Skip to content
2000
image of Photodynamic and Photothermal Therapies using Nanotechnology Approach in Alzheimer's Disease

Abstract

Alzheimer's disease is a neurodegenerative disease that impairs cognitive function. The incidence of Alzheimer's disease increases with the increase in the elderly population. Although the clear pathogenesis of Alzheimer's disease is not yet known, the formation of amyloid plaques and tau fibrils, diminished acetylcholine levels, and increased inflammation can be observed in patients. Alzheimer's disease, whose pathogenesis is not fully demonstrated, cannot be treated radically. Since it has been observed that only pharmacological treatment alone isn’t sufficient, alternative approaches have become essential. Among these approaches, nanocarriers greatly facilitate the transport of drugs since the blood-brain barrier is an important obstacle to the penetration of drugs into the brain. Photosensitizers trigger activation after exposure to near-infrared radiation light of a suitable wavelength or laser light, resulting in the selective destruction of Aβ plaques. Photodynamic therapy and photothermal therapy have been investigated for their potential to inhibit Aβ plaques through photosensitizers. By ThT fluorescence measurements, TAS-loaded Ce6 micelles show inhibiting Aβ monomers from formation Aβ aggregates and degradation of protofibrills to small fragments. By using these photosensitizers, near-infrared radiation fluorescence imaging can be used as a theranostic. In this review, potential treatment options for photodynamic therapy and photothermal therapy for Alzheimer's disease are summarised, and a simultaneous or combined approach is discussed, taking into account potential nanotheranostics.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X370790250317045223
2025-04-15
2025-09-05
Loading full text...

Full text loading...

References

  1. Knopman D.S. Amieva H. Petersen R.C. Chételat G. Holtzman D.M. Hyman B.T. Nixon R.A. Jones D.T. Alzheimer disease. Nat. Rev. Dis. Primers 2021 7 1 33 10.1038/s41572‑021‑00269‑y 33986301
    [Google Scholar]
  2. Haaksma M.L. Eriksdotter M. Rizzuto D. Leoutsakos J.M.S. Olde Rikkert M.G.M. Melis R.J.F. Garcia-Ptacek S. Survival time tool to guide care planning in people with dementia. Neurology 2020 94 5 e538 e548 10.1212/WNL.0000000000008745 31843808
    [Google Scholar]
  3. Nandi A. Counts N. Chen S. Seligman B. Tortorice D. Vigo D. Bloom D.E. Global and regional projections of the economic burden of Alzheimer’s disease and related dementias from 2019 to 2050: A value of statistical life approach. EClinicalMedicine 2022 51 101580 10.1016/j.eclinm.2022.101580 35898316
    [Google Scholar]
  4. Nichols E. Steinmetz J.D. Vollset S.E. Fukutaki K. Chalek J. Abd-Allah F. Abdoli A. Abualhasan A. Abu-Gharbieh E. Akram T.T. Al Hamad H. Alahdab F. Alanezi F.M. Alipour V. Almustanyir S. Amu H. Ansari I. Arabloo J. Ashraf T. Astell-Burt T. Ayano G. Ayuso-Mateos J.L. Baig A.A. Barnett A. Barrow A. Baune B.T. Béjot Y. Bezabhe W.M.M. Bezabih Y.M. Bhagavathula A.S. Bhaskar S. Bhattacharyya K. Bijani A. Biswas A. Bolla S.R. Boloor A. Brayne C. Brenner H. Burkart K. Burns R.A. Cámera L.A. Cao C. Carvalho F. Castro-de-Araujo L.F.S. Catalá-López F. Cerin E. Chavan P.P. Cherbuin N. Chu D-T. Costa V.M. Couto R.A.S. Dadras O. Dai X. Dandona L. Dandona R. De la Cruz-Góngora V. Dhamnetiya D. Dias da Silva D. Diaz D. Douiri A. Edvardsson D. Ekholuenetale M. El Sayed I. El-Jaafary S.I. Eskandari K. Eskandarieh S. Esmaeilnejad S. Fares J. Faro A. Farooque U. Feigin V.L. Feng X. Fereshtehnejad S-M. Fernandes E. Ferrara P. Filip I. Fillit H. Fischer F. Gaidhane S. Galluzzo L. Ghashghaee A. Ghith N. Gialluisi A. Gilani S.A. Glavan I-R. Gnedovskaya E.V. Golechha M. Gupta R. Gupta V.B. Gupta V.K. Haider M.R. Hall B.J. Hamidi S. Hanif A. Hankey G.J. Haque S. Hartono R.K. Hasaballah A.I. Hasan M.T. Hassan A. Hay S.I. Hayat K. Hegazy M.I. Heidari G. Heidari-Soureshjani R. Herteliu C. Househ M. Hussain R. Hwang B-F. Iacoviello L. Iavicoli I. Ilesanmi O.S. Ilic I.M. Ilic M.D. Irvani S.S.N. Iso H. Iwagami M. Jabbarinejad R. Jacob L. Jain V. Jayapal S.K. Jayawardena R. Jha R.P. Jonas J.B. Joseph N. Kalani R. Kandel A. Kandel H. Karch A. Kasa A.S. Kassie G.M. Keshavarz P. Khan M.A.B. Khatib M.N. Khoja T.A.M. Khubchandani J. Kim M.S. Kim Y.J. Kisa A. Kisa S. Kivimäki M. Koroshetz W.J. Koyanagi A. Kumar G.A. Kumar M. Lak H.M. Leonardi M. Li B. Lim S.S. Liu X. Liu Y. Logroscino G. Lorkowski S. Lucchetti G. Lutzky Saute R. Magnani F.G. Malik A.A. Massano J. Mehndiratta M.M. Menezes R.G. Meretoja A. Mohajer B. Mohamed Ibrahim N. Mohammad Y. Mohammed A. Mokdad A.H. Mondello S. Moni M.A.A. Moniruzzaman M. Mossie T.B. Nagel G. Naveed M. Nayak V.C. Neupane Kandel S. Nguyen T.H. Oancea B. Otstavnov N. Otstavnov S.S. Owolabi M.O. Panda-Jonas S. Pashazadeh Kan F. Pasovic M. Patel U.K. Pathak M. Peres M.F.P. Perianayagam A. Peterson C.B. Phillips M.R. Pinheiro M. Piradov M.A. Pond C.D. Potashman M.H. Pottoo F.H. Prada S.I. Radfar A. Raggi A. Rahim F. Rahman M. Ram P. Ranasinghe P. Rawaf D.L. Rawaf S. Rezaei N. Rezapour A. Robinson S.R. Romoli M. Roshandel G. Sahathevan R. Sahebkar A. Sahraian M.A. Sathian B. Sattin D. Sawhney M. Saylan M. Schiavolin S. Seylani A. Sha F. Shaikh M.A. Shaji K.S. Shannawaz M. Shetty J.K. Shigematsu M. Shin J.I. Shiri R. Silva D.A.S. Silva J.P. Silva R. Singh J.A. Skryabin V.Y. Skryabina A.A. Smith A.E. Soshnikov S. Spurlock E.E. Stein D.J. Sun J. Tabarés-Seisdedos R. Thakur B. Timalsina B. Tovani-Palone M.R. Tran B.X. Tsegaye G.W. Valadan Tahbaz S. Valdez P.R. Venketasubramanian N. Vlassov V. Vu G.T. Vu L.G. Wang Y-P. Wimo A. Winkler A.S. Yadav L. Yahyazadeh Jabbari S.H. Yamagishi K. Yang L. Yano Y. Yonemoto N. Yu C. Yunusa I. Zadey S. Zastrozhin M.S. Zastrozhina A. Zhang Z-J. Murray C.J.L. Vos T. GBD 2019 Dementia Forecasting Collaborators Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: An analysis for the global burden of disease study 2019. Lancet Public Health 2022 7 2 e105 e125 10.1016/S2468‑2667(21)00249‑8 34998485
    [Google Scholar]
  5. Nichols E. Szoeke C.E.I. Vollset S.E. Abbasi N. Abd-Allah F. Abdela J. Aichour M.T.E. Akinyemi R.O. Alahdab F. Asgedom S.W. Awasthi A. Barker-Collo S.L. Baune B.T. Béjot Y. Belachew A.B. Bennett D.A. Biadgo B. Bijani A. Bin Sayeed M.S. Brayne C. Carpenter D.O. Carvalho F. Catalá-López F. Cerin E. Choi J-Y.J. Dang A.K. Degefa M.G. Djalalinia S. Dubey M. Duken E.E. Edvardsson D. Endres M. Eskandarieh S. Faro A. Farzadfar F. Fereshtehnejad S-M. Fernandes E. Filip I. Fischer F. Gebre A.K. Geremew D. Ghasemi-Kasman M. Gnedovskaya E.V. Gupta R. Hachinski V. Hagos T.B. Hamidi S. Hankey G.J. Haro J.M. Hay S.I. Irvani S.S.N. Jha R.P. Jonas J.B. Kalani R. Karch A. Kasaeian A. Khader Y.S. Khalil I.A. Khan E.A. Khanna T. Khoja T.A.M. Khubchandani J. Kisa A. Kissimova-Skarbek K. Kivimäki M. Koyanagi A. Krohn K.J. Logroscino G. Lorkowski S. Majdan M. Malekzadeh R. März W. Massano J. Mengistu G. Meretoja A. Mohammadi M. Mohammadi-Khanaposhtani M. Mokdad A.H. Mondello S. Moradi G. Nagel G. Naghavi M. Naik G. Nguyen L.H. Nguyen T.H. Nirayo Y.L. Nixon M.R. Ofori-Asenso R. Ogbo F.A. Olagunju A.T. Owolabi M.O. Panda-Jonas S. Passos V.M.A. Pereira D.M. Pinilla-Monsalve G.D. Piradov M.A. Pond C.D. Poustchi H. Qorbani M. Radfar A. Reiner R.C. Jr Robinson S.R. Roshandel G. Rostami A. Russ T.C. Sachdev P.S. Safari H. Safiri S. Sahathevan R. Salimi Y. Satpathy M. Sawhney M. Saylan M. Sepanlou S.G. Shafieesabet A. Shaikh M.A. Sahraian M.A. Shigematsu M. Shiri R. Shiue I. Silva J.P. Smith M. Sobhani S. Stein D.J. Tabarés-Seisdedos R. Tovani-Palone M.R. Tran B.X. Tran T.T. Tsegay A.T. Ullah I. Venketasubramanian N. Vlassov V. Wang Y-P. Weiss J. Westerman R. Wijeratne T. Wyper G.M.A. Yano Y. Yimer E.M. Yonemoto N. Yousefifard M. Zaidi Z. Zare Z. Vos T. Feigin V.L. Murray C.J.L. GBD 2016 Dementia Collaborators Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990–2016: A systematic analysis for the global burden of disease study 2016. Lancet Neurol. 2019 18 1 88 106 10.1016/S1474‑4422(18)30403‑4 30497964
    [Google Scholar]
  6. Devkota S. Williams T.D. Wolfe M.S. Familial Alzheimer’s disease mutations in amyloid protein precursor alter proteolysis by γ-secretase to increase amyloid β-peptides of ≥45 residues. J. Biol. Chem. 2021 296 100281 10.1016/j.jbc.2021.100281 33450230
    [Google Scholar]
  7. Sharma P. Srivastava P. Seth A. Tripathi P.N. Banerjee A.G. Shrivastava S.K. Comprehensive review of mechanisms of pathogenesis involved in Alzheimer’s disease and potential therapeutic strategies. Prog. Neurobiol. 2019 174 53 89 10.1016/j.pneurobio.2018.12.006 30599179
    [Google Scholar]
  8. Kumar A. Singh A. Ekavali A review on Alzheimer’s disease pathophysiology and its management: An update. Pharmacol. Rep. 2015 67 2 195 203 10.1016/j.pharep.2014.09.004 25712639
    [Google Scholar]
  9. Oda T. Wals P. Osterburg H.H. Johnson S.A. Pasinetti G.M. Morgan T.E. Rozovsky I. Stine W.B. Snyder S.W. Holzman T.F. Krafft G.A. Finch C.E. Clusterin (apoJ) alters the aggregation of amyloid beta-peptide (A beta 1-42) and forms slowly sedimenting A beta complexes that cause oxidative stress. Exp. Neurol. 1995 136 1 22 31 10.1006/exnr.1995.1080 7589331
    [Google Scholar]
  10. Hardy J. Selkoe D.J. The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science 2002 297 5580 353 356 10.1126/science.1072994 12130773
    [Google Scholar]
  11. Reitz C. Novel susceptibility loci for Alzheimer’s disease. Future Neurol. 2015 10 6 547 558 10.2217/fnl.15.42 27057151
    [Google Scholar]
  12. Ma C. Hong F. Yang S. Amyloidosis in Alzheimer’s disease: Pathogeny, etiology, and related therapeutic directions. Molecules 2022 27 4 1210 10.3390/molecules27041210 35209007
    [Google Scholar]
  13. Cárdenas A.M. Ardiles A.O. Barraza N. Baéz-Matus X. Caviedes P. Role of tau protein in neuronal damage in Alzheimer’s disease and Down syndrome. Arch. Med. Res. 2012 43 8 645 654 10.1016/j.arcmed.2012.10.012 23142525
    [Google Scholar]
  14. Wood J.G. Mirra S.S. Pollock N.J. Binder L.I. Neurofibrillary tangles of Alzheimer disease share antigenic determinants with the axonal microtubule-associated protein tau (tau). Proc. Natl. Acad. Sci. USA 1986 83 11 4040 4043 10.1073/pnas.83.11.4040 2424015
    [Google Scholar]
  15. Noble W. Pooler A.M. Hanger D.P. Advances in tau-based drug discovery. Expert Opin. Drug Discov. 2011 6 8 797 810 10.1517/17460441.2011.586690 22003359
    [Google Scholar]
  16. Wu X.L. Piña-Crespo J. Zhang Y.W. Chen X.C. Xu H.X. Tau-mediated neurodegeneration and potential ımplications in diagnosis and treatment of alzheimer’s disease. Chin. Med. J. 2017 130 24 2978 2990 10.4103/0366‑6999.220313 29237931
    [Google Scholar]
  17. Singh A. Kukreti R. Saso L. Kukreti S. Oxidative stress: A key modulator in neurodegenerative diseases. Molecules 2019 24 8 1583 10.3390/molecules24081583 31013638
    [Google Scholar]
  18. Praticò D. Oxidative stress hypothesis in Alzheimer’s disease: A reappraisal. Trends Pharmacol. Sci. 2008 29 12 609 615 10.1016/j.tips.2008.09.001 18838179
    [Google Scholar]
  19. Persson T. Popescu B.O. Cedazo-Minguez A. Oxidative stress in Alzheimer’s disease: Why did antioxidant therapy fail? Oxid. Med. Cell. Longev. 2014 2014 1 11 10.1155/2014/427318 24669288
    [Google Scholar]
  20. DeKosky S.T. Scheff S.W. Styren S.D. Structural correlates of cognition in dementia: Quantification and assessment of synapse change. Neurodegeneration 1996 5 4 417 421 10.1006/neur.1996.0056 9117556
    [Google Scholar]
  21. Mash D.C. Flynn D.D. Potter L.T. Loss of M2 muscarine receptors in the cerebral cortex in Alzheimer’s disease and experimental cholinergic denervation. Science 1985 228 4703 1115 1117 10.1126/science.3992249 3992249
    [Google Scholar]
  22. Teaktong T. Graham A.J. Court J.A. Perry R.H. Jaros E. Johnson M. Hall R. Perry E.K. Nicotinic acetylcholine receptor immunohistochemistry in Alzheimer’s disease and dementia with Lewy bodies: Differential neuronal and astroglial pathology. J. Neurol. Sci. 2004 225 1-2 39 49 10.1016/j.jns.2004.06.015 15465084
    [Google Scholar]
  23. Kocahan S. Doğan Z. Mechanisms of Alzheimer’s Disease pathogenesis and prevention: The brain, neural pathology, N-methyl-D-aspartate receptors, Tau protein and other risk factors. Clin. Psychopharmacol. Neurosci. 2017 15 1 1 8 10.9758/cpn.2017.15.1.1 28138104
    [Google Scholar]
  24. Wang R. Reddy P.H. Role of glutamate and NMDA receptors in Alzheimer’s Disease. J. Alzheimers Dis. 2017 57 4 1041 1048 10.3233/JAD‑160763 27662322
    [Google Scholar]
  25. Ghersi M.S. Gabach L.A. Buteler F. Vilcaes A.A. Schiöth H.B. Perez M.F. de Barioglio S.R. Ghrelin increases memory consolidation through hippocampal mechanisms dependent on glutamate release and NR2B-subunits of the NMDA receptor. Psychopharmacology 2015 232 10 1843 1857 10.1007/s00213‑014‑3817‑6 25466701
    [Google Scholar]
  26. Hynd M. Scott H.L. Dodd P.R. Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer's disease. Neurochem. Int. 2004 45 5 583 595 10.1016/j.neuint.2004.03.007 15234100
    [Google Scholar]
  27. Alhazmi H.A. Albratty M. An update on the novel and approved drugs for Alzheimer disease. Saudi Pharm. J. 2022 30 12 1755 1764 10.1016/j.jsps.2022.10.004 36601504
    [Google Scholar]
  28. Jann M.W. Rivastigmine, a new-generation cholinesterase inhibitor for the treatment of Alzheimer’s disease. Pharmacotherapy 2000 20 1 1 12 10.1592/phco.20.1.1.34664 10641971
    [Google Scholar]
  29. Winblad B. Machado J.C. Use of rivastigmine transdermal patch in the treatment of Alzheimer’s disease. Expert Opin. Drug Deliv. 2008 5 12 1377 1386 10.1517/17425240802542690 19040398
    [Google Scholar]
  30. Varadharajan A Davis AD Ghosh A Jagtap T Xavier A Menon AJ Guidelines for pharmacotherapy in Alzheimer's disease - A primer on FDA-approved drugs. J. Neurosci. Rural Pract. 2023 14 4 566 573 10.25259/JNRP_356_2023
    [Google Scholar]
  31. Scott L.J. Goa K.L. Galantamine. Drugs 2000 60 5 1095 1122 10.2165/00003495‑200060050‑00008 11129124
    [Google Scholar]
  32. Yiannopoulou K.G. Papageorgiou S.G. Current and future treatments for Alzheimer’s disease. Ther. Adv. Neurol. Disord. 2013 6 1 19 33 10.1177/1756285612461679 23277790
    [Google Scholar]
  33. Johnson J. Kotermanski S. Mechanism of action of memantine. Curr. Opin. Pharmacol. 2006 6 1 61 67 10.1016/j.coph.2005.09.007 16368266
    [Google Scholar]
  34. FDA FDA grants accelerated approval for alzheimer’s drug: FDA. 2021 Available from: https://www.fda.gov/news-events/press-announcements/fda-grants-accelerated-approval-alzheimers-drug
  35. Dunstan R Bussiere T Engber T Weinreb P Maier M Grimm J P4-006: The role of brain macrophages on the clearance of amyloid plaques following the treatment of Tc2576 with BIIB037. Alzheimer's & Dementia 2011 7 4S_Part_20 S700
    [Google Scholar]
  36. Haddad H.W. Malone G.W. Comardelle N.J. Degueure A.E. Poliwoda S. Kaye R.J. Murnane K.S. Kaye A.M. Kaye A.D. Aduhelm, a novel anti-amyloid monoclonal antibody, for the treatment of Alzheimer’s disease: A comprehensive review. Health Psychol. Res. 2022 10 2 37023 10.52965/001c.37023 35910244
    [Google Scholar]
  37. Arndt J.W. Qian F. Smith B.A. Quan C. Kilambi K.P. Bush M.W. Walz T. Pepinsky R.B. Bussière T. Hamann S. Cameron T.O. Weinreb P.H. Structural and kinetic basis for the selectivity of aducanumab for aggregated forms of amyloid-β. Sci. Rep. 2018 8 1 6412 10.1038/s41598‑018‑24501‑0 29686315
    [Google Scholar]
  38. F FDA Peripheral and central nervous system drugs advisory committee meeting. 2024 Available from: https://www.fda.gov/advisory-committees/advisory-committee-calendar/updated-public-participation-information-june-10-2024-meeting-peripheral-and-central-nervous-system#event-materials
  39. FDA FDA converts novel alzheimer’s disease treatment to traditional approval. 2024 Available from: https://www.fda.gov/news-events/press-announcements/fda-converts-novel-alzheimers-disease-treatment-traditional-approval
  40. Canady V.A. FDA approves new treatment for Alzheimer’s disease. Ment. Health Wkly. 2023 33 3 6 7 10.1002/mhw.33505
    [Google Scholar]
  41. Huang L.K. Kuan Y.C. Lin H.W. Hu C.J. Clinical trials of new drugs for Alzheimer disease: A 2020–2023 update. J. Biomed. Sci. 2023 30 1 83 10.1186/s12929‑023‑00976‑6 37784171
    [Google Scholar]
  42. Tucker S. Möller C. Tegerstedt K. Lord A. Laudon H. Sjödahl J. Söderberg L. Spens E. Sahlin C. Waara E.R. Satlin A. Gellerfors P. Osswald G. Lannfelt L. The murine version of BAN2401 (mAb158) selectively reduces amyloid-β protofibrils in brain and cerebrospinal fluid of tg-ArcSwe mice. J. Alzheimers Dis. 2014 43 2 575 588 10.3233/JAD‑140741 25096615
    [Google Scholar]
  43. van Dyck C.H. Swanson C.J. Aisen P. Bateman R.J. Chen C. Gee M. Kanekiyo M. Li D. Reyderman L. Cohen S. Froelich L. Katayama S. Sabbagh M. Vellas B. Watson D. Dhadda S. Irizarry M. Kramer L.D. Iwatsubo T. Lecanemab in early Alzheimer’s disease. N. Engl. J. Med. 2023 388 1 9 21 10.1056/NEJMoa2212948 36449413
    [Google Scholar]
  44. EMA Questions and answers on the refusal of the marketing authorisation for Leqembi (lecanemab). 2024 Available from: https://www.ema.europa.eu/en/medicines/human/EPAR/leqembi
  45. FDA-Approved Treatments For Alzheimer’s FDA-approved treatments for Alzheimer’s: Alzheimer's association. 2024 Available from: https://www.alz.org/media/Documents/alzheimers-dementia-fda-approved-treatments-for-alzheimers-ts.pdf
  46. EMA List of nationally authorised medicinal products. 2024 Available from: https://www.ema.europa.eu/en/search?f%5B0%5D=ema_search_entity_is_document%3ADocument&search_api_fulltext=alzheimer%E2%80%99&page=2
  47. Medications approved for dementia in Canada: Alzheimer Society of Canada. 2024 Available from: https://alzheimer.ca/en/about-dementia/dementia-treatment-options-developments/medications-for-alzheimers
  48. Abbott N.J. Patabendige A.A.K. Dolman D.E.M. Yusof S.R. Begley D.J. Structure and function of the blood–brain barrier. Neurobiol. Dis. 2010 37 1 13 25 10.1016/j.nbd.2009.07.030 19664713
    [Google Scholar]
  49. López-Ornelas A. Jiménez A. Pérez-Sánchez G. Rodríguez-Pérez C.E. Corzo-Cruz A. Velasco I. Estudillo E. The Impairment of blood-brain barrier in Alzheimer’s disease: Challenges and opportunities with stem cells. Int. J. Mol. Sci. 2022 23 17 10136 10.3390/ijms231710136 36077533
    [Google Scholar]
  50. Zlokovic B.V. The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 2008 57 2 178 201 10.1016/j.neuron.2008.01.003 18215617
    [Google Scholar]
  51. Zenaro E. Piacentino G. Constantin G. The blood-brain barrier in Alzheimer’s disease. Neurobiol. Dis. 2017 107 41 56 10.1016/j.nbd.2016.07.007 27425887
    [Google Scholar]
  52. Cai J. Dao P. Chen H. Yan L. Li Y.L. Zhang W. Li L. Du Z. Dong C-Z. Meunier B. Ultrasmall superparamagnetic iron oxide nanoparticles-bound NIR dyes: Novel theranostic agents for Alzheimer’s disease. Dyes Pigments 2020 173 107968 10.1016/j.dyepig.2019.107968
    [Google Scholar]
  53. Rankovic Z. CNS drug design: Balancing physicochemical properties for optimal brain exposure. J. Med. Chem. 2015 58 6 2584 2608 10.1021/jm501535r 25494650
    [Google Scholar]
  54. Toksoy M.O. Tırnaksız F.F. Solid lipid nanoparticles and their applications as brain-specific drug delivery systems. J. Fac. Pharm. Ankara. 2021 45 2 428 442
    [Google Scholar]
  55. Doğan S.S. Çaban S. Çapan Y. Drug targeting strategies to the brain. Hacettepe Uni J Fac Pharm. 2013 2 231 250
    [Google Scholar]
  56. Partridge B. Eardley A. Morales B.E. Campelo S.N. Lorenzo M.F. Mehta J.N. Kani Y. Mora J.K.G. Campbell E.O.Y. Arena C.B. Platt S. Mintz A. Shinn R.L. Rylander C.G. Debinski W. Davalos R.V. Rossmeisl J.H. Advancements in drug delivery methods for the treatment of brain disease. Front. Vet. Sci. 2022 9 1039745 10.3389/fvets.2022.1039745 36330152
    [Google Scholar]
  57. Pardridge W.M. The blood-brain barrier: Bottleneck in brain drug development. NeuroRx 2005 2 1 3 14 10.1602/neurorx.2.1.3 15717053
    [Google Scholar]
  58. He Q. Liu J. Liang J. Liu X. Li W. Liu Z. Ding Z. Tuo D. Towards improvements for penetrating the blood–brain barrier—recent progress from a material and pharmaceutical perspective. Cells 2018 7 4 24 10.3390/cells7040024 29570659
    [Google Scholar]
  59. Telano L.N. Baker S. Physiology, cerebral spinal fluid. StatPearls. Treasure Island, FL StatPearls Publishing LLC 2024
    [Google Scholar]
  60. Kaya M. Ahishali B. Basic physiology of the blood-brain barrier in health and disease: A brief overview. Tissue Barriers 2021 9 1 1840913 10.1080/21688370.2020.1840913 33190576
    [Google Scholar]
  61. Damkier H.H. Brown P.D. Praetorius J. Cerebrospinal fluid secretion by the choroid plexus. Physiol. Rev. 2013 93 4 1847 1892 10.1152/physrev.00004.2013 24137023
    [Google Scholar]
  62. Chiang G.C. The blood-cerebrospinal fluid barrier may play a role in alzheimer disease pathogenesis. Radiology 2022 304 3 646 647 10.1148/radiol.220740 35579527
    [Google Scholar]
  63. Sakka L. Coll G. Chazal J. Anatomy and physiology of cerebrospinal fluid. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 2011 128 6 309 316 10.1016/j.anorl.2011.03.002 22100360
    [Google Scholar]
  64. Dubois B. Feldman H.H. Jacova C. Hampel H. Molinuevo J.L. Blennow K. DeKosky S.T. Gauthier S. Selkoe D. Bateman R. Cappa S. Crutch S. Engelborghs S. Frisoni G.B. Fox N.C. Galasko D. Habert M.O. Jicha G.A. Nordberg A. Pasquier F. Rabinovici G. Robert P. Rowe C. Salloway S. Sarazin M. Epelbaum S. de Souza L.C. Vellas B. Visser P.J. Schneider L. Stern Y. Scheltens P. Cummings J.L. Advancing research diagnostic criteria for Alzheimer’s disease: The IWG-2 criteria. Lancet Neurol. 2014 13 6 614 629 10.1016/S1474‑4422(14)70090‑0 24849862
    [Google Scholar]
  65. Kreuter J. Nanoparticles—a historical perspective. Int. J. Pharm. 2007 331 1 1 10 10.1016/j.ijpharm.2006.10.021 17110063
    [Google Scholar]
  66. Sayıner Ö. Çomoğlu T. Nanotaşıyıcı sistemlerde hedeflendirme targetıng wıth nanocarrıer systems J. Fac. Pharm. Ankara. 2016 40 3 62 79
    [Google Scholar]
  67. Henry M.S. Passmore A.P. Todd S. McGuinness B. Craig D. Johnston J.A. The development of effective biomarkers for Alzheimer’s disease: A review. Int. J. Geriatr. Psychiatry 2013 28 4 331 340 10.1002/gps.3829 22674539
    [Google Scholar]
  68. van Oostveen W.M. de Lange E.C.M. Imaging techniques in alzheimer’s disease: A review of applications in early diagnosis and longitudinal monitoring. Int. J. Mol. Sci. 2021 22 4 2110 10.3390/ijms22042110 33672696
    [Google Scholar]
  69. Valotassiou V. Malamitsi J. Papatriantafyllou J. Dardiotis E. Tsougos I. Psimadas D. Alexiou S. Hadjigeorgiou G. Georgoulias P. SPECT and PET imaging in Alzheimer’s disease. Ann. Nucl. Med. 2018 32 9 583 593 10.1007/s12149‑018‑1292‑6 30128693
    [Google Scholar]
  70. Becker R.E. Greig N.H. Giacobini E. Why do so many drugs for Alzheimer’s disease fail in development? Time for new methods and new practices? J. Alzheimers Dis. 2008 15 2 303 325 10.3233/JAD‑2008‑15213 18953116
    [Google Scholar]
  71. Parveen S. Sahoo S.K. Nanomedicine:clinical applications of polyethylene glycol conjugated proteins and drugs. Clin. Pharmacokinet. 2006 45 10 965 988 10.2165/00003088‑200645100‑00002 16984211
    [Google Scholar]
  72. Nguyen T.T. Nguyen T.T.D. Nguyen T.K.O. Vo T.K. Vo V.G. Advances in developing therapeutic strategies for Alzheimer’s disease. Biomed. Pharmacother. 2021 139 111623 10.1016/j.biopha.2021.111623 33915504
    [Google Scholar]
  73. Loureiro J.A. Gomes B. Fricker G. Coelho M.A.N. Rocha S. Pereira M.C. Cellular uptake of PLGA nanoparticles targeted with anti-amyloid and anti-transferrin receptor antibodies for Alzheimer’s disease treatment. Colloids Surf. B Biointerfaces 2016 145 8 13 10.1016/j.colsurfb.2016.04.041 27131092
    [Google Scholar]
  74. Ruff J. Hüwel S. Kogan M.J. Simon U. Galla H.J. The effects of gold nanoparticles functionalized with ß -amyloid specific peptides on an in vitro model of blood–brain barrier. Nanomedicine 2017 13 5 1645 1652 10.1016/j.nano.2017.02.013 28285163
    [Google Scholar]
  75. Zhang J. Liu R. Zhang D. Zhang Z. Zhu J. Xu L. Guo Y. Neuroprotective effects of maize tetrapeptide-anchored gold nanoparticles in Alzheimer’s disease. Colloids Surf. B Biointerfaces 2021 200 111584 10.1016/j.colsurfb.2021.111584 33508658
    [Google Scholar]
  76. Xu L. Ding Y. Ma F. Chen Y. Chen G. Zhu L. Long J. Ma R. Liu Y. Liu J. Huang F. Shi L. Engineering a pathological tau-targeted nanochaperone for selective and synergetic inhibition of tau pathology in Alzheimer’s Disease. Nano Today 2022 43 101388 10.1016/j.nantod.2022.101388
    [Google Scholar]
  77. Karimzadeh M. Rashidi L. Ganji F. Mesoporous silica nanoparticles for efficient rivastigmine hydrogen tartrate delivery into SY5Y cells. Drug Dev. Ind. Pharm. 2017 43 4 628 636 10.1080/03639045.2016.1275668 28043167
    [Google Scholar]
  78. Ahmad S. Hafeez A. Formulation and development of curcumin–piperine-loaded s-snedds for the treatment of alzheimer’s disease. Mol. Neurobiol. 2023 60 2 1067 1082 10.1007/s12035‑022‑03089‑7 36414909
    [Google Scholar]
  79. Tak K. Sharma R. Dave V. Jain S. Sharma S. Clitoria ternatea mediated synthesis of graphene quantum dots for the treatment of alzheimer’s disease. ACS Chem. Neurosci. 2020 11 22 3741 3748 10.1021/acschemneuro.0c00273 33119989
    [Google Scholar]
  80. Li H. Luo Y. Derreumaux P. Wei G. Carbon nanotube inhibits the formation of β-sheet-rich oligomers of the Alzheimer’s amyloid-β(16-22) peptide. Biophys. J. 2011 101 9 2267 2276 10.1016/j.bpj.2011.09.046 22067167
    [Google Scholar]
  81. Moan J. Peng Q. An outline of the hundred-year history of PDT. Anticancer Res. 2003 23 5A 3591 3600 14666654
    [Google Scholar]
  82. Lipson R.L. Baldes E.J. Olsen A.M. Hematoporphyrin derivative: A new aid for endoscopic detection of malignant disease. J. Thorac. Cardiovasc. Surg. 1961 42 5 623 629 10.1016/S0022‑5223(19)32560‑7 14465760
    [Google Scholar]
  83. Kessel D. Photodynamic therapy: From the beginning. Photodiagn. Photodyn. Ther. 2004 1 1 3 7 10.1016/S1572‑1000(04)00003‑1 25048058
    [Google Scholar]
  84. Dougherty T.J. An update on photodynamic therapy applications. J. Clin. Laser Med. Surg. 2002 20 1 3 7 10.1089/104454702753474931 11902352
    [Google Scholar]
  85. U.S. Food and Drug Administration (FDA). Photofrin (porfimer sodium) Injection 1995 Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2011/020451s020lbl.pdf.
    [Google Scholar]
  86. Li S. Zhou S. Li Y. Li X. Zhu J. Fan L. Yang S. Exceptionally high payload of the ır780 ıodide on folic acid-functionalized graphene quantum dots for targeted photothermal therapy. ACS Appl. Mater. Interfaces 2017 9 27 22332 22341 10.1021/acsami.7b07267 28643511
    [Google Scholar]
  87. Ren H. Liu J. Li Y. Wang H. Ge S. Yuan A. Hu Y. Wu J. Oxygen self-enriched nanoparticles functionalized with erythrocyte membranes for long circulation and enhanced phototherapy. Acta Biomater. 2017 59 269 282 10.1016/j.actbio.2017.06.035 28663143
    [Google Scholar]
  88. Silindir-Gunay M. Sarcan E.T. Ozer A.Y. Near‐infrared imaging of diseases: A nanocarrier approach. Drug Dev. Res. 2019 80 5 521 534 10.1002/ddr.21532 30893508
    [Google Scholar]
  89. Silindir Gunay M. Onaral F. Kart D. Design of IR780 ethosomes for imaging and photodynamic/photothermal therapy of infections. Acta Pol Pharm Drug Res. 2022 79 255 266
    [Google Scholar]
  90. Si̇li̇ndi̇r Günay M. The Formulation of methylene blue encapsulated, tc-99m labeled multifunctional liposomes for sentinel lymph node ımaging and therapy. Turk. J. Pharm. Sci. 2020 17 4 381 387 10.4274/tjps.galenos.2019.86619 32939133
    [Google Scholar]
  91. Sarcan E.T. Silindir-Gunay M. Ozer A.Y. Theranostic polymeric nanoparticles for NIR imaging and photodynamic therapy. Int. J. Pharm. 2018 551 1-2 329 338 10.1016/j.ijpharm.2018.09.019 30244148
    [Google Scholar]
  92. Wan M.T. Lin J.Y. Current evidence and applications of photodynamic therapy in dermatology. Clin. Cosmet. Investig. Dermatol. 2014 7 145 163 24899818
    [Google Scholar]
  93. Li C. Wang J. Liu L. Alzheimer’s therapeutic strategy: Photoactive platforms for suppressing the aggregation of amyloid β protein. Front Chem. 2020 8 509 10.3389/fchem.2020.00509 32793545
    [Google Scholar]
  94. Wei G. Yang G. Wang Y. Jiang H. Fu Y. Yue G. Ju R. Phototherapy-based combination strategies for bacterial infection treatment. Theranostics 2020 10 26 12241 12262 10.7150/thno.52729 33204340
    [Google Scholar]
  95. Huo J. Jia Q. Huang H. Zhang J. Li P. Dong X. Huang W. Emerging photothermal-derived multimodal synergistic therapy in combating bacterial infections. Chem. Soc. Rev. 2021 50 15 8762 8789 10.1039/D1CS00074H 34159993
    [Google Scholar]
  96. Cheng L. He W. Gong H. Wang C. Chen Q. Cheng Z. Liu Z. PEGylated micelle nanoparticles encapsulating a non-fluorescent near-ınfrared organic dye as a safe and highly-effective photothermal agent for ın vivo cancer Therapy. Adv. Funct. Mater. 2013 23 47 5893 5902 10.1002/adfm.201301045
    [Google Scholar]
  97. Wang K. Zhang Y. Wang J. Yuan A. Sun M. Wu J. Hu Y. Self-assembled IR780-loaded transferrin nanoparticles as an imaging, targeting and PDT/PTT agent for cancer therapy. Sci. Rep. 2016 6 1 27421 10.1038/srep27421 27263444
    [Google Scholar]
  98. Zhen X. Xie C. Jiang Y. Ai X. Xing B. Pu K. Semiconducting photothermal nanoagonist for remote-controlled specific cancer therapy. Nano Lett. 2018 18 2 1498 1505 10.1021/acs.nanolett.7b05292 29342359
    [Google Scholar]
  99. Nowak-Stepniowska A. Pergoł P. Padzik-Graczyk A. [Photodynamic method of cancer diagnosis and therapy--mechanisms and applications]. Postepy Biochem. 2013 59 1 53 63 23821943
    [Google Scholar]
  100. Fonseca S.M. Pina J. Arnaut L.G. Seixas de Melo J. Burrows H.D. Chattopadhyay N. Alcácer L. Charas A. Morgado J. Monkman A.P. Asawapirom U. Scherf U. Edge R. Navaratnam S. Triplet-state and singlet oxygen formation in fluorene-based alternating copolymers. J. Phys. Chem. B 2006 110 16 8278 8283 10.1021/jp060251f 16623508
    [Google Scholar]
  101. Kwiatkowski S. Knap B. Przystupski D. Saczko J. Kędzierska E. Knap-Czop K. Kotlińska J. Michel O. Kotowski K. Kulbacka J. Photodynamic therapy – mechanisms, photosensitizers and combinations. Biomed. Pharmacother. 2018 106 1098 1107 10.1016/j.biopha.2018.07.049 30119176
    [Google Scholar]
  102. Robertson C.A. Evans D.H. Abrahamse H. Photodynamic therapy (PDT): A short review on cellular mechanisms and cancer research applications for PDT. J. Photochem. Photobiol. B 2009 96 1 1 8 10.1016/j.jphotobiol.2009.04.001 19406659
    [Google Scholar]
  103. Ghosh M. Recent developments of porphyrin photosensitizers in photodynamic therapy. ChemRxiv 2023
    [Google Scholar]
  104. Liu W. Dong X. Liu Y. Sun Y. Photoresponsive materials for intensified modulation of Alzheimer’s amyloid-β protein aggregation: A review. Acta Biomater. 2021 123 93 109 10.1016/j.actbio.2021.01.018 33465508
    [Google Scholar]
  105. Lee J.S. Lee B.I. Park C.B. Photo-induced inhibition of Alzheimer’s β-amyloid aggregation in vitro by rose bengal. Biomaterials 2015 38 43 49 10.1016/j.biomaterials.2014.10.058 25457982
    [Google Scholar]
  106. Dubey T. Gorantla N.V. Chandrashekara K.T. Chinnathambi S. Photodynamic exposure of Rose-Bengal inhibits Tau aggregation and modulates cytoskeletal network in neuronal cells. Sci. Rep. 2020 10 1 12380 10.1038/s41598‑020‑69403‑2 32704015
    [Google Scholar]
  107. Uddin M.M.N. Bekmukhametova A. Antony A. Barman S.K. Houang J. Wu M.J. Hook J.M. George L. Wuhrer R. Mawad D. Ta D. Ruprai H. Lauto A. Encapsulated rose bengal enhances the photodynamic treatment of triple-negative breast cancer cells. Molecules 2024 29 2 546 10.3390/molecules29020546 38276623
    [Google Scholar]
  108. Shirata C. Kaneko J. Inagaki Y. Kokudo T. Sato M. Kiritani S. Akamatsu N. Arita J. Sakamoto Y. Hasegawa K. Kokudo N. Near-infrared photothermal/photodynamic therapy with indocyanine green induces apoptosis of hepatocellular carcinoma cells through oxidative stress. Sci. Rep. 2017 7 1 13958 10.1038/s41598‑017‑14401‑0 29066756
    [Google Scholar]
  109. Jao Y. Ding S.J. Chen C.C. Antimicrobial photodynamic therapy for the treatment of oral infections: A systematic review. J. Dent. Sci. 2023 18 4 1453 1466 10.1016/j.jds.2023.07.002 37799910
    [Google Scholar]
  110. Najm M. Pourhajibagher M. Badirzadeh A. Razmjou E. Alipour M. Khoshmirsafa M. Bahador A. Hadighi R. Photodynamic therapy using toluidine blue o (tbo) dye as a photosensitizer against leishmania major. Iran. J. Public Health 2021 50 10 2111 2120 10.18502/ijph.v50i10.7514 35223579
    [Google Scholar]
  111. Lee B.I. Suh Y.S. Chung Y.J. Yu K. Park C.B. Shedding light on alzheimer’s β-amyloidosis: Photosensitized methylene blue ınhibits self-assembly of β-amyloid peptides and disintegrates their aggregates. Sci. Rep. 2017 7 1 7523 10.1038/s41598‑017‑07581‑2 28790398
    [Google Scholar]
  112. Morais F.A.P. Campanholi K. Balbinot R. Junior R. Goncalves R. de Oliveira A.C. Characterization of acridine orange in homogeneous media: A supportive study and validation of ıts potential for photo-applications. Arch. Pharm. Pharmacol. Res. 2021 3 1 1 5 10.33552/APPR.2021.03.000555
    [Google Scholar]
  113. Yoo J-O. Ha K-S. Chapter four - New insights into the mechanisms for photodynamic therapy-ınduced cancer cell death. International Review of Cell and Molecular Biology. Jeon K.W. Academic Press 2012 295 139 174 10.1016/B978‑0‑12‑394306‑4.00010‑1
    [Google Scholar]
  114. Hak A. Ali M.S. Sankaranarayanan S.A. Shinde V.R. Rengan A.K. Chlorin e6: A promising photosensitizer in photo-based cancer nanomedicine. ACS Appl. Bio Mater. 2023 6 2 349 364 10.1021/acsabm.2c00891 36700563
    [Google Scholar]
  115. Morison W. Richard E. PUVA photochemotherapy and other phototherapy modalities. Comprehensive Dermatologic Drug Therapy Elsevier 2013 10.1016/B978‑1‑4377‑2003‑7.00022‑4
    [Google Scholar]
  116. Lee Y. Hyun C.G. Anti-inflammatory effects of psoralen derivatives on raw264.7 cells via regulation of the nf-κb and mapk signaling pathways. Int. J. Mol. Sci. 2022 23 10 5813 10.3390/ijms23105813
    [Google Scholar]
  117. Damrongrungruang T. Kitchindaopat N. Thanasothon P. Theeranut K. Tippayawat P. Ruangsuwan C. Suwannee B. Effects of photodynamic therapy with azulene on peripheral blood mononuclear cell viability and singlet oxygen formation. Photodiagn. Photodyn. Ther. 2018 24 318 323 10.1016/j.pdpdt.2018.10.015 30381257
    [Google Scholar]
  118. Wang L. Yan J. Fu P.P. Parekh K.A. Yu H. Photomutagenicity of cosmetic ingredient chemicals azulene and guaiazulene. Mutat. Res. 2003 530 1-2 19 26 10.1016/S0027‑5107(03)00131‑3 14563527
    [Google Scholar]
  119. Peng C. Li Y. Liang H. Cheng J. Li Q. Sun X. Li Z. Wang F. Guo Y. Tian Z. Yang L. Tian Y. Zhang Z. Cao W. Detection and photodynamic therapy of inflamed atherosclerotic plaques in the carotid artery of rabbits. J. Photochem. Photobiol. B 2011 102 1 26 31 10.1016/j.jphotobiol.2010.09.001 20875747
    [Google Scholar]
  120. Hirabayashi A. Shindo Y. Oka K. Takahashi D. Toshima K. Photodegradation of amyloid β and reduction of its cytotoxicity to PC12 cells using porphyrin derivatives. Chem. Commun. 2014 50 67 9543 9546 10.1039/C4CC03791J 25012260
    [Google Scholar]
  121. Lee B.I. Chung Y.J. Park C.B. Photosensitizing materials and platforms for light-triggered modulation of Alzheimer’s β-amyloid self-assembly. Biomaterials 2019 190-191 121 132 10.1016/j.biomaterials.2018.10.043 30447644
    [Google Scholar]
  122. Mangione M.R. Palumbo Piccionello A. Marino C. Ortore M.G. Picone P. Vilasi S. Di Carlo M. Buscemi S. Bulone D. San Biagio P.L. Photo-inhibition of Aβ fibrillation mediated by a newly designed fluorinated oxadiazole. RSC Advances 2015 5 21 16540 16548 10.1039/C4RA13556C
    [Google Scholar]
  123. Paban V Manrique C Filali M Maunoir-Regimbal S Fauvelle F Alescio-Lautier B Therapeutic and preventive effects of methylene blue on Alzheimer's disease pathology in a transgenic mouse model. Neuropharmacology 2014 76 Pt A 68 79 10.1016/j.neuropharm.2013.06.033
    [Google Scholar]
  124. Sontag E.M. Lotz G.P. Agrawal N. Tran A. Aron R. Yang G. Necula M. Lau A. Finkbeiner S. Glabe C. Marsh J.L. Muchowski P.J. Thompson L.M. Methylene blue modulates huntingtin aggregation intermediates and is protective in Huntington’s disease models. J. Neurosci. 2012 32 32 11109 11119 10.1523/JNEUROSCI.0895‑12.2012 22875942
    [Google Scholar]
  125. Necula M. Breydo L. Milton S. Kayed R. van der Veer W.E. Tone P. Glabe C.G. Methylene blue inhibits amyloid Abeta oligomerization by promoting fibrillization. Biochemistry 2007 46 30 8850 8860 10.1021/bi700411k 17595112
    [Google Scholar]
  126. Lublin A.L. Gandy S. Amyloid-beta oligomers: Possible roles as key neurotoxins in Alzheimer’s Disease. Mt. Sinai J. Med. 2010 77 1 43 49 10.1002/msj.20160 20101723
    [Google Scholar]
  127. Cappai R. Barnham K.J. Delineating the mechanism of Alzheimer’s disease A beta peptide neurotoxicity. Neurochem. Res. 2008 33 3 526 532 10.1007/s11064‑007‑9469‑8 17762917
    [Google Scholar]
  128. Simakova O. Arispe N.J. The cell-selective neurotoxicity of the Alzheimer’s Abeta peptide is determined by surface phosphatidylserine and cytosolic ATP levels. Membrane binding is required for Abeta toxicity. J. Neurosci. 2007 27 50 13719 13729 10.1523/JNEUROSCI.3006‑07.2007 18077683
    [Google Scholar]
  129. Mitkevich V.A. Petrushanko I.Y. Yegorov Y.E. Simonenko O.V. Vishnyakova K.S. Kulikova A.A. Tsvetkov P.O. Makarov A.A. Kozin S.A. Isomerization of Asp7 leads to increased toxic effect of amyloid-β42 on human neuronal cells. Cell Death Dis. 2013 4 11 e939 10.1038/cddis.2013.492 24287700
    [Google Scholar]
  130. Ni C.L. Shi H.P. Yu H.M. Chang Y.C. Chen Y.R. Folding stability of amyloid‐β 40 monomer is an important determinant of the nucleation kinetics in fibrillization. FASEB J. 2011 25 4 1390 1401 10.1096/fj.10‑175539 21209058
    [Google Scholar]
  131. Lee B.I. Suh Y.S. Chung Y.J. Yu K. Park C.B. Shedding light on Alzheimer’s β-amyloidosis: Photosensitized methylene blue inhibits self-assembly of β-amyloid peptides and disintegrates their aggregates. Sci. Rep. 2017 7 1 7523 10.1038/s41598‑017‑07581‑2 28790398
    [Google Scholar]
  132. Wischik CM Bentham P Wischik DJ Seng KM O3-04–07: Tau aggregation inhibitor (TAI) therapy with rember™ arrests disease progression in mild and moderate Alzheimer's disease over 50 weeks. Alzheimer's Dement. 2008 4 4S_Part_5 T167
    [Google Scholar]
  133. Zhang J. Liu J. Zhu Y. Xu Z. Xu J. Wang T. Yu H. Zhang W. Photodynamic micelles for amyloid β degradation and aggregation inhibition. Chem. Commun. 2016 52 81 12044 12047 10.1039/C6CC06175C 27711295
    [Google Scholar]
  134. Chung Y.J. Kim K. Lee B.I. Park C.B. Carbon nanodot-sensitized modulation of alzheimer’s β-amyloid self-assembly, disassembly, and toxicity. Small 2017 13 34 1700983 10.1002/smll.201700983 28714246
    [Google Scholar]
  135. Du Z. Gao N. Wang X. Ren J. Qu X. Near-infrared switchable fullerene-based synergy therapy for alzheimer’s disease. Small 2018 14 33 1801852 10.1002/smll.201801852 30028575
    [Google Scholar]
  136. Zhang Z. Han Q. Lau J.W. Xing B. Lanthanide-doped upconversion nanoparticles meet the needs for cutting-edge bioapplications: Recent progress and perspectives. ACS Mater. Lett. 2020 2 11 1516 1531 10.1021/acsmaterialslett.0c00377 33644762
    [Google Scholar]
  137. Yu D. Guan Y. Bai F. Du Z. Gao N. Ren J. Qu X. Metal–Organic frameworks harness cu chelating and photooxidation against amyloid β aggregation in vivo . Chemistry 2019 25 14 3489 3495 10.1002/chem.201805835 30601592
    [Google Scholar]
  138. Ma Z. Song C. Yang K. Wang J. PEG-modified copper cysteine for photodynamic therapy in alzheimer’s disease. Res Sq 2022 10.21203/rs.3.rs‑1446266/v1
    [Google Scholar]
  139. Ozawa S. Hori Y. Shimizu Y. Taniguchi A. Suzuki T. Wang W. Chiu Y.W. Koike R. Yokoshima S. Fukuyama T. Takatori S. Sohma Y. Kanai M. Tomita T. Photo-oxygenation by a biocompatible catalyst reduces amyloid-β levels in Alzheimer’s disease mice. Brain 2021 144 6 1884 1897 10.1093/brain/awab058 33851209
    [Google Scholar]
  140. Son G. Lee B.I. Chung Y.J. Park C.B. Light-triggered dissociation of self-assembled β-amyloid aggregates into small, nontoxic fragments by ruthenium (II) complex. Acta Biomater. 2018 67 147 155 10.1016/j.actbio.2017.11.048 29221856
    [Google Scholar]
  141. Ni J. Taniguchi A. Ozawa S. Hori Y. Kuninobu Y. Saito T. Saido T.C. Tomita T. Sohma Y. Kanai M. Near-infrared photoactivatable oxygenation catalysts of amyloid peptide. Chem 2018 4 4 807 820 10.1016/j.chempr.2018.02.008
    [Google Scholar]
  142. Zhan Q. Shi X. Wang T. Hu J. Zhou J. Zhou L. Wei S. Design and synthesis of thymine modified phthalocyanine for Aβ protofibrils photodegradation and Aβ peptide aggregation inhibition. Talanta 2019 191 27 38 10.1016/j.talanta.2018.08.037 30262061
    [Google Scholar]
  143. Nagashima N. Ozawa S. Furuta M. Oi M. Hori Y. Tomita T. Sohma Y. Kanai M. Catalytic photooxygenation degrades brain Aβ in vivo . Sci. Adv. 2021 7 13 eabc9750 10.1126/sciadv.abc9750 33762329
    [Google Scholar]
  144. Leshem G. Richman M. Lisniansky E. Antman-Passig M. Habashi M. Gräslund A. Wärmländer S.K.T.S. Rahimipour S. Photoactive chlorin e6 is a multifunctional modulator of amyloid-β aggregation and toxicity via specific interactions with its histidine residues. Chem. Sci. 2019 10 1 208 217 10.1039/C8SC01992D 30713632
    [Google Scholar]
  145. Ruff J. Hassan N. Morales-Zavala F. Steitz J. Araya E. Kogan M.J. Simon U. CLPFFD–PEG functionalized NIR-absorbing hollow gold nanospheres and gold nanorods inhibit β-amyloid aggregation. J. Mater. Chem. B Mater. Biol. Med. 2018 6 16 2432 2443 10.1039/C8TB00655E 32254460
    [Google Scholar]
  146. Ma M. Wang Y. Gao N. Liu X. Sun Y. Ren J. Qu X. A near-İnfrared-controllable artificial metalloprotease used for degrading amyloid-β monomers and aggregates. Chemistry 2019 25 51 11852 11858 10.1002/chem.201902828 31361361
    [Google Scholar]
  147. Sudhakar S. Mani E. Rapid dissolution of amyloid β fibrils by silver nanoplates. Langmuir 2019 35 21 6962 6970 10.1021/acs.langmuir.9b00080 31030521
    [Google Scholar]
  148. Liu Z. Ma M. Yu D. Ren J. Qu X. Target-driven supramolecular self-assembly for selective amyloid-β photooxygenation against Alzheimer’s disease. Chem. Sci. 2020 11 40 11003 11008 10.1039/D0SC04984K 34094349
    [Google Scholar]
  149. Liu Y. Chen Y. Gong Y. Yang H. Liu J. Polydopamine/Ruthenium nanoparticle systems as photothermal therapy reagents and reactive oxygen species scavengers for alzheimer’s disease treatment. ACS Appl. Nano Mater. 2023 6 7 5384 5393 10.1021/acsanm.2c05512
    [Google Scholar]
  150. Idée J.M. Louguet S. Ballet S. Corot C. Theranostics and contrast-agents for medical imaging: A pharmaceutical company viewpoint. Quant. Imaging Med. Surg. 2013 3 6 292 297 24404442
    [Google Scholar]
  151. Jeelani S. Jagat Reddy R.C. Maheswaran T. Asokan G.S. Dany A. Anand B. Theranostics: A treasured tailor for tomorrow. J. Pharm. Bioallied Sci. 2014 6 5 Suppl. 1 6 10.4103/0975‑7406.137249 25210387
    [Google Scholar]
  152. Hilderbrand S.A. Weissleder R. Near-infrared fluorescence: Application to in vivo molecular imaging. Curr. Opin. Chem. Biol. 2010 14 1 71 79 10.1016/j.cbpa.2009.09.029 19879798
    [Google Scholar]
  153. Silindir M. Erdoğan S. Özer A.Y. Maia S. Liposomes and their applications in molecular imaging. J. Drug Target. 2012 20 5 401 415 10.3109/1061186X.2012.685477 22553977
    [Google Scholar]
  154. Silindir M. Özer A.Y. Erdoğan S. The use and importance of liposomes in positron emission tomography. Drug Deliv. 2012 19 1 68 80 10.3109/10717544.2011.635721 22211758
    [Google Scholar]
  155. Blasberg R.G. Molecular imaging and cancer. Mol. Cancer Ther. 2003 2 3 335 343 12657729
    [Google Scholar]
  156. Massoud T.F. Gambhir S.S. Molecular imaging in living subjects: Seeing fundamental biological processes in a new light. Genes Dev. 2003 17 5 545 580 10.1101/gad.1047403 12629038
    [Google Scholar]
  157. GB S. Instruments for radiation detection and measurements. Fundamentals of Nuclear Pharmacy. New York Springer 2004
    [Google Scholar]
  158. Silindir Gunay M. Yekta Ozer A. Chalon S. Drug delivery systems for ımaging and therapy of parkinson’s disease. Curr. Neuropharmacol. 2016 14 4 376 391 10.2174/1570159X14666151230124904 26714584
    [Google Scholar]
  159. Li M. Guan Y. Zhao A. Ren J. Qu X. Using multifunctional peptide conjugated au nanorods for monitoring β-amyloid aggregation and chemo-photothermal treatment of alzheimer’s disease. Theranostics 2017 7 12 2996 3006 10.7150/thno.18459 28839459
    [Google Scholar]
  160. Liu D. Li W. Jiang X. Bai S. Liu J. Liu X. Shi Y. Kuai Z. Kong W. Gao R. Shan Y. Using near-infrared enhanced thermozyme and scFv dual-conjugated Au nanorods for detection and targeted photothermal treatment of Alzheimer’s disease. Theranostics 2019 9 8 2268 2281 10.7150/thno.30649 31149043
    [Google Scholar]
  161. Gong L. Zhang X. Ge K. Yin Y. Machuki J.O. Yang Y. Shi H. Geng D. Gao F. Carbon nitride-based nanocaptor: An intelligent nanosystem with metal ions chelating effect for enhanced magnetic targeting phototherapy of Alzheimer’s disease. Biomaterials 2021 267 120483 10.1016/j.biomaterials.2020.120483 33129186
    [Google Scholar]
  162. Sharma M. Tiwari V. Chaturvedi S. Wahajuddin M. Shukla S. Panda J.J. Self-Fluorescent lone tryptophan nanoparticles as theranostic agents against alzheimer’s disease. ACS Appl. Mater. Interfaces 2022 14 11 13079 13093 10.1021/acsami.2c01090 35263093
    [Google Scholar]
/content/journals/cn/10.2174/011570159X370790250317045223
Loading
/content/journals/cn/10.2174/011570159X370790250317045223
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test