Skip to content
2000
Volume 23, Issue 14
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

Alzheimer's disease is a neurodegenerative disease that impairs cognitive function. The incidence of Alzheimer's disease increases with the increase in the elderly population. Although the clear pathogenesis of Alzheimer's disease is not yet known, the formation of amyloid plaques and tau fibrils, diminished acetylcholine levels, and increased inflammation can be observed in patients. Alzheimer's disease, whose pathogenesis is not fully demonstrated, cannot be treated radically. Since it has been observed that only pharmacological treatment alone isn’t sufficient, alternative approaches have become essential. Among these approaches, nanocarriers greatly facilitate the transport of drugs since the blood-brain barrier is an important obstacle to the penetration of drugs into the brain. Photosensitizers trigger activation after exposure to near-infrared radiation light of a suitable wavelength or laser light, resulting in the selective destruction of Aβ plaques. Photodynamic therapy and photothermal therapy have been investigated for their potential to inhibit Aβ plaques through photosensitizers. By ThT fluorescence measurements, TAS-loaded Ce6 micelles show inhibiting Aβ monomers from formation Aβ aggregates and degradation of protofibrills to small fragments. By using these photosensitizers, near-infrared radiation fluorescence imaging can be used as a theranostic. In this review, potential treatment options for photodynamic therapy and photothermal therapy for Alzheimer's disease are summarised, and a simultaneous or combined approach is discussed, taking into account potential nanotheranostics.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X370790250317045223
2025-04-15
2025-12-19
Loading full text...

Full text loading...

References

  1. KnopmanD.S. AmievaH. PetersenR.C. ChételatG. HoltzmanD.M. HymanB.T. NixonR.A. JonesD.T. Alzheimer disease.Nat. Rev. Dis. Primers2021713310.1038/s41572‑021‑00269‑y33986301
    [Google Scholar]
  2. HaaksmaM.L. EriksdotterM. RizzutoD. LeoutsakosJ.M.S. Olde RikkertM.G.M. MelisR.J.F. Garcia-PtacekS. Survival time tool to guide care planning in people with dementia.Neurology2020945e538e54810.1212/WNL.000000000000874531843808
    [Google Scholar]
  3. NandiA. CountsN. ChenS. SeligmanB. TortoriceD. VigoD. BloomD.E. Global and regional projections of the economic burden of Alzheimer’s disease and related dementias from 2019 to 2050: A value of statistical life approach. EClin.Med.20225110158010.1016/j.eclinm.2022.10158035898316
    [Google Scholar]
  4. NicholsE. SteinmetzJ.D. VollsetS.E. FukutakiK. ChalekJ. Abd-AllahF. AbdoliA. AbualhasanA. Abu-GharbiehE. AkramT.T. Al HamadH. AlahdabF. AlaneziF.M. AlipourV. AlmustanyirS. AmuH. AnsariI. ArablooJ. AshrafT. Astell-BurtT. AyanoG. Ayuso-MateosJ.L. BaigA.A. BarnettA. BarrowA. BauneB.T. BéjotY. BezabheW.M.M. BezabihY.M. BhagavathulaA.S. BhaskarS. BhattacharyyaK. BijaniA. BiswasA. BollaS.R. BoloorA. BrayneC. BrennerH. BurkartK. BurnsR.A. CámeraL.A. CaoC. CarvalhoF. Castro-de-AraujoL.F.S. Catalá-LópezF. CerinE. ChavanP.P. CherbuinN. ChuD-T. CostaV.M. CoutoR.A.S. DadrasO. DaiX. DandonaL. DandonaR. De la Cruz-GóngoraV. DhamnetiyaD. Dias da SilvaD. DiazD. DouiriA. EdvardssonD. EkholuenetaleM. El SayedI. El-JaafaryS.I. EskandariK. EskandariehS. EsmaeilnejadS. FaresJ. FaroA. FarooqueU. FeiginV.L. FengX. FereshtehnejadS-M. FernandesE. FerraraP. FilipI. FillitH. FischerF. GaidhaneS. GalluzzoL. GhashghaeeA. GhithN. GialluisiA. GilaniS.A. GlavanI-R. GnedovskayaE.V. GolechhaM. GuptaR. GuptaV.B. GuptaV.K. HaiderM.R. HallB.J. HamidiS. HanifA. HankeyG.J. HaqueS. HartonoR.K. HasaballahA.I. HasanM.T. HassanA. HayS.I. HayatK. HegazyM.I. HeidariG. Heidari-SoureshjaniR. HerteliuC. HousehM. HussainR. HwangB-F. IacovielloL. IavicoliI. IlesanmiO.S. IlicI.M. IlicM.D. IrvaniS.S.N. IsoH. IwagamiM. JabbarinejadR. JacobL. JainV. JayapalS.K. JayawardenaR. JhaR.P. JonasJ.B. JosephN. KalaniR. KandelA. KandelH. KarchA. KasaA.S. KassieG.M. KeshavarzP. KhanM.A.B. KhatibM.N. KhojaT.A.M. KhubchandaniJ. KimM.S. KimY.J. KisaA. KisaS. KivimäkiM. KoroshetzW.J. KoyanagiA. KumarG.A. KumarM. LakH.M. LeonardiM. LiB. LimS.S. LiuX. LiuY. LogroscinoG. LorkowskiS. LucchettiG. Lutzky SauteR. MagnaniF.G. MalikA.A. MassanoJ. MehndirattaM.M. MenezesR.G. MeretojaA. MohajerB. Mohamed IbrahimN. MohammadY. MohammedA. MokdadA.H. MondelloS. MoniM.A.A. MoniruzzamanM. MossieT.B. NagelG. NaveedM. NayakV.C. Neupane KandelS. NguyenT.H. OanceaB. OtstavnovN. OtstavnovS.S. OwolabiM.O. Panda-JonasS. Pashazadeh KanF. PasovicM. PatelU.K. PathakM. PeresM.F.P. PerianayagamA. PetersonC.B. PhillipsM.R. PinheiroM. PiradovM.A. PondC.D. PotashmanM.H. PottooF.H. PradaS.I. RadfarA. RaggiA. RahimF. RahmanM. RamP. RanasingheP. RawafD.L. RawafS. RezaeiN. RezapourA. RobinsonS.R. RomoliM. RoshandelG. SahathevanR. SahebkarA. SahraianM.A. SathianB. SattinD. SawhneyM. SaylanM. SchiavolinS. SeylaniA. ShaF. ShaikhM.A. ShajiK.S. ShannawazM. ShettyJ.K. ShigematsuM. ShinJ.I. ShiriR. SilvaD.A.S. SilvaJ.P. SilvaR. SinghJ.A. SkryabinV.Y. SkryabinaA.A. SmithA.E. SoshnikovS. SpurlockE.E. SteinD.J. SunJ. Tabarés-SeisdedosR. ThakurB. TimalsinaB. Tovani-PaloneM.R. TranB.X. TsegayeG.W. Valadan TahbazS. ValdezP.R. VenketasubramanianN. VlassovV. VuG.T. VuL.G. WangY-P. WimoA. WinklerA.S. YadavL. Yahyazadeh JabbariS.H. YamagishiK. YangL. YanoY. YonemotoN. YuC. YunusaI. ZadeyS. ZastrozhinM.S. ZastrozhinaA. ZhangZ-J. MurrayC.J.L. VosT. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: An analysis for the global burden of disease study 2019.Lancet Public Health202272e105e12510.1016/S2468‑2667(21)00249‑834998485
    [Google Scholar]
  5. NicholsE. SzoekeC.E.I. VollsetS.E. AbbasiN. Abd-AllahF. AbdelaJ. AichourM.T.E. AkinyemiR.O. AlahdabF. AsgedomS.W. AwasthiA. Barker-ColloS.L. BauneB.T. BéjotY. BelachewA.B. BennettD.A. BiadgoB. BijaniA. Bin SayeedM.S. BrayneC. CarpenterD.O. CarvalhoF. Catalá-LópezF. CerinE. ChoiJ-Y.J. DangA.K. DegefaM.G. DjalaliniaS. DubeyM. DukenE.E. EdvardssonD. EndresM. EskandariehS. FaroA. FarzadfarF. FereshtehnejadS-M. FernandesE. FilipI. FischerF. GebreA.K. GeremewD. Ghasemi-KasmanM. GnedovskayaE.V. GuptaR. HachinskiV. HagosT.B. HamidiS. HankeyG.J. HaroJ.M. HayS.I. IrvaniS.S.N. JhaR.P. JonasJ.B. KalaniR. KarchA. KasaeianA. KhaderY.S. KhalilI.A. KhanE.A. KhannaT. KhojaT.A.M. KhubchandaniJ. KisaA. Kissimova-SkarbekK. KivimäkiM. KoyanagiA. KrohnK.J. LogroscinoG. LorkowskiS. MajdanM. MalekzadehR. MärzW. MassanoJ. MengistuG. MeretojaA. MohammadiM. Mohammadi-KhanaposhtaniM. MokdadA.H. MondelloS. MoradiG. NagelG. NaghaviM. NaikG. NguyenL.H. NguyenT.H. NirayoY.L. NixonM.R. Ofori-AsensoR. OgboF.A. OlagunjuA.T. OwolabiM.O. Panda-JonasS. PassosV.M.A. PereiraD.M. Pinilla-MonsalveG.D. PiradovM.A. PondC.D. PoustchiH. QorbaniM. RadfarA. ReinerR.C.Jr RobinsonS.R. RoshandelG. RostamiA. RussT.C. SachdevP.S. SafariH. SafiriS. SahathevanR. SalimiY. SatpathyM. SawhneyM. SaylanM. SepanlouS.G. ShafieesabetA. ShaikhM.A. SahraianM.A. ShigematsuM. ShiriR. ShiueI. SilvaJ.P. SmithM. SobhaniS. SteinD.J. Tabarés-SeisdedosR. Tovani-PaloneM.R. TranB.X. TranT.T. TsegayA.T. UllahI. VenketasubramanianN. VlassovV. WangY-P. WeissJ. WestermanR. WijeratneT. WyperG.M.A. YanoY. YimerE.M. YonemotoN. YousefifardM. ZaidiZ. ZareZ. VosT. FeiginV.L. MurrayC.J.L. Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990–2016: A systematic analysis for the global burden of disease study 2016.Lancet Neurol.20191818810610.1016/S1474‑4422(18)30403‑430497964
    [Google Scholar]
  6. DevkotaS. WilliamsT.D. WolfeM.S. Familial Alzheimer’s disease mutations in amyloid protein precursor alter proteolysis by γ-secretase to increase amyloid β-peptides of ≥45 residues.J. Biol. Chem.202129610028110.1016/j.jbc.2021.10028133450230
    [Google Scholar]
  7. SharmaP. SrivastavaP. SethA. TripathiP.N. BanerjeeA.G. ShrivastavaS.K. Comprehensive review of mechanisms of pathogenesis involved in Alzheimer’s disease and potential therapeutic strategies.Prog. Neurobiol.2019174538910.1016/j.pneurobio.2018.12.00630599179
    [Google Scholar]
  8. Kumar, A.; Singh, A.; Ekavali. A review on Alzheimer’s disease pathophysiology and its management: An update.Pharmacol. Rep.201567219520310.1016/j.pharep.2014.09.00425712639
    [Google Scholar]
  9. OdaT. WalsP. OsterburgH.H. JohnsonS.A. PasinettiG.M. MorganT.E. RozovskyI. StineW.B. SnyderS.W. HolzmanT.F. KrafftG.A. FinchC.E. Clusterin (apoJ) alters the aggregation of amyloid beta-peptide (A beta 1-42) and forms slowly sedimenting A beta complexes that cause oxidative stress.Exp. Neurol.19951361223110.1006/exnr.1995.10807589331
    [Google Scholar]
  10. HardyJ. SelkoeD.J. The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics.Science2002297558035335610.1126/science.107299412130773
    [Google Scholar]
  11. ReitzC. Novel susceptibility loci for Alzheimer’s disease.Future Neurol.201510654755810.2217/fnl.15.4227057151
    [Google Scholar]
  12. MaC. HongF. YangS. Amyloidosis in Alzheimer’s disease: Pathogeny, etiology, and related therapeutic directions.Molecules2022274121010.3390/molecules2704121035209007
    [Google Scholar]
  13. CárdenasA.M. ArdilesA.O. BarrazaN. Baéz-MatusX. CaviedesP. Role of tau protein in neuronal damage in Alzheimer’s disease and Down syndrome.Arch. Med. Res.201243864565410.1016/j.arcmed.2012.10.01223142525
    [Google Scholar]
  14. WoodJ.G. MirraS.S. PollockN.J. BinderL.I. Neurofibrillary tangles of Alzheimer disease share antigenic determinants with the axonal microtubule-associated protein tau (tau).Proc. Natl. Acad. Sci. USA198683114040404310.1073/pnas.83.11.40402424015
    [Google Scholar]
  15. NobleW. PoolerA.M. HangerD.P. Advances in tau-based drug discovery.Expert Opin. Drug Discov.20116879781010.1517/17460441.2011.58669022003359
    [Google Scholar]
  16. WuX.L. Piña-CrespoJ. ZhangY.W. ChenX.C. XuH.X. Tau-mediated neurodegeneration and potential ımplications in diagnosis and treatment of Alzheimer’s disease.Chin. Med. J.2017130242978299010.4103/0366‑6999.22031329237931
    [Google Scholar]
  17. SinghA. KukretiR. SasoL. KukretiS. Oxidative stress: A key modulator in neurodegenerative diseases.Molecules2019248158310.3390/molecules2408158331013638
    [Google Scholar]
  18. PraticòD. Oxidative stress hypothesis in Alzheimer’s disease: A reappraisal.Trends Pharmacol. Sci.2008291260961510.1016/j.tips.2008.09.00118838179
    [Google Scholar]
  19. PerssonT. PopescuB.O. Cedazo-MinguezA. Oxidative stress in Alzheimer’s disease: Why did antioxidant therapy fail?Oxid. Med. Cell. Longev.2014201411110.1155/2014/42731824669288
    [Google Scholar]
  20. DeKoskyS.T. ScheffS.W. StyrenS.D. Structural correlates of cognition in dementia: Quantification and assessment of synapse change.Neurodegeneration19965441742110.1006/neur.1996.00569117556
    [Google Scholar]
  21. MashD.C. FlynnD.D. PotterL.T. Loss of M2 muscarine receptors in the cerebral cortex in Alzheimer’s disease and experimental cholinergic denervation.Science198522847031115111710.1126/science.39922493992249
    [Google Scholar]
  22. TeaktongT. GrahamA.J. CourtJ.A. PerryR.H. JarosE. JohnsonM. HallR. PerryE.K. Nicotinic acetylcholine receptor immunohistochemistry in Alzheimer’s disease and dementia with Lewy bodies: Differential neuronal and astroglial pathology.J. Neurol. Sci.20042251-2394910.1016/j.jns.2004.06.01515465084
    [Google Scholar]
  23. KocahanS. DoğanZ. Mechanisms of Alzheimer’s disease pathogenesis and prevention: The brain, neural pathology, N-methyl-D-aspartate receptors, tau protein and other risk factors.Clin. Psychopharmacol. Neurosci.20171511810.9758/cpn.2017.15.1.128138104
    [Google Scholar]
  24. WangR. ReddyP.H. Role of glutamate and NMDA receptors in Alzheimer’s disease.J. Alzheimers Dis.20175741041104810.3233/JAD‑16076327662322
    [Google Scholar]
  25. GhersiM.S. GabachL.A. ButelerF. VilcaesA.A. SchiöthH.B. PerezM.F. de BarioglioS.R. Ghrelin increases memory consolidation through hippocampal mechanisms dependent on glutamate release and NR2B-subunits of the NMDA receptor.Psychopharmacology2015232101843185710.1007/s00213‑014‑3817‑625466701
    [Google Scholar]
  26. HyndM. ScottH.L. DoddP.R. Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer’s disease.Neurochem. Int.200445558359510.1016/j.neuint.2004.03.00715234100
    [Google Scholar]
  27. AlhazmiH.A. AlbrattyM. An update on the novel and approved drugs for Alzheimer disease.Saudi Pharm. J.202230121755176410.1016/j.jsps.2022.10.00436601504
    [Google Scholar]
  28. JannM.W. Rivastigmine, a new-generation cholinesterase inhibitor for the treatment of Alzheimer’s disease.Pharmacotherapy200020111210.1592/phco.20.1.1.3466410641971
    [Google Scholar]
  29. WinbladB. MachadoJ.C. Use of rivastigmine transdermal patch in the treatment of Alzheimer’s disease.Expert Opin. Drug Deliv.20085121377138610.1517/1742524080254269019040398
    [Google Scholar]
  30. VaradharajanA. DavisAD GhoshA. JagtapT. XavierA. MenonA.J. Guidelines for pharmacotherapy in Alzheimer’s disease - A primer on FDA-approved drugs.J. Neurosci. Rural Pract.202314456657310.25259/JNRP_356_2023
    [Google Scholar]
  31. ScottL.J. GoaK.L. Galantamine: A review of its use in Alzheimer's disease.Drugs20006051095112210.2165/00003495‑200060050‑0000811129124
    [Google Scholar]
  32. YiannopoulouK.G. PapageorgiouS.G. Current and future treatments for Alzheimer’s disease.Ther. Adv. Neurol. Disord.201361193310.1177/175628561246167923277790
    [Google Scholar]
  33. JohnsonJ. KotermanskiS. Mechanism of action of memantine.Curr. Opin. Pharmacol.200661616710.1016/j.coph.2005.09.00716368266
    [Google Scholar]
  34. FDA grants accelerated approval for Alzheimer’s drug: FDA.2021Available from: https://www.fda.gov/news-events/press-announcements/fda-grants-accelerated-approval-alzheimers-drug
  35. DunstanR BussiereT EngberT WeinrebP MaierM GrimmJ. P4-006: The role of brain macrophages on the clearance of amyloid plaques following the treatment of Tc2576 with BIIB037Alzheimer's & Dementia201174S_Part_20S700
    [Google Scholar]
  36. HaddadH.W. MaloneG.W. ComardelleN.J. DegueureA.E. PoliwodaS. KayeR.J. MurnaneK.S. KayeA.M. KayeA.D. Aduhelm, a novel anti-amyloid monoclonal antibody, for the treatment of Alzheimer’s disease: A comprehensive review.Health Psychol. Res.20221023702310.52965/001c.3702335910244
    [Google Scholar]
  37. ArndtJ.W. QianF. SmithB.A. QuanC. KilambiK.P. BushM.W. WalzT. PepinskyR.B. BussièreT. HamannS. CameronT.O. WeinrebP.H. Structural and kinetic basis for the selectivity of aducanumab for aggregated forms of amyloid-β.Sci. Rep.201881641210.1038/s41598‑018‑24501‑029686315
    [Google Scholar]
  38. Peripheral and central nervous system drugs advisory committee meeting.2024Available from: https://www.fda.gov/advisory-committees/advisory-committee-calendar/updated-public-participation-information-june-10-2024-meeting-peripheral-and-central-nervous-system#event-materials
  39. FDA converts novel alzheimer’s disease treatment to traditional approval.2024Available from: https://www.fda.gov/news-events/press-announcements/fda-converts-novel-alzheimers-diseasetreatment-traditional-approval
  40. CanadyV.A. FDA approves new treatment for Alzheimer’s disease.Ment. Health Wkly.20233336710.1002/mhw.33505
    [Google Scholar]
  41. HuangL.K. KuanY.C. LinH.W. HuC.J. Clinical trials of new drugs for Alzheimer disease: A 2020–2023 update.J. Biomed. Sci.20233018310.1186/s12929‑023‑00976‑637784171
    [Google Scholar]
  42. TuckerS. MöllerC. TegerstedtK. LordA. LaudonH. SjödahlJ. SöderbergL. SpensE. SahlinC. WaaraE.R. SatlinA. GellerforsP. OsswaldG. LannfeltL. The murine version of BAN2401 (mAb158) selectively reduces amyloid-β protofibrils in brain and cerebrospinal fluid of tg-ArcSwe mice.J. Alzheimers Dis.201443257558810.3233/JAD‑14074125096615
    [Google Scholar]
  43. van DyckC.H. SwansonC.J. AisenP. BatemanR.J. ChenC. GeeM. KanekiyoM. LiD. ReydermanL. CohenS. FroelichL. KatayamaS. SabbaghM. VellasB. WatsonD. DhaddaS. IrizarryM. KramerL.D. IwatsuboT. Lecanemab in early Alzheimer’s disease.N. Engl. J. Med.2023388192110.1056/NEJMoa221294836449413
    [Google Scholar]
  44. Questions and answers on the refusal of the marketing authorisation for Leqembi (lecanemab).2024Available from: https://www.ema.europa.eu/en/medicines/human/EPAR/leqembi
  45. FDA-approved treatments for Alzheimer’s: Alzheimer's association.2024Available from: https://www.alz.org/media/Documents/alzheimers-dementia-fda-approved-treatments-for-alzheimers-ts.pdf
  46. List of nationally authorised medicinal products.2024Available from: https://www.ema.europa.eu/en/search?f%5B0%5D=ema_search_entity_is_document%3ADocument&search_api_fulltext=alzheimer%E2%80%99&page=2
  47. Medications approved for dementia in Canada: Alzheimer Society of Canada.2024Available from: https://alzheimer.ca/en/about-dementia/dementia-treatment-options-developments/medications-for-alzheimers
  48. AbbottN.J. PatabendigeA.A.K. DolmanD.E.M. YusofS.R. BegleyD.J. Structure and function of the blood-brain barrier.Neurobiol. Dis.2010371132510.1016/j.nbd.2009.07.03019664713
    [Google Scholar]
  49. López-OrnelasA. JiménezA. Pérez-SánchezG. Rodríguez-PérezC.E. Corzo-CruzA. VelascoI. EstudilloE. The impairment of blood-brain barrier in Alzheimer’s disease: Challenges and opportunities with stem cells.Int. J. Mol. Sci.202223171013610.3390/ijms23171013636077533
    [Google Scholar]
  50. ZlokovicB.V. The blood-brain barrier in health and chronic neurodegenerative disorders.Neuron200857217820110.1016/j.neuron.2008.01.00318215617
    [Google Scholar]
  51. ZenaroE. PiacentinoG. ConstantinG. The blood-brain barrier in Alzheimer’s disease.Neurobiol. Dis.2017107415610.1016/j.nbd.2016.07.00727425887
    [Google Scholar]
  52. CaiJ. DaoP. ChenH. YanL. LiY.L. ZhangW. LiL. DuZ. DongC-Z. MeunierB. Ultrasmall superparamagnetic iron oxide nanoparticles-bound NIR dyes: Novel theranostic agents for Alzheimer’s disease.Dyes Pigments202017310796810.1016/j.dyepig.2019.107968
    [Google Scholar]
  53. RankovicZ. CNS drug design: Balancing physicochemical properties for optimal brain exposure.J. Med. Chem.20155862584260810.1021/jm501535r25494650
    [Google Scholar]
  54. ToksoyM.O. TırnaksızF.F. Solid lipid nanoparticles and their applications as brain-specific drug delivery systems.J. Fac. Pharm. Ankara.2021452428442
    [Google Scholar]
  55. DoğanS.S. ÇabanS. ÇapanY. Drug targeting strategies to the brain.Hacettepe Uni J Fac Pharm.20132231250
    [Google Scholar]
  56. PartridgeB. EardleyA. MoralesB.E. CampeloS.N. LorenzoM.F. MehtaJ.N. KaniY. MoraJ.K.G. CampbellE.O.Y. ArenaC.B. PlattS. MintzA. ShinnR.L. RylanderC.G. DebinskiW. DavalosR.V. RossmeislJ.H. Advancements in drug delivery methods for the treatment of brain disease.Front. Vet. Sci.20229103974510.3389/fvets.2022.103974536330152
    [Google Scholar]
  57. PardridgeW.M. The blood-brain barrier: Bottleneck in brain drug development.NeuroRx20052131410.1602/neurorx.2.1.315717053
    [Google Scholar]
  58. HeQ. LiuJ. LiangJ. LiuX. LiW. LiuZ. DingZ. TuoD. Towards improvements for penetrating the blood-brain barrier-recent progress from a material and pharmaceutical perspective.Cells2018742410.3390/cells704002429570659
    [Google Scholar]
  59. TelanoL.N. BakerS. Physiology, cerebral spinal fluid.StatPearls.Treasure Island, FLStatPearls Publishing LLC2024
    [Google Scholar]
  60. KayaM. AhishaliB. Basic physiology of the blood-brain barrier in health and disease: A brief overview.Tissue Barriers202191184091310.1080/21688370.2020.184091333190576
    [Google Scholar]
  61. DamkierH.H. BrownP.D. PraetoriusJ. Cerebrospinal fluid secretion by the choroid plexus.Physiol. Rev.20139341847189210.1152/physrev.00004.201324137023
    [Google Scholar]
  62. ChiangG.C. The blood-cerebrospinal fluid barrier may play a role in alzheimer disease pathogenesis.Radiology2022304364664710.1148/radiol.22074035579527
    [Google Scholar]
  63. SakkaL. CollG. ChazalJ. Anatomy and physiology of cerebrospinal fluid.Eur. Ann. Otorhinolaryngol. Head Neck Dis.2011128630931610.1016/j.anorl.2011.03.00222100360
    [Google Scholar]
  64. DuboisB. FeldmanH.H. JacovaC. HampelH. MolinuevoJ.L. BlennowK. DeKoskyS.T. GauthierS. SelkoeD. BatemanR. CappaS. CrutchS. EngelborghsS. FrisoniG.B. FoxN.C. GalaskoD. HabertM.O. JichaG.A. NordbergA. PasquierF. RabinoviciG. RobertP. RoweC. SallowayS. SarazinM. EpelbaumS. de SouzaL.C. VellasB. VisserP.J. SchneiderL. SternY. ScheltensP. CummingsJ.L. Advancing research diagnostic criteria for Alzheimer’s disease: The IWG-2 criteria.Lancet Neurol.201413661462910.1016/S1474‑4422(14)70090‑024849862
    [Google Scholar]
  65. KreuterJ. Nanoparticles—a historical perspective.Int. J. Pharm.2007331111010.1016/j.ijpharm.2006.10.02117110063
    [Google Scholar]
  66. SayınerÖ. ÇomoğluT. Nanotaşıyıcı sistemlerde hedeflendirme targetıng wıth nanocarrıer systems.J. Fac. Pharm. Ankara.20164036279
    [Google Scholar]
  67. HenryM.S. PassmoreA.P. ToddS. McGuinnessB. CraigD. JohnstonJ.A. The development of effective biomarkers for Alzheimer’s disease: A review.Int. J. Geriatr. Psychiatry201328433134010.1002/gps.382922674539
    [Google Scholar]
  68. van OostveenW.M. de LangeE.C.M. Imaging techniques in Alzheimer’s disease: A review of applications in early diagnosis and longitudinal monitoring.Int. J. Mol. Sci.2021224211010.3390/ijms2204211033672696
    [Google Scholar]
  69. ValotassiouV. MalamitsiJ. PapatriantafyllouJ. DardiotisE. TsougosI. PsimadasD. AlexiouS. HadjigeorgiouG. GeorgouliasP. SPECT and PET imaging in Alzheimer’s disease.Ann. Nucl. Med.201832958359310.1007/s12149‑018‑1292‑630128693
    [Google Scholar]
  70. BeckerR.E. GreigN.H. GiacobiniE. Why do so many drugs for Alzheimer’s disease fail in development? Time for new methods and new practices?J. Alzheimers Dis.200815230332510.3233/JAD‑2008‑1521318953116
    [Google Scholar]
  71. ParveenS. SahooS.K. Nanomedicine: clinical applications of polyethylene glycol conjugated proteins and drugs.Clin. Pharmacokinet.2006451096598810.2165/00003088‑200645100‑0000216984211
    [Google Scholar]
  72. NguyenT.T. NguyenT.T.D. NguyenT.K.O. VoT.K. VoV.G. Advances in developing therapeutic strategies for Alzheimer’s disease.Biomed. Pharmacother.202113911162310.1016/j.biopha.2021.11162333915504
    [Google Scholar]
  73. LoureiroJ.A. GomesB. FrickerG. CoelhoM.A.N. RochaS. PereiraM.C. Cellular uptake of PLGA nanoparticles targeted with anti-amyloid and anti-transferrin receptor antibodies for Alzheimer’s disease treatment.Colloids Surf. B Biointerfaces201614581310.1016/j.colsurfb.2016.04.04127131092
    [Google Scholar]
  74. RuffJ. HüwelS. KoganM.J. SimonU. GallaH.J. The effects of gold nanoparticles functionalized with b-amyloid specific peptides on an in vitro model of blood-brain barrier.Nanomedicine20171351645165210.1016/j.nano.2017.02.01328285163
    [Google Scholar]
  75. ZhangJ. LiuR. ZhangD. ZhangZ. ZhuJ. XuL. GuoY. Neuroprotective effects of maize tetrapeptide-anchored gold nanoparticles in Alzheimer’s disease.Colloids Surf. B Biointerfaces202120011158410.1016/j.colsurfb.2021.11158433508658
    [Google Scholar]
  76. XuL. DingY. MaF. ChenY. ChenG. ZhuL. LongJ. MaR. LiuY. LiuJ. HuangF. ShiL. Engineering a pathological tau-targeted nanochaperone for selective and synergetic inhibition of tau pathology in Alzheimer’s Disease.Nano Today20224310138810.1016/j.nantod.2022.101388
    [Google Scholar]
  77. KarimzadehM. RashidiL. GanjiF. Mesoporous silica nanoparticles for efficient rivastigmine hydrogen tartrate delivery into SY5Y cells.Drug Dev. Ind. Pharm.201743462863610.1080/03639045.2016.127566828043167
    [Google Scholar]
  78. AhmadS. HafeezA. Formulation and development of curcumin–piperine-loaded s-snedds for the treatment of Alzheimer’s disease.Mol. Neurobiol.20236021067108210.1007/s12035‑022‑03089‑736414909
    [Google Scholar]
  79. TakK. SharmaR. DaveV. JainS. SharmaS. Clitoria ternatea mediated synthesis of graphene quantum dots for the treatment of Alzheimer’s disease.ACS Chem. Neurosci.202011223741374810.1021/acschemneuro.0c0027333119989
    [Google Scholar]
  80. LiH. LuoY. DerreumauxP. WeiG. Carbon nanotube inhibits the formation of β-sheet-rich oligomers of the Alzheimer’s amyloid-β(16-22) peptide.Biophys. J.201110192267227610.1016/j.bpj.2011.09.04622067167
    [Google Scholar]
  81. MoanJ. PengQ. An outline of the hundred-year history of PDT.Anticancer Res.2003235A3591360014666654
    [Google Scholar]
  82. LipsonR.L. BaldesE.J. OlsenA.M. Hematoporphyrin derivative: A new aid for endoscopic detection of malignant disease.J. Thorac. Cardiovasc. Surg.196142562362910.1016/S0022‑5223(19)32560‑714465760
    [Google Scholar]
  83. KesselD. Photodynamic therapy: From the beginning.Photodiagn. Photodyn. Ther.2004113710.1016/S1572‑1000(04)00003‑125048058
    [Google Scholar]
  84. DoughertyT.J. An update on photodynamic therapy applications.J. Clin. Laser Med. Surg.20022013710.1089/10445470275347493111902352
    [Google Scholar]
  85. U.S. Food and Drug Administration (FDA)Photofrin (porfimer sodium) Injection1995Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2011/020451s020lbl.pdf
    [Google Scholar]
  86. LiS. ZhouS. LiY. LiX. ZhuJ. FanL. YangS. Exceptionally high payload of the 1R780 iodide on folic acid-functionalized graphene quantum dots for targeted photothermal therapy.ACS Appl. Mater. Interfaces2017927223322234110.1021/acsami.7b0726728643511
    [Google Scholar]
  87. RenH. LiuJ. LiY. WangH. GeS. YuanA. HuY. WuJ. Oxygen self-enriched nanoparticles functionalized with erythrocyte membranes for long circulation and enhanced phototherapy.Acta Biomater.20175926928210.1016/j.actbio.2017.06.03528663143
    [Google Scholar]
  88. Silindir-GunayM. SarcanE.T. OzerA.Y. Near‐infrared imaging of diseases: A nanocarrier approach.Drug Dev. Res.201980552153410.1002/ddr.2153230893508
    [Google Scholar]
  89. Silindir GunayM. OnaralF. KartD. Design of IR780 ethosomes for imaging and photodynamic/photothermal therapy of infections.Acta Pol. Pharm. Drug Res.202279255266
    [Google Scholar]
  90. Silindir GünayM. The Formulation of methylene blue encapsulated, tc-99m labeled multifunctional liposomes for sentinel lymph node ımaging and therapy.Turk. J. Pharm. Sci.202017438138710.4274/tjps.galenos.2019.8661932939133
    [Google Scholar]
  91. SarcanE.T. Silindir-GunayM. OzerA.Y. Theranostic polymeric nanoparticles for NIR imaging and photodynamic therapy.Int. J. Pharm.20185511-232933810.1016/j.ijpharm.2018.09.01930244148
    [Google Scholar]
  92. WanM.T. LinJ.Y. Current evidence and applications of photodynamic therapy in dermatology.Clin. Cosmet. Investig. Dermatol.2014714516324899818
    [Google Scholar]
  93. LiC. WangJ. LiuL. Alzheimer’s therapeutic strategy: Photoactive platforms for suppressing the aggregation of amyloid β protein.Front Chem.2020850910.3389/fchem.2020.0050932793545
    [Google Scholar]
  94. WeiG. YangG. WangY. JiangH. FuY. YueG. JuR. Phototherapy-based combination strategies for bacterial infection treatment.Theranostics20201026122411226210.7150/thno.5272933204340
    [Google Scholar]
  95. HuoJ. JiaQ. HuangH. ZhangJ. LiP. DongX. HuangW. Emerging photothermal-derived multimodal synergistic therapy in combating bacterial infections.Chem. Soc. Rev.202150158762878910.1039/D1CS00074H34159993
    [Google Scholar]
  96. ChengL. HeW. GongH. WangC. ChenQ. ChengZ. LiuZ. PEGylated micelle nanoparticles encapsulating a non-fluorescent near-ınfrared organic dye as a safe and highly-effective photothermal agent for in vivo cancer therapy.Adv. Funct. Mater.201323475893590210.1002/adfm.201301045
    [Google Scholar]
  97. WangK. ZhangY. WangJ. YuanA. SunM. WuJ. HuY. Self-assembled IR780-loaded transferrin nanoparticles as an imaging, targeting and PDT/PTT agent for cancer therapy.Sci. Rep.2016612742110.1038/srep2742127263444
    [Google Scholar]
  98. ZhenX. XieC. JiangY. AiX. XingB. PuK. Semiconducting photothermal nanoagonist for remote-controlled specific cancer therapy.Nano Lett.20181821498150510.1021/acs.nanolett.7b0529229342359
    [Google Scholar]
  99. Nowak-StepniowskaA. PergołP. Padzik-GraczykA. Photodynamic method of cancer diagnosis and therapy-mechanisms and applications.Postepy Biochem.2013591536323821943
    [Google Scholar]
  100. FonsecaS.M. PinaJ. ArnautL.G. Seixas de MeloJ. BurrowsH.D. ChattopadhyayN. AlcácerL. CharasA. MorgadoJ. MonkmanA.P. AsawapiromU. ScherfU. EdgeR. NavaratnamS. Triplet-state and singlet oxygen formation in fluorene-based alternating copolymers.J. Phys. Chem. B2006110168278828310.1021/jp060251f16623508
    [Google Scholar]
  101. KwiatkowskiS. KnapB. PrzystupskiD. SaczkoJ. KędzierskaE. Knap-CzopK. KotlińskaJ. MichelO. KotowskiK. KulbackaJ. Photodynamic therapy – mechanisms, photosensitizers and combinations.Biomed. Pharmacother.20181061098110710.1016/j.biopha.2018.07.04930119176
    [Google Scholar]
  102. RobertsonC.A. EvansD.H. AbrahamseH. Photodynamic therapy (PDT): A short review on cellular mechanisms and cancer research applications for PDT.J. Photochem. Photobiol. B20099611810.1016/j.jphotobiol.2009.04.00119406659
    [Google Scholar]
  103. GhoshM. Recent developments of porphyrin photosensitizers in photodynamic therapy.ChemRxiv2023
    [Google Scholar]
  104. LiuW. DongX. LiuY. SunY. Photoresponsive materials for intensified modulation of Alzheimer’s amyloid-β protein aggregation: A review.Acta Biomater.20211239310910.1016/j.actbio.2021.01.01833465508
    [Google Scholar]
  105. LeeJ.S. LeeB.I. ParkC.B. Photo-induced inhibition of Alzheimer’s β-amyloid aggregation in vitro by rose bengal.Biomaterials201538434910.1016/j.biomaterials.2014.10.05825457982
    [Google Scholar]
  106. DubeyT. GorantlaN.V. ChandrashekaraK.T. ChinnathambiS. Photodynamic exposure of Rose-Bengal inhibits Tau aggregation and modulates cytoskeletal network in neuronal cells.Sci. Rep.20201011238010.1038/s41598‑020‑69403‑232704015
    [Google Scholar]
  107. UddinM.M.N. BekmukhametovaA. AntonyA. BarmanS.K. HouangJ. WuM.J. HookJ.M. GeorgeL. WuhrerR. MawadD. TaD. RupraiH. LautoA. Encapsulated rose bengal enhances the photodynamic treatment of triple-negative breast cancer cells.Molecules202429254610.3390/molecules2902054638276623
    [Google Scholar]
  108. ShirataC. KanekoJ. InagakiY. KokudoT. SatoM. KiritaniS. AkamatsuN. AritaJ. SakamotoY. HasegawaK. KokudoN. Near-infrared photothermal/photodynamic therapy with indocyanine green induces apoptosis of hepatocellular carcinoma cells through oxidative stress.Sci. Rep.2017711395810.1038/s41598‑017‑14401‑029066756
    [Google Scholar]
  109. JaoY. DingS.J. ChenC.C. Antimicrobial photodynamic therapy for the treatment of oral infections: A systematic review.J. Dent. Sci.20231841453146610.1016/j.jds.2023.07.00237799910
    [Google Scholar]
  110. NajmM. PourhajibagherM. BadirzadehA. RazmjouE. AlipourM. KhoshmirsafaM. BahadorA. HadighiR. Photodynamic therapy using toluidine blue o (tbo) dye as a photosensitizer against leishmania major.Iran. J. Public Health202150102111212010.18502/ijph.v50i10.751435223579
    [Google Scholar]
  111. LeeB.I. SuhY.S. ChungY.J. YuK. ParkC.B. Shedding light on Alzheimer’s β-amyloidosis: Photosensitized methylene blue ınhibits self-assembly of β-amyloid peptides and disintegrates their aggregates.Sci. Rep.201771752310.1038/s41598‑017‑07581‑228790398
    [Google Scholar]
  112. MoraisF.A.P. CampanholiK. BalbinotR. JuniorR. GoncalvesR. de OliveiraA.C. Characterization of acridine orange in homogeneous media: A supportive study and validation of ıts potential for photo-applications.Arch. Pharm. Pharmacol. Res.2021311510.33552/APPR.2021.03.000555
    [Google Scholar]
  113. YooJ-O. HaK-S. Chapter four - New insights into the mechanisms for photodynamic therapy-ınduced cancer cell death.International Review of Cell and Molecular Biology. JeonK.W. Academic Press2012Vol. 29513917410.1016/B978‑0‑12‑394306‑4.00010‑1
    [Google Scholar]
  114. HakA. AliM.S. SankaranarayananS.A. ShindeV.R. RenganA.K. Chlorin e6: A promising photosensitizer in photo-based cancer nanomedicine.ACS Appl. Bio Mater.20236234936410.1021/acsabm.2c0089136700563
    [Google Scholar]
  115. MorisonW. RichardE. PUVA photochemotherapy and other phototherapy modalities.Comprehensive Dermatologic Drug Therapy.Elsevier201310.1016/B978‑1‑4377‑2003‑7.00022‑4
    [Google Scholar]
  116. LeeY. HyunC.G. Anti-inflammatory effects of psoralen derivatives on raw264.7 cells via regulation of the NF-κB and MAPK signaling pathways.Int. J. Mol. Sci.20222310581310.3390/ijms23105813
    [Google Scholar]
  117. DamrongrungruangT. KitchindaopatN. ThanasothonP. TheeranutK. TippayawatP. RuangsuwanC. SuwanneeB. Effects of photodynamic therapy with azulene on peripheral blood mononuclear cell viability and singlet oxygen formation.Photodiagn. Photodyn. Ther.20182431832310.1016/j.pdpdt.2018.10.01530381257
    [Google Scholar]
  118. WangL. YanJ. FuP.P. ParekhK.A. YuH. Photomutagenicity of cosmetic ingredient chemicals azulene and guaiazulene.Mutat. Res.20035301-2192610.1016/S0027‑5107(03)00131‑314563527
    [Google Scholar]
  119. PengC. LiY. LiangH. ChengJ. LiQ. SunX. LiZ. WangF. GuoY. TianZ. YangL. TianY. ZhangZ. CaoW. Detection and photodynamic therapy of inflamed atherosclerotic plaques in the carotid artery of rabbits.J. Photochem. Photobiol. B20111021263110.1016/j.jphotobiol.2010.09.00120875747
    [Google Scholar]
  120. HirabayashiA. ShindoY. OkaK. TakahashiD. ToshimaK. Photodegradation of amyloid β and reduction of its cytotoxicity to PC12 cells using porphyrin derivatives.Chem. Commun.201450679543954610.1039/C4CC03791J25012260
    [Google Scholar]
  121. LeeB.I. ChungY.J. ParkC.B. Photosensitizing materials and platforms for light-triggered modulation of Alzheimer’s β-amyloid self-assembly.Biomaterials2019190-19112113210.1016/j.biomaterials.2018.10.04330447644
    [Google Scholar]
  122. MangioneM.R. Palumbo PiccionelloA. MarinoC. OrtoreM.G. PiconeP. VilasiS. Di CarloM. BuscemiS. BuloneD. San BiagioP.L. Photo-inhibition of Aβ fibrillation mediated by a newly designed fluorinated oxadiazole.RSC Advances2015521165401654810.1039/C4RA13556C
    [Google Scholar]
  123. PabanV ManriqueC FilaliM Maunoir-RegimbalS FauvelleF Alescio-LautierB Therapeutic and preventive effects of methylene blue on Alzheimer's disease pathology in a transgenic mouse model.Neuropharmacology201476Pt A687910.1016/j.neuropharm.2013.06.033
    [Google Scholar]
  124. SontagE.M. LotzG.P. AgrawalN. TranA. AronR. YangG. NeculaM. LauA. FinkbeinerS. GlabeC. MarshJ.L. MuchowskiP.J. ThompsonL.M. Methylene blue modulates huntingtin aggregation intermediates and is protective in Huntington’s disease models.J. Neurosci.20123232111091111910.1523/JNEUROSCI.0895‑12.201222875942
    [Google Scholar]
  125. NeculaM. BreydoL. MiltonS. KayedR. van der VeerW.E. ToneP. GlabeC.G. Methylene blue inhibits amyloid Abeta oligomerization by promoting fibrillization.Biochemistry200746308850886010.1021/bi700411k17595112
    [Google Scholar]
  126. LublinA.L. GandyS. Amyloid-beta oligomers: Possible roles as key neurotoxins in Alzheimer’s disease.Mt. Sinai J. Med.2010771434910.1002/msj.2016020101723
    [Google Scholar]
  127. CappaiR. BarnhamK.J. Delineating the mechanism of Alzheimer’s disease A beta peptide neurotoxicity.Neurochem. Res.200833352653210.1007/s11064‑007‑9469‑817762917
    [Google Scholar]
  128. SimakovaO. ArispeN.J. The cell-selective neurotoxicity of the Alzheimer’s Abeta peptide is determined by surface phosphatidylserine and cytosolic ATP levels. Membrane binding is required for Abeta toxicity.J. Neurosci.20072750137191372910.1523/JNEUROSCI.3006‑07.200718077683
    [Google Scholar]
  129. MitkevichV.A. PetrushankoI.Y. YegorovY.E. SimonenkoO.V. VishnyakovaK.S. KulikovaA.A. TsvetkovP.O. MakarovA.A. KozinS.A. Isomerization of Asp7 leads to increased toxic effect of amyloid-β42 on human neuronal cells.Cell Death Dis.2013411e93910.1038/cddis.2013.49224287700
    [Google Scholar]
  130. NiC.L. ShiH.P. YuH.M. ChangY.C. ChenY.R. Folding stability of amyloid‐β 40 monomer is an important determinant of the nucleation kinetics in fibrillization.FASEB J.20112541390140110.1096/fj.10‑17553921209058
    [Google Scholar]
  131. LeeB.I. SuhY.S. ChungY.J. YuK. ParkC.B. Shedding light on Alzheimer’s β-amyloidosis: Photosensitized methylene blue inhibits self-assembly of β-amyloid peptides and disintegrates their aggregates.Sci. Rep.201771752310.1038/s41598‑017‑07581‑228790398
    [Google Scholar]
  132. WischikCM BenthamP WischikDJ SengKM KM O3-04–07: Tau aggregation inhibitor (TAI) therapy with rember™ arrests disease progression in mild and moderate Alzheimer's disease over 50 weeks.Alzheimer's Dement.200844S_Part_5T167
    [Google Scholar]
  133. ZhangJ. LiuJ. ZhuY. XuZ. XuJ. WangT. YuH. ZhangW. Photodynamic micelles for amyloid β degradation and aggregation inhibition.Chem. Commun.20165281120441204710.1039/C6CC06175C27711295
    [Google Scholar]
  134. ChungY.J. KimK. LeeB.I. ParkC.B. Carbon nanodot-sensitized modulation of Alzheimer’s β-amyloid self-assembly, disassembly, and toxicity.Small20171334170098310.1002/smll.20170098328714246
    [Google Scholar]
  135. DuZ. GaoN. WangX. RenJ. QuX. Near-infrared switchable fullerene-based synergy therapy for Alzheimer’s disease.Small20181433180185210.1002/smll.20180185230028575
    [Google Scholar]
  136. ZhangZ. HanQ. LauJ.W. XingB. Lanthanide-doped upconversion nanoparticles meet the needs for cutting-edge bioapplications: Recent progress and perspectives.ACS Mater. Lett.20202111516153110.1021/acsmaterialslett.0c0037733644762
    [Google Scholar]
  137. YuD. GuanY. BaiF. DuZ. GaoN. RenJ. QuX. Metal–Organic frameworks harness cu chelating and photooxidation against amyloid β aggregation in vivo.Chemistry201925143489349510.1002/chem.20180583530601592
    [Google Scholar]
  138. MaZ. SongC. YangK. WangJ. PEG-modified copper cysteine for photodynamic therapy in Alzheimer’s disease.Res. Sq202210.21203/rs.3.rs‑1446266/v1
    [Google Scholar]
  139. OzawaS. HoriY. ShimizuY. TaniguchiA. SuzukiT. WangW. ChiuY.W. KoikeR. YokoshimaS. FukuyamaT. TakatoriS. SohmaY. KanaiM. TomitaT. Photo-oxygenation by a biocompatible catalyst reduces amyloid-β levels in Alzheimer’s disease mice.Brain202114461884189710.1093/brain/awab05833851209
    [Google Scholar]
  140. SonG. LeeB.I. ChungY.J. ParkC.B. Light-triggered dissociation of self-assembled β-amyloid aggregates into small, nontoxic fragments by ruthenium (II) complex.Acta Biomater.20186714715510.1016/j.actbio.2017.11.04829221856
    [Google Scholar]
  141. NiJ. TaniguchiA. OzawaS. HoriY. KuninobuY. SaitoT. SaidoT.C. TomitaT. SohmaY. KanaiM. Near-infrared photoactivatable oxygenation catalysts of amyloid peptide.Chem20184480782010.1016/j.chempr.2018.02.008
    [Google Scholar]
  142. ZhanQ. ShiX. WangT. HuJ. ZhouJ. ZhouL. WeiS. Design and synthesis of thymine modified phthalocyanine for Aβ protofibrils photodegradation and Aβ peptide aggregation inhibition.Talanta2019191273810.1016/j.talanta.2018.08.03730262061
    [Google Scholar]
  143. NagashimaN. OzawaS. FurutaM. OiM. HoriY. TomitaT. SohmaY. KanaiM. Catalytic photooxygenation degrades brain Aβ in vivo.Sci. Adv.2021713eabc975010.1126/sciadv.abc975033762329
    [Google Scholar]
  144. LeshemG. RichmanM. LisnianskyE. Antman-PassigM. HabashiM. GräslundA. WärmländerS.K.T.S. RahimipourS. Photoactive chlorin e6 is a multifunctional modulator of amyloid-β aggregation and toxicity via specific interactions with its histidine residues.Chem. Sci.201910120821710.1039/C8SC01992D30713632
    [Google Scholar]
  145. RuffJ. HassanN. Morales-ZavalaF. SteitzJ. ArayaE. KoganM.J. SimonU. CLPFFD–PEG functionalized NIR-absorbing hollow gold nanospheres and gold nanorods inhibit β-amyloid aggregation.J. Mater. Chem. B Mater. Biol. Med.20186162432244310.1039/C8TB00655E32254460
    [Google Scholar]
  146. MaM. WangY. GaoN. LiuX. SunY. RenJ. QuX. A near-İnfrared-controllable artificial metalloprotease used for degrading amyloid-β monomers and aggregates.Chemistry20192551118521185810.1002/chem.20190282831361361
    [Google Scholar]
  147. SudhakarS. ManiE. Rapid dissolution of amyloid β fibrils by silver nanoplates.Langmuir201935216962697010.1021/acs.langmuir.9b0008031030521
    [Google Scholar]
  148. LiuZ. MaM. YuD. RenJ. QuX. Target-driven supramolecular self-assembly for selective amyloid-β photooxygenation against Alzheimer’s disease.Chem. Sci.20201140110031100810.1039/D0SC04984K34094349
    [Google Scholar]
  149. LiuY. ChenY. GongY. YangH. LiuJ. Polydopamine/Ruthenium nanoparticle systems as photothermal therapy reagents and reactive oxygen species scavengers for Alzheimer’s disease treatment.ACS Appl. Nano Mater.2023675384539310.1021/acsanm.2c05512
    [Google Scholar]
  150. IdéeJ.M. LouguetS. BalletS. CorotC. Theranostics and contrast-agents for medical imaging: A pharmaceutical company viewpoint.Quant. Imaging Med. Surg.20133629229724404442
    [Google Scholar]
  151. JeelaniS. Jagat ReddyR.C. MaheswaranT. AsokanG.S. DanyA. AnandB. Theranostics: A treasured tailor for tomorrow.J. Pharm. Bioallied Sci.201465Suppl. 1610.4103/0975‑7406.13724925210387
    [Google Scholar]
  152. HilderbrandS.A. WeisslederR. Near-infrared fluorescence: Application to in vivo molecular imaging.Curr. Opin. Chem. Biol.2010141717910.1016/j.cbpa.2009.09.02919879798
    [Google Scholar]
  153. SilindirM. ErdoğanS. ÖzerA.Y. MaiaS. Liposomes and their applications in molecular imaging.J. Drug Target.201220540141510.3109/1061186X.2012.68547722553977
    [Google Scholar]
  154. SilindirM. ÖzerA.Y. ErdoğanS. The use and importance of liposomes in positron emission tomography.Drug Deliv.2012191688010.3109/10717544.2011.63572122211758
    [Google Scholar]
  155. BlasbergR.G. Molecular imaging and cancer.Mol. Cancer Ther.20032333534312657729
    [Google Scholar]
  156. MassoudT.F. GambhirS.S. Molecular imaging in living subjects: Seeing fundamental biological processes in a new light.Genes Dev.200317554558010.1101/gad.104740312629038
    [Google Scholar]
  157. GBS. Instruments for radiation detection and measurements.Fundamentals of Nuclear Pharmacy.New YorkSpringer2004
    [Google Scholar]
  158. Silindir GunayM. Yekta OzerA. ChalonS. Drug delivery systems for ımaging and therapy of Parkinson’s disease.Curr. Neuropharmacol.201614437639110.2174/1570159X1466615123012490426714584
    [Google Scholar]
  159. LiM. GuanY. ZhaoA. RenJ. QuX. Using multifunctional peptide conjugated au nanorods for monitoring β-amyloid aggregation and chemo-photothermal treatment of Alzheimer’s disease.Theranostics20177122996300610.7150/thno.1845928839459
    [Google Scholar]
  160. LiuD. LiW. JiangX. BaiS. LiuJ. LiuX. ShiY. KuaiZ. KongW. GaoR. ShanY. Using near-infrared enhanced thermozyme and scFv dual-conjugated Au nanorods for detection and targeted photothermal treatment of Alzheimer’s disease.Theranostics2019982268228110.7150/thno.3064931149043
    [Google Scholar]
  161. GongL. ZhangX. GeK. YinY. MachukiJ.O. YangY. ShiH. GengD. GaoF. Carbon nitride-based nanocaptor: An intelligent nanosystem with metal ions chelating effect for enhanced magnetic targeting phototherapy of Alzheimer’s disease.Biomaterials202126712048310.1016/j.biomaterials.2020.12048333129186
    [Google Scholar]
  162. SharmaM. TiwariV. ChaturvediS. WahajuddinM. ShuklaS. PandaJ.J. Self-Fluorescent lone tryptophan nanoparticles as theranostic agents against Alzheimer’s disease.ACS Appl. Mater. Interfaces20221411130791309310.1021/acsami.2c0109035263093
    [Google Scholar]
/content/journals/cn/10.2174/011570159X370790250317045223
Loading
/content/journals/cn/10.2174/011570159X370790250317045223
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test