation. Nat. Commun. 2021 12 1 1740 10.1038/s41467‑021‑21997‑5 33741950
    [Google Scholar]
  107. Chen J. Zhang L. A survey and systematic assessment of computational methods for drug response prediction. Brief. Bioinform. 2021 22 1 232 246 10.1093/bib/bbz164 31927568
    [Google Scholar]
  108. Mingxun Z. Zhigang M. Jingyi W. Ahmad S. Drug response prediction based on 1d convolutional neural network and attention mechanism. Comput. Math. Methods Med. 2022 2022 1 6 10.1155/2022/8671348 36164615
    [Google Scholar]
  109. Zitnik M. Agrawal M. Leskovec J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 2018 34 13 i457 i466 10.1093/bioinformatics/bty294 29949996
    [Google Scholar]
  110. Huang W. Li C. Ju Y. Gao Y. The next generation of machine learning in DDIs prediction. Curr. Pharm. Des. 2021 27 23 2728 2736 10.2174/1381612827666210127122312 33504300
    [Google Scholar]
  111. Shim Y. Lee M. Kim P.J. Kim H.G. A novel approach to predicting the synergy of anti-cancer drug combinations using document-based feature extraction. BMC Bioinformatics 2022 23 1 163 10.1186/s12859‑022‑04698‑8 35513784
    [Google Scholar]
  112. Jiang H.J. You Z.H. Huang Y.A. Predicting drug−disease associations via sigmoid kernel-based convolutional neural networks. J. Transl. Med. 2019 17 1 382 10.1186/s12967‑019‑2127‑5 31747915
    [Google Scholar]
  113. Kim E. Choi A. Nam H. Drug repositioning of herbal compounds via a machine-learning approach. BMC Bioinformatics 2019 20 S10 247 10.1186/s12859‑019‑2811‑8 31138103
    [Google Scholar]
  114. Udrescu L. Bogdan P. Chiş A. Sîrbu I.O. Topîrceanu A. Văruţ R.M. Udrescu M. Uncovering new drug properties in target-based drug–drug similarity networks. Pharmaceutics 2020 12 9 879 10.3390/pharmaceutics12090879 32947845
    [Google Scholar]
  115. Kumar K. Chupakhin V. Vos A. Morrison D. Rassokhin D. Dellwo M.J. McCormick K. Paternoster E. Ceulemans H. DesJarlais R.L. Development and implementation of an enterprise-wide predictive model for early absorption, distribution, metabolism and excretion properties. Future Med. Chem. 2021 13 19 1639 1654 10.4155/fmc‑2021‑0138 34528444
    [Google Scholar]
  116. Siramshetty V.B. Nguyen D.T. Martinez N.J. Southall N.T. Simeonov A. Zakharov A.V. Critical assessment of artificial intelligence methods for prediction of hERG channel inhibition in the “Big Data” era. J. Chem. Inf. Model. 2020 60 12 6007 6019 10.1021/acs.jcim.0c00884 33259212
    [Google Scholar]
  117. Korolev V. Mitrofanov A. Korotcov A. Tkachenko V. Graph convolutional neural networks as “General-Purpose” Property Predictors: The universality and limits of applicability. J. Chem. Inf. Model. 2020 60 1 22 28 10.1021/acs.jcim.9b00587 31860296
    [Google Scholar]
  118. Hassan-Harrirou H. Zhang C. Lemmin T. RosENet: Improving binding affinity prediction by leveraging molecular mechanics energies with an ensemble of 3D convolutional neural networks. J. Chem. Inf. Model. 2020 60 6 2791 2802 10.1021/acs.jcim.0c00075 32392050
    [Google Scholar]
  119. Fernandes P.O. Martins D.M. de Souza Bozzi A. Martins J.P.A. de Moraes A.H. Maltarollo V.G. Molecular insights on ABL kinase activation using tree-based machine learning models and molecular docking. Mol. Divers. 2021 25 3 1301 1314 10.1007/s11030‑021‑10261‑z 34191245
    [Google Scholar]
  120. Safizadeh H. Simpkins S.W. Nelson J. Li S.C. Piotrowski J.S. Yoshimura M. Yashiroda Y. Hirano H. Osada H. Yoshida M. Boone C. Myers C.L. Improving measures of chemical structural similarity using machine learning on chemical–genetic interactions. J. Chem. Inf. Model. 2021 61 9 4156 4172 10.1021/acs.jcim.0c00993 34318674
    [Google Scholar]
  121. John L. Soujanya Y. Mahanta H.J. Narahari Sastry G. Chemoinformatics and machine learning approaches for identifying antiviral compounds. Mol. Inform. 2022 41 4 2100190 10.1002/minf.202100190 34811938
    [Google Scholar]
  122. Malik A.A. Ojha S.C. Schaduangrat N. Nantasenamat C. ABCpred: A webserver for the discovery of acetyl- and butyryl-cholinesterase inhibitors. Mol. Divers. 2022 26 1 467 487 10.1007/s11030‑021‑10292‑6 34609711
    [Google Scholar]
  123. Trapotsi M.A. Mervin L.H. Afzal A.M. Sturm N. Engkvist O. Barrett I.P. Bender A. Comparison of chemical structure and cell morphology information for multitask bioactivity predictions. J. Chem. Inf. Model. 2021 61 3 1444 1456 10.1021/acs.jcim.0c00864 33661004
    [Google Scholar]
  124. Rodrigues C.H.M. Pires D.E.V. Ascher D.B. pdCSM-PPI: Using graph-based signatures to identify protein–protein interaction inhibitors. J. Chem. Inf. Model. 2021 61 11 5438 5445 10.1021/acs.jcim.1c01135 34719929
    [Google Scholar]
  125. Agyapong O. Miller W.A. Wilson M.D. Kwofie S.K. Development of a proteochemometric-based support vector machine model for predicting bioactive molecules of tubulin receptors. Mol. Divers. 2022 26 4 2231 2242 10.1007/s11030‑021‑10329‑w 34626303
    [Google Scholar]
  126. Redkar S. Mondal S. Joseph A. Hareesha K.S. A machine learning approach for drug‐target interaction prediction using wrapper feature selection and class balancing. Mol. Inform. 2020 39 5 1900062 10.1002/minf.201900062 32003548
    [Google Scholar]
  127. Grebner C. Matter H. Kofink D. Wenzel J. Schmidt F. Hessler G. Application of deep neural network models in drug discovery programs. ChemMedChem 2021 16 24 3772 3786 10.1002/cmdc.202100418 34596968
    [Google Scholar]
  128. Zhao Y. Tian Y. Pang X. Li G. Shi S. Yan A. Classification of FLT3 inhibitors and SAR analysis by machine learning methods. Mol. Divers. 2023 28 4 1995 37142889
    [Google Scholar]
  129. Nazarova A.L. Yang L. Liu K. Mishra A. Kalia R.K. Nomura K. Nakano A. Vashishta P. Rajak P. Dielectric polymer property prediction using recurrent neural networks with optimizations. J. Chem. Inf. Model. 2021 61 5 2175 2186 10.1021/acs.jcim.0c01366 33871989
    [Google Scholar]
  130. Li R. Tian Y. Yang Z. Ji Y. Ding J. Yan A. Classification models and SAR analysis on HDAC1 inhibitors using machine learning methods. Mol. Divers. 2023 27 3 1037 1051 10.1007/s11030‑022‑10466‑w 35737257
    [Google Scholar]
  131. Warszycki D. Struski Ł. Śmieja M. Kafel R. Kurczab R. Pharmacoprint: A combination of a pharmacophore fingerprint and artificial intelligence as a tool for computer-aided drug design. J. Chem. Inf. Model. 2021 61 10 5054 5065 10.1021/acs.jcim.1c00589 34547888
    [Google Scholar]
  132. Sandhu H. Kumar R.N. Garg P. Machine learning-based modeling to predict inhibitors of acetylcholinesterase. Mol. Divers. 2022 26 1 331 340 10.1007/s11030‑021‑10223‑5 33891263
    [Google Scholar]
  133. Zhang J. Chen H. De Novo molecule design using molecular generative models constrained by ligand–protein interactions. J. Chem. Inf. Model. 2022 62 14 3291 3306 10.1021/acs.jcim.2c00177 35793555
    [Google Scholar]
  134. Huo D. Wang H. Qin Z. Tian Y. Yan A. Building 2D classification models and 3D CoMSIA models on small-molecule inhibitors of both wild-type and T790M/L858R double-mutant EGFR. Mol. Divers. 2022 26 3 1715 1730 10.1007/s11030‑021‑10300‑9 34636023
    [Google Scholar]
  135. Sun H. Wang Y. Chen C.Z. Xu M. Guo H. Itkin M. Zheng W. Shen M. Identification of SARS-CoV-2 viral entry inhibitors using machine learning and cell-based pseudotyped particle assay. Bioorg. Med. Chem. 2021 38 116119 10.1016/j.bmc.2021.116119 33831697
    [Google Scholar]
  136. Wang H. Qin Z. Yan A. Classification models and SAR analysis on CysLT1 receptor antagonists using machine learning algorithms. Mol. Divers. 2021 25 3 1597 1616 10.1007/s11030‑020‑10165‑4 33534023
    [Google Scholar]
  137. Scantlebury J. Vost L. Carbery A. Hadfield T.E. Turnbull O.M. Brown N. Chenthamarakshan V. Das P. Grosjean H. von Delft F. Deane C.M. A small step toward generalizability: Training a machine learning scoring function for structure-based virtual screening. J. Chem. Inf. Model. 2023 63 10 2960 2974 10.1021/acs.jcim.3c00322 37166179
    [Google Scholar]
  138. Shan W. Li X. Yao H. Lin K. Convolutional neural network-based virtual screening. Curr. Med. Chem. 2021 28 10 2033 2047 10.2174/0929867327666200526142958 32452320
    [Google Scholar]
  139. Veit-Acosta M. de Azevedo Junior W.F. The impact of crystallographic data for the development of machine learning models to predict protein-ligand binding affinity. Curr. Med. Chem. 2021 28 34 7006 7022 10.2174/0929867328666210210121320 33568025
    [Google Scholar]
  140. Veit-Acosta M. de Azevedo Junior W.F. Computational prediction of binding affinity for CDK2-ligand complexes. A protein target for cancer drug discovery. Curr. Med. Chem. 2022 29 14 2438 2455 10.2174/0929867328666210806105810 34365938
    [Google Scholar]
  141. Bitencourt-Ferreira G. de Azevedo Junior W.F. Electrostatic potential energy in protein-drug complexes. Curr. Med. Chem. 2021 28 24 4954 4971 10.2174/1875533XMTEzhODQlw 33593246
    [Google Scholar]
  142. Sundin I. Voronov A. Xiao H. Papadopoulos K. Bjerrum E.J. Heinonen M. Patronov A. Kaski S. Engkvist O. Human-in-the-loop assisted de novo molecular design. J. Cheminform. 2022 14 1 86 10.1186/s13321‑022‑00667‑8 36578043
    [Google Scholar]
  143. Rayka M. Firouzi R. GB‐score: Minimally designed machine learning scoring function based on distance‐weighted interatomic contact features. Mol. Inform. 2023 42 3 2200135 10.1002/minf.202200135 36722733
    [Google Scholar]
  144. Rayka M. Karimi-Jafari M.H. Firouzi R. ET‐score: Improving protein‐ligand binding affinity prediction based on distance‐weighted interatomic contact features using extremely randomized trees algorithm. Mol. Inform. 2021 40 8 2060084 10.1002/minf.202060084 34021703
    [Google Scholar]
  145. Zaman R. Newton M.A.H. Mataeimoghadam F. Sattar A. Constraint guided neighbor generation for protein structure prediction. IEEE Access 2022 10 54991 55001 10.1109/ACCESS.2022.3176945
    [Google Scholar]
  146. Khashan R. Tropsha A. Zheng W. Data mining meets machine learning: A novel ANN‐based multi‐body interaction docking scoring function (MBI‐score) based on utilizing frequent geometric and chemical patterns of interfacial atoms in native protein‐ligand complexes. Mol. Inform. 2022 41 8 2100248 10.1002/minf.202100248 35142086
    [Google Scholar]
  147. Bieniek M.K. Cree B. Pirie R. Horton J.T. Tatum N.J. Cole D.J. An open-source molecular builder and free energy preparation workflow. Commun. Chem. 2022 5 1 136 10.1038/s42004‑022‑00754‑9 36320862
    [Google Scholar]
  148. Bjerrum E.J. Margreitter C. Blaschke T. Kolarova S. de Castro R.L.R. Faster and more diverse de novo molecular optimization with double-loop reinforcement learning using augmented SMILES. J. Comput. Aided Mol. Des. 2023 37 8 373 394 10.1007/s10822‑023‑00512‑6 37329395
    [Google Scholar]
  149. Wang Z. Zheng L. Wang S. Lin M. Wang Z. Kong A.W.K. Mu Y. Wei Y. Li W. A fully differentiable ligand pose optimization framework guided by deep learning and a traditional scoring function. Brief. Bioinform. 2023 24 1 bbac520 10.1093/bib/bbac520 36502369
    [Google Scholar]
  150. Zhang X. Shen C. Wang T. Kang Y. Li D. Pan P. Wang J. Wang G. Deng Y. Xu L. Cao D. Hou T. Wang Z. Topology-based and conformation-based decoys database: An unbiased online database for training and benchmarking machine-learning scoring functions. J. Med. Chem. 2023 66 13 9174 9183 10.1021/acs.jmedchem.3c00801 37317043
    [Google Scholar]
  151. Wójcikowski M. Ballester P.J. Siedlecki P. Performance of machine-learning scoring functions in structure-based virtual screening. Sci. Rep. 2017 7 1 46710 10.1038/srep46710 28440302
    [Google Scholar]
  152. Tran-Nguyen V.K. Simeon S. Junaid M. Ballester P.J. Structure-based virtual screening for PDL1 dimerizers: Evaluating generic scoring functions. Curr. Res. Struct. Biol. 2022 4 206 210 10.1016/j.crstbi.2022.06.002 35769111
    [Google Scholar]
  153. Marivani I. Tsiligianni E. Cornelis B. Deligiannis N. Designing CNNs for multimodal image restoration and fusion via unfolding the method of multipliers. IEEE Trans. Circ. Syst. Video Tech. 2022 32 9 5830 5845 10.1109/TCSVT.2022.3163649
    [Google Scholar]
  154. Razzaghi P. Abbasi K. Shirazi M. Rashidi S. Multimodal brain tumor detection using multimodal deep transfer learning. Appl. Soft Comput. 2022 129 109631 10.1016/j.asoc.2022.109631
    [Google Scholar]
  155. Yuzhakova D.V. Lermontova S.A. Grigoryev I.S. Muravieva M.S. Gavrina A.I. Shirmanova M.V. Balalaeva I.V. Klapshina L.G. Zagaynova E.V. In vivo multimodal tumor imaging and photodynamic therapy with novel theranostic agents based on the porphyrazine framework-chelated gadolinium (III) cation. Biochim. Biophys. Acta, Gen. Subj. 2017 1861 12 3120 3130 10.1016/j.bbagen.2017.09.004 28916141
    [Google Scholar]
  156. Race A.M. Sutton D. Hamm G. Maglennon G. Morton J.P. Strittmatter N. Campbell A. Sansom O.J. Wang Y. Barry S.T. Takáts Z. Goodwin R.J.A. Bunch J. Deep learning-based annotation transfer between molecular imaging modalities: An automated workflow for multimodal data integration. Anal. Chem. 2021 93 6 3061 3071 10.1021/acs.analchem.0c02726 33534548
    [Google Scholar]
  157. Cao L. Xu Z. Shang T. Zhang C. Wu X. Wu Y. Zhai S. Zhan Z. Duan H. Multi_CycGT: A deep learning-based multimodal model for predicting the membrane permeability of cyclic peptides. J. Med. Chem. 2024 67 3 1888 1899 10.1021/acs.jmedchem.3c01611 38270541
    [Google Scholar]
  158. Zheng S. Lei Z. Ai H. Chen H. Deng D. Yang Y. Deep scaffold hopping with multimodal transformer neural networks. J. Cheminform. 2021 13 1 87 10.1186/s13321‑021‑00565‑5 34774103
    [Google Scholar]
  159. Pradhan T. Gupta O. Chawla G. The future of chatGPT in medicinal chemistry: Harnessing AI for accelerated drug discovery. ChemistrySelect 2024 9 13 e202304359 10.1002/slct.202304359
    [Google Scholar]
  160. Jinsong S. Qifeng J. Xing C. Hao Y. Wang L. Molecular fragmentation as a crucial step in the AI-based drug development pathway. Commun. Chem. 2024 7 1 20 10.1038/s42004‑024‑01109‑2 38302655
    [Google Scholar]
  161. Telenti A. Auli M. Hie B.L. Maher C. Saria S. Ioannidis J.P.A. Large language models for science and medicine. Eur. J. Clin. Invest. 2024 54 6 e14183 10.1111/eci.14183 38381530
    [Google Scholar]
  162. Wu Z. Chen J. Li Y. Deng Y. Zhao H. Hsieh C.Y. Hou T. From black boxes to actionable insights: A perspective on explainable artificial intelligence for scientific discovery. J. Chem. Inf. Model. 2023 63 24 7617 7627 10.1021/acs.jcim.3c01642 38079566
    [Google Scholar]
  163. Mahjour B. Hoffstadt J. Cernak T. Designing chemical reaction arrays using phactor and ChatGPT. Org. Process Res. Dev. 2023 27 8 1510 1516 10.1021/acs.oprd.3c00186
    [Google Scholar]
  164. Dimitriadis F. Alkagiet S. Tsigkriki L. Kleitsioti P. Sidiropoulos G. Efstratiou D. Askalidi T. Tsaousidis A. Siarkos M. Giannakopoulou P. Mavrogianni A.D. Zarifis J. Koulaouzidis G. ChatGPT and patients with heart failure. Angiology 2024 00033197241238403 10.1177/00033197241238403 38451243
    [Google Scholar]
  165. Galido P.V. Butala S. Chakerian M. Agustines D. A case study demonstrating applications of chatgpt in the clinical management of treatment-resistant schizophrenia. Cureus 2023 15 6 e38166 10.7759/cureus.38166
    [Google Scholar]
/content/journals/cn/10.2174/011570159X384988250430093924
Loading
/content/journals/cn/10.2174/011570159X384988250430093924
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test