Skip to content
2000
image of Windows to Consciousness: The Role of Fronto-Parietal Connectivity in Anesthesia-Induced Unconsciousness

Abstract

The exploration of consciousness and the elucidation of the mechanisms underlying general anesthesia are two intertwined endeavors that have significantly advanced our understanding of the neural correlates of awareness. Both fields converge on the neural systems that regulate consciousness. Frontoparietal networks, known for their involvement in executive functions, attention, and cognitive control, emerge as key players in the transition from wakefulness to anesthesia-induced unconsciousness. This review synthesizes recent findings highlighting the pivotal role of fronto-parietal connectivity in the induction and maintenance of unconsciousness by general anesthetics. By examining functional neuroimaging studies and neurophysiological data, we elucidate how disruptions in fronto-parietal interactions contribute to the loss of responsiveness and altered states of awareness associated with anesthesia. Additionally, we further explain the underlying mechanism at both the neuronal and molecular levels. Furthermore, we discuss the implications of these findings for advancing our understanding of the neural correlates of consciousness and the development of novel anesthetic agents with more predictable and targeted effects on consciousness. This review decisively bridges the gap between consciousness research and anesthetic pharmacology, providing a robust framework for future investigations into the neural mechanisms that control transitions between conscious states.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X375644250405041050
2025-05-15
2025-10-30
Loading full text...

Full text loading...

/deliver/fulltext/cn/10.2174/011570159X375644250405041050/BMS-CN-2024-271.html?itemId=/content/journals/cn/10.2174/011570159X375644250405041050&mimeType=html&fmt=ahah

References

  1. Meara J.G. Leather A.J.M. Hagander L. Alkire B.C. Alonso N. Ameh E.A. Bickler S.W. Conteh L. Dare A.J. Davies J. Mé-risier E.D. El-Halabi S. Farmer P.E. Gawande A. Gillies R. Greenberg S.L.M. Grimes C.E. Gruen R.L. Ismail E.A. Kamara T.B. Lavy C. Lundeg G. Mkandawire N.C. Raykar N.P. Riesel J.N. Rodas E. Rose J. Roy N. Shrime M.G. Sullivan R. Verguet S. Watters D. Weiser T.G. Wilson I.H. Yamey G. Yip W. Global surgery 2030: Evidence and solutions for achieving health, welfare, and economic development. Lancet 2015 386 9993 569 624 10.1016/S0140‑6736(15)60160‑X 25924834
    [Google Scholar]
  2. Qin F. Lian Z. Huang Y. Tian D. Remimazolam as a potential alternative to propofol for general anesthesia: A meta-analysis of ran-domized controlled trials. J. Anesth. Transl. Med. 2023 2 3 1 10 10.58888/2957‑3912‑2023‑03‑01
    [Google Scholar]
  3. Xiao Y. Tang L. Chen N. The effects of dexmedetomidine on postoperative sleep in elderly patients: A systematic review and meta-analysis. J. Anesth. Transl. Med. 2023 2 3 11 20 10.58888/2957‑3912‑2023‑03‑02
    [Google Scholar]
  4. Brown E.N. Lydic R. Schiff N.D. General anesthesia, sleep, and coma. N. Engl. J. Med. 2010 363 27 2638 2650 10.1056/NEJMra0808281 21190458
    [Google Scholar]
  5. Herold K.F. Sanford R.L. Lee W. Andersen O.S. Hemmings H.C. Clinical concentrations of chemically diverse general anesthetics minimally affect lipid bilayer properties. Proc. Natl. Acad. Sci. USA 2017 114 12 3109 3114 10.1073/pnas.1611717114 28265069
    [Google Scholar]
  6. Tononi G. Boly M. Cirelli C. Consciousness and sleep. Neuron 2024 112 10 1568 1594 10.1016/j.neuron.2024.04.011 38697113
    [Google Scholar]
  7. Zelmann R. Paulk A.C. Tian F. Balanza Villegas G.A. Dezha Peralta J. Crocker B. Cosgrove G.R. Richardson R.M. Williams Z.M. Dougherty D.D. Purdon P.L. Cash S.S. Differential cortical network engagement during states of un/consciousness in humans. Neuron 2023 111 21 3479 3495.e6 10.1016/j.neuron.2023.08.007 37659409
    [Google Scholar]
  8. Shin T.J. Kim P.J. Choi B. How general anesthetics work: From the perspective of reorganized connections within the brain. Korean J. Anesthesiol. 2022 75 2 124 138 10.4097/kja.22078 35130674
    [Google Scholar]
  9. Hu Y. Wang Y. Zhang L. Luo M. Wang Y. Neural network mechanisms underlying general anesthesia: Cortical and subcortical nu-clei. Neurosci. Bull. 2024 40 12 1995 2011 10.1007/s12264‑024‑01286‑z 39168960
    [Google Scholar]
  10. Mashour G.A. Anesthesia and the neurobiology of consciousness. Neuron 2024 112 10 1553 1567 10.1016/j.neuron.2024.03.002 38579714
    [Google Scholar]
  11. Bao W.W. Jiang S. Qu W.M. Li W.X. Miao C.H. Huang Z.L. Understanding the neural mechanisms of general anesthesia from in-teraction with sleep-wake state: A decade of discovery. Pharmacol. Rev. 2023 75 3 532 553 10.1124/pharmrev.122.000717
    [Google Scholar]
  12. Hemmings H.C. Riegelhaupt P.M. Kelz M.B. Solt K. Eckenhoff R.G. Orser B.A. Goldstein P.A. Towards a comprehensive under-standing of anesthetic mechanisms of action: A decade of discovery. Trends Pharmacol. Sci. 2019 40 7 464 481 10.1016/j.tips.2019.05.001 31147199
    [Google Scholar]
  13. Mashour G.A. Roelfsema P. Changeux J.P. Dehaene S. Conscious processing and the global neuronal workspace hypothesis. Neuron 2020 105 5 776 798 10.1016/j.neuron.2020.01.026 32135090
    [Google Scholar]
  14. Song X.J. Hu J.J. Neurobiological basis of emergence from anesthesia. Trends Neurosci. 2024 47 5 355 366 10.1016/j.tins.2024.02.006 38490858
    [Google Scholar]
  15. Krom A.J. Marmelshtein A. Gelbard-Sagiv H. Tankus A. Hayat H. Hayat D. Matot I. Strauss I. Fahoum F. Soehle M. Bos-tröm J. Mormann F. Fried I. Nir Y. Anesthesia-induced loss of consciousness disrupts auditory responses beyond primary cortex. Proc. Natl. Acad. Sci. USA 2020 117 21 11770 11780 10.1073/pnas.1917251117 32398367
    [Google Scholar]
  16. Bharioke A. Munz M. Brignall A. Kosche G. Eizinger M.F. Ledergerber N. Hillier D. Gross-Scherf B. Conzelmann K.K. Macé E. Roska B. General anesthesia globally synchronizes activity selectively in layer 5 cortical pyramidal neurons. Neuron 2022 110 12 2024 2040.e10 10.1016/j.neuron.2022.03.032 35452606
    [Google Scholar]
  17. Eisen A.J. Kozachkov L. Bastos A.M. Donoghue J.A. Mahnke M.K. Brincat S.L. Chandra S. Tauber J. Brown E.N. Fiete I.R. Miller E.K. Propofol anesthesia destabilizes neural dynamics across cortex. Neuron 2024 112 16 2799 2813.e9 10.1016/j.neuron.2024.06.011 39013467
    [Google Scholar]
  18. Afrasiabi M. Redinbaugh M.J. Phillips J.M. Kambi N.A. Mohanta S. Raz A. Haun A.M. Saalmann Y.B. Consciousness depends on integration between parietal cortex, striatum, and thalamus. Cell Syst. 2021 12 4 363 373.e11 10.1016/j.cels.2021.02.003 33730543
    [Google Scholar]
  19. Pal D. Dean J.G. Liu T. Li D. Watson C.J. Hudetz A.G. Mashour G.A. Differential role of prefrontal and parietal cortices in con-trolling level of consciousness. Curr. Biol. 2018 28 13 2145 2152.e5 10.1016/j.cub.2018.05.025 29937348
    [Google Scholar]
  20. Van Essen D.C. Dierker D.L. Surface-based and probabilistic atlases of primate cerebral cortex. Neuron 2007 56 2 209 225 10.1016/j.neuron.2007.10.015 17964241
    [Google Scholar]
  21. Catani M. The anatomy of the human frontal lobe. In: Handbookof Clinical Neurology; Elsevier, 2019 163 95 122 10.1016/B978‑0‑12‑804281‑6.00006‑9
    [Google Scholar]
  22. Caspers S. Zilles K. Microarchitecture and connectivity of the parietal lobe. In: Handbook of Clinical Neurology; Elsevier, 2018 151 53 72 10.1016/B978‑0‑444‑63622‑5.00003‑6
    [Google Scholar]
  23. Behrmann M. Geng J.J. Shomstein S. Parietal cortex and attention. Curr. Opin. Neurobiol. 2004 14 2 212 217 10.1016/j.conb.2004.03.012 15082327
    [Google Scholar]
  24. Judaš M. Cepanec M. Sedmak G. Brodmann’s map of the human cerebral cortex — or Brodmann’s maps? Transl. Neurosci. 2012 3 1 67 74 10.2478/s13380‑012‑0009‑x
    [Google Scholar]
  25. Han S. Zheng Q. Zheng Z. Su J. Liu X. Shi C. Li B. Zhang X. Zhang M. Yu Q. Hou Z. Li T. Zhang B. Lin Y. Wen G. Deng Y. Liu K. Xu K. Exosomal miR-1202 mediates Brodmann Area 44 functional connectivity changes in medication-free patients with major depressive disorder: An fMRI study. J. Affect. Disord. 2024 356 470 476 10.1016/j.jad.2024.04.042 38608766
    [Google Scholar]
  26. Bennett C. González M. Tapia G. Riveros R. Torres F. Loyola N. Veloz A. Chabert S. Cortical mapping in glioma surgery: Corre-lation of fMRI and direct electrical stimulation with human connectome project parcellations. Neurosurg. Focus 2022 53 6 E2 10.3171/2022.9.FOCUS2283 36455268
    [Google Scholar]
  27. Selvaraj S. Shivakumar V. Kavya P.V. Mullapudi T. Bhalerao G. Sreeraj V.S. Suhas S. Dinakaran D. Parlikar R. Chhabra H. Narayanaswamy J.C. Debnath M. Rao N.P. Muralidharan K. Venkatasubramanian G. Neurohemodynamic correlates of BDNF gene expression in schizophrenia patients with working memory deficits: A functional MRI study. Asian J. Psychiatr. 2022 77 103261 10.1016/j.ajp.2022.103261 36181754
    [Google Scholar]
  28. Carrie E. The student’s guide to cognitive neuroscience. Br. J. Psychol. 2010 101 4 826 827 10.1348/000712610X525957
    [Google Scholar]
  29. Papadopoulou A. Müller-Lenke N. Naegelin Y. Kalt G. Bendfeldt K. Kuster P. Stoecklin M. Gass A. Sprenger T. Radue E.W. Kappos L. Penner I.K. Contribution of cortical and white matter lesions to cognitive impairment in multiple sclerosis. Mult. Scler. 2013 19 10 1290 1296 10.1177/1352458513475490 23459568
    [Google Scholar]
  30. Vavassori L. Sarubbo S. Petit L. Hodology of the superior longitudinal system of the human brain: A historical perspective, the current controversies, and a proposal. Brain Struct. Funct. 2021 226 5 1363 1384 10.1007/s00429‑021‑02265‑0 33881634
    [Google Scholar]
  31. Janelle F. Iorio-Morin C. D’amour S. Fortin D. Superior longitudinal fasciculus: A review of the anatomical descriptions with func-tional correlates. Front. Neurol. 2022 13 794618 10.3389/fneur.2022.794618 35572948
    [Google Scholar]
  32. Schmahmann J.D. Smith E.E. Eichler F.S. Filley C.M. Cerebral white matter: Neuroanatomy, clinical neurology, and neurobehavioral correlates. Ann. N. Y. Acad. Sci. 2008 1142 1 266 309 10.1196/annals.1444.017 18990132
    [Google Scholar]
  33. Seth A.K. Bayne T. Theories of consciousness. Nat. Rev. Neurosci. 2022 23 7 439 452 10.1038/s41583‑022‑00587‑4 35505255
    [Google Scholar]
  34. Tononi G. Boly M. Massimini M. Koch C. Integrated information theory: From consciousness to its physical substrate. Nat. Rev. Neurosci. 2016 17 7 450 461 10.1038/nrn.2016.44 27225071
    [Google Scholar]
  35. Oizumi M. Albantakis L. Tononi G. From the phenomenology to the mechanisms of consciousness: Integrated information theory 3.0. PLOS Comput. Biol. 2014 10 5 e1003588 10.1371/journal.pcbi.1003588 24811198
    [Google Scholar]
  36. Albantakis L. Barbosa L. Findlay G. Grasso M. Haun A.M. Marshall W. Mayner W.G.P. Zaeemzadeh A. Boly M. Juel B.E. Sasai S. Fujii K. David I. Hendren J. Lang J.P. Tononi G. Integrated information theory (IIT) 4.0: Formulating the properties of phenomenal existence in physical terms. PLOS Comput. Biol. 2023 19 10 e1011465 10.1371/journal.pcbi.1011465 37847724
    [Google Scholar]
  37. Liang Z. Cheng L. Shao S. Jin X. Yu T. Sleigh J.W. Li X. Information integration and mesoscopic cortical connectivity during propofol anesthesia. Anesthesiology 2020 132 3 504 524 10.1097/ALN.0000000000003015 31714269
    [Google Scholar]
  38. Liang Z. Chang Y. Liu X. Cao S. Chen Y. Wang T. Xu J. Li D. Zhang J. Changes in information integration and brain networks during propofol-, dexmedetomidine-, and ketamine-induced unresponsiveness. Br. J. Anaesth. 2024 132 3 528 540 10.1016/j.bja.2023.11.033 38105166
    [Google Scholar]
  39. Hudetz A.G. Mashour G.A. Disconnecting consciousness: Is there a common anesthetic end point? Anesth. Analg. 2016 123 5 1228 1240 10.1213/ANE.0000000000001353 27331780
    [Google Scholar]
  40. Wenzel M. Han S. Smith E.H. Hoel E. Greger B. House P.A. Yuste R. Reduced repertoire of cortical microstates and neuronal ensembles in medically induced loss of consciousness. Cell Syst. 2019 8 5 467 474.e4 10.1016/j.cels.2019.03.007 31054810
    [Google Scholar]
  41. Vizuete J.A. Pillay S. Diba K. Ropella K.M. Hudetz A.G. Monosynaptic functional connectivity in cerebral cortex during wakeful-ness and under graded levels of anesthesia. Front. Integr. Nuerosci. 2012 6 90 10.3389/fnint.2012.00090 23091451
    [Google Scholar]
  42. Hudetz A.G. Pillay S. Wang S. Lee H. Desflurane anesthesia alters cortical layer-specific hierarchical interactions in rat cerebral cor-tex. Anesthesiology 2020 132 5 1080 1090 10.1097/ALN.0000000000003179 32101967
    [Google Scholar]
  43. Mejias J.F. Murray J.D. Kennedy H. Wang X.J. Feedforward and feedback frequency-dependent interactions in a large-scale laminar network of the primate cortex. Sci. Adv. 2016 2 11 e1601335 10.1126/sciadv.1601335 28138530
    [Google Scholar]
  44. Redinbaugh M.J. Phillips J.M. Kambi N.A. Mohanta S. Andryk S. Dooley G.L. Afrasiabi M. Raz A. Saalmann Y.B. Thalamus modulates consciousness via layer-specific control of cortex. Neuron 2020 106 1 66 75.e12 10.1016/j.neuron.2020.01.005 32053769
    [Google Scholar]
  45. Gross W.L. Lauer K.K. Liu X. Roberts C.J. Liu S. Gollapudy S. Binder J.R. Li S.J. Hudetz A.G. Propofol sedation alters percep-tual and cognitive functions in healthy volunteers as revealed by functional magnetic resonance imaging. Anesthesiology 2019 131 2 254 265 10.1097/ALN.0000000000002669 31314747
    [Google Scholar]
  46. Moon J.Y. Lee U. Blain-Moraes S. Mashour G.A. General relationship of global topology, local dynamics, and directionality in large-scale brain networks. PLOS Comput. Biol. 2015 11 4 e1004225 10.1371/journal.pcbi.1004225 25874700
    [Google Scholar]
  47. Chen Y. Li S. Wu F. Zou L. Zhang J. Altered functional and directed connectivity in propofol-induced loss of consciousness: A source-space resting-state EEG study. Clin. Neurophysiol. 2022 142 209 219 10.1016/j.clinph.2022.08.003 36067595
    [Google Scholar]
  48. Zhang Z. Cai D.C. Wang Z. Zeljic K. Wang Z. Wang Y. Isoflurane-induced burst suppression increases intrinsic functional connec-tivity of the monkey brain. Front. Neurosci. 2019 13 296 10.3389/fnins.2019.00296 31031580
    [Google Scholar]
  49. Kim H. Min B.K. Lee U. Sim J.H. Noh G.J. Lee E.K. Choi B.M. Electroencephalographic features of elderly patients during anes-thesia induction with remimazolam: A sub-study of a randomized controlled trial. Anesthesiology 2024 141 4 681 692 10.1097/ALN.0000000000004904 38207285
    [Google Scholar]
  50. Sanders R.D. Banks M.I. Darracq M. Moran R. Sleigh J. Gosseries O. Bonhomme V. Brichant J.F. Rosanova M. Raz A. To-noni G. Massimini M. Laureys S. Boly M. Propofol-induced unresponsiveness is associated with impaired feedforward connectivity in cortical hierarchy. Br. J. Anaesth. 2018 121 5 1084 1096 10.1016/j.bja.2018.07.006 30336853
    [Google Scholar]
  51. Lv P. Xiao Y. Liu B. Wang Y. Zhang X. Sun H. Li F. Yao L. Zhang W. Liu L. Gao X. Wu M. Tang Y. Chen Q. Gong Q. Lui S. Dose-dependent effects of isoflurane on regional activity and neural network function: A resting-state fMRI study of 14 rhesus monkeys. Neurosci. Lett. 2016 611 116 122 10.1016/j.neulet.2015.11.037 26633103
    [Google Scholar]
  52. Maksimow A. Silfverhuth M. Långsjö J. Kaskinoro K. Georgiadis S. Jääskeläinen S. Scheinin H. Directional connectivity between frontal and posterior brain regions is altered with increasing concentrations of propofol. PLoS One 2014 9 11 e113616 10.1371/journal.pone.0113616 25419791
    [Google Scholar]
  53. Blain-Moraes S. Tarnal V. Vanini G. Alexander A. Rosen D. Shortal B. Janke E. Mashour G.A. Neurophysiological correlates of sevoflurane-induced unconsciousness. Anesthesiology 2015 122 2 307 316 10.1097/ALN.0000000000000482 25296108
    [Google Scholar]
  54. Vlisides P.E. Bel-Bahar T. Nelson A. Chilton K. Smith E. Janke E. Tarnal V. Picton P. Harris R.E. Mashour G.A. Subanaes-thetic ketamine and altered states of consciousness in humans. Br. J. Anaesth. 2018 121 1 249 259 10.1016/j.bja.2018.03.011 29935579
    [Google Scholar]
  55. Ishizawa Y. Ahmed O.J. Patel S.R. Gale J.T. Sierra-Mercado D. Brown E.N. Eskandar E.N. Dynamics of propofol-induced loss of consciousness across primate neocortex. J. Neurosci. 2016 36 29 7718 7726 10.1523/JNEUROSCI.4577‑15.2016 27445148
    [Google Scholar]
  56. Jiang J. Zhao Y. Liu J. Yang Y. Liang P. Huang H. Wu Y. Kang Y. Zhu T. Zhou C. Signatures of thalamocortical alpha oscilla-tions and synchronization with increased anesthetic depths under isoflurane. Front. Pharmacol. 2022 13 887981 10.3389/fphar.2022.887981 35721144
    [Google Scholar]
  57. Sun Y. Wei C. Cui V. Xiu M. Wu A. Electroencephalography: Clinical applications during the perioperative period. Front. Med. 2020 7 251 10.3389/fmed.2020.00251 32582735
    [Google Scholar]
  58. Yuan I. Xu T. Kurth C.D. Using electroencephalography (EEG) to guide propofol and sevoflurane dosing in pediatric anesthesia. Anesthesiol. Clin. 2020 38 3 709 725 10.1016/j.anclin.2020.06.007 32792193
    [Google Scholar]
  59. Purdon P.L. Sampson A. Pavone K.J. Brown E.N. Clinical electroencephalography for anesthesiologists. Anesthesiology 2015 123 4 937 960 10.1097/ALN.0000000000000841 26275092
    [Google Scholar]
  60. Boncompte G. Medel V. Cortínez L.I. Ossandón T. Brain activity complexity has a nonlinear relation to the level of propofol seda-tion. Br. J. Anaesth. 2021 127 2 254 263 10.1016/j.bja.2021.04.023 34099242
    [Google Scholar]
  61. Sepúlveda P. Cortinez L.I. Irani M. Egaña J.I. Contreras V. Sánchez Corzo A. Acosta I. Sitaram R. Differential frontal alpha os-cillations and mechanisms underlying loss of consciousness: A comparison between slow and fast propofol infusion rates. Anaesthesia 2020 75 2 196 201 10.1111/anae.14885 31788791
    [Google Scholar]
  62. Purdon P.L. Pierce E.T. Mukamel E.A. Prerau M.J. Walsh J.L. Wong K.F.K. Salazar-Gomez A.F. Harrell P.G. Sampson A.L. Cimenser A. Ching S. Kopell N.J. Tavares-Stoeckel C. Habeeb K. Merhar R. Brown E.N. Electroencephalogram signatures of loss and recovery of consciousness from propofol. Proc. Natl. Acad. Sci. USA 2013 110 12 E1142 E1151 10.1073/pnas.1221180110 23487781
    [Google Scholar]
  63. Palanca B.J.A. Avidan M.S. Mashour G.A. Human neural correlates of sevoflurane-induced unconsciousness. Br. J. Anaesth. 2017 119 4 573 582 10.1093/bja/aex244 29121298
    [Google Scholar]
  64. Vijayan S. Ching S. Purdon P.L. Brown E.N. Kopell N.J. Thalamocortical mechanisms for the anteriorization of α rhythms during propofol-induced unconsciousness. J. Neurosci. 2013 33 27 11070 11075 10.1523/JNEUROSCI.5670‑12.2013 23825412
    [Google Scholar]
  65. Lewis L.D. Weiner V.S. Mukamel E.A. Donoghue J.A. Eskandar E.N. Madsen J.R. Anderson W.S. Hochberg L.R. Cash S.S. Brown E.N. Purdon P.L. Rapid fragmentation of neuronal networks at the onset of propofol-induced unconsciousness. Proc. Natl. Acad. Sci. USA 2012 109 49 E3377 E3386 10.1073/pnas.1210907109 23129622
    [Google Scholar]
  66. Laferrière-Langlois P. Morisson L. Jeffries S. Duclos C. Espitalier F. Richebé P. Depth of anesthesia and nociception monitoring: Current state and vision for 2050. Anesth. Analg. 2024 138 2 295 307 10.1213/ANE.0000000000006860 38215709
    [Google Scholar]
  67. Vlisides P.E. Bel-Bahar T. Lee U. Li D. Kim H. Janke E. Tarnal V. Pichurko A.B. McKinney A.M. Kunkler B.S. Picton P. Mashour G.A. Neurophysiologic correlates of ketamine sedation and anesthesia. Anesthesiology 2017 127 1 58 69 10.1097/ALN.0000000000001671 28486269
    [Google Scholar]
  68. Vlisides P.E. Li D. Zierau M. Lapointe A.P. Ip K.I. McKinney A.M. Mashour G.A. Dynamic cortical connectivity during general anesthesia in surgical patients. Anesthesiology 2019 130 6 885 897 10.1097/ALN.0000000000002677 30946057
    [Google Scholar]
  69. Huang Y. Wu D. Bahuri N.F.A. Wang S. Hyam J.A. Yarrow S. FitzGerald J.J. Aziz T.Z. Green A.L. Spectral and phase-amplitude coupling signatures in human deep brain oscillations during propofol-induced anaesthesia. Br. J. Anaesth. 2018 121 1 303 313 10.1016/j.bja.2018.04.031 29935585
    [Google Scholar]
  70. Mashour G.A. Palanca B.J.A. Basner M. Li D. Wang W. Blain-Moraes S. Lin N. Maier K. Muench M. Tarnal V. Vanini G. Ochroch E.A. Hogg R. Schwartz M. Maybrier H. Hardie R. Janke E. Golmirzaie G. Picton P. McKinstry-Wu A.R. Avidan M.S. Kelz M.B. Recovery of consciousness and cognition after general anesthesia in humans. eLife 2021 10 e59525 10.7554/eLife.59525 33970101
    [Google Scholar]
  71. Nilsen A.S. Arena A. Storm J.F. Exploring effects of anesthesia on complexity, differentiation, and integrated information in rat EEG. Neurosci. Conscious. 2024 2024 1 niae021 10.1093/nc/niae021 38757120
    [Google Scholar]
  72. Weiner V.S. Zhou D.W. Kahali P. Stephen E.P. Peterfreund R.A. Aglio L.S. Szabo M.D. Eskandar E.N. Salazar-Gomez A.F. Sampson A.L. Cash S.S. Brown E.N. Purdon P.L. Propofol disrupts alpha dynamics in functionally distinct thalamocortical networks during loss of consciousness. Proc. Natl. Acad. Sci. USA 2023 120 11 e2207831120 10.1073/pnas.2207831120 36897972
    [Google Scholar]
  73. Ku S.W. Lee U. Noh G.J. Jun I.G. Mashour G.A. Preferential inhibition of frontal-to-parietal feedback connectivity is a neurophysio-logic correlate of general anesthesia in surgical patients. PLoS One 2011 6 10 e25155 10.1371/journal.pone.0025155 21998638
    [Google Scholar]
  74. Boly M. Moran R. Murphy M. Boveroux P. Bruno M.A. Noirhomme Q. Ledoux D. Bonhomme V. Brichant J.F. Tononi G. Laureys S. Friston K. Connectivity changes underlying spectral EEG changes during propofol-induced loss of consciousness. J. Neurosci. 2012 32 20 7082 7090 10.1523/JNEUROSCI.3769‑11.2012 22593076
    [Google Scholar]
  75. Naghavi H.R. Nyberg L. Common fronto-parietal activity in attention, memory, and consciousness: Shared demands on integration? Conscious. Cogn. 2005 14 2 390 425 10.1016/j.concog.2004.10.003 15950889
    [Google Scholar]
  76. Golkowski D. Larroque S.K. Vanhaudenhuyse A. Plenevaux A. Boly M. Di Perri C. Ranft A. Schneider G. Laureys S. Jordan D. Bonhomme V. Ilg R. Changes in whole brain dynamics and connectivity patterns during sevoflurane- and propofol-induced uncon-sciousness identified by functional magnetic resonance imaging. Anesthesiology 2019 130 6 898 911 10.1097/ALN.0000000000002704 31045899
    [Google Scholar]
  77. Bonhomme V. Vanhaudenhuyse A. Demertzi A. Bruno M.A. Jaquet O. Bahri M.A. Plenevaux A. Boly M. Boveroux P. Soddu A. Brichant J.F. Maquet P. Laureys S. Resting-state network-specific breakdown of functional connectivity during ketamine alteration of consciousness in volunteers. Anesthesiology 2016 125 5 873 888 10.1097/ALN.0000000000001275 27496657
    [Google Scholar]
  78. Akeju O. Loggia M.L. Catana C. Pavone K.J. Vazquez R. Rhee J. Contreras Ramirez V. Chonde D.B. Izquierdo-Garcia D. Arab-asz G. Hsu S. Habeeb K. Hooker J.M. Napadow V. Brown E.N. Purdon P.L. Disruption of thalamic functional connectivity is a neural correlate of dexmedetomidine-induced unconsciousness. eLife 2014 3 e04499 10.7554/eLife.04499 25432022
    [Google Scholar]
  79. Ma L. Liu W. Hudson A.E. Propofol anesthesia increases long-range frontoparietal corticocortical interaction in the oculomotor circuit in macaque monkeys. Anesthesiology 2019 130 4 560 571 10.1097/ALN.0000000000002637 30807382
    [Google Scholar]
  80. Mashour G.A. General anesthesia and the cortex. Anesthesiology 2019 130 4 526 527 10.1097/ALN.0000000000002636 30870210
    [Google Scholar]
  81. Eickhoff S.B. Müller V.I. Functional connectivity. Brain Mapping. Elsevier 2015 187 201 10.1016/B978‑0‑12‑397025‑1.00212‑8
    [Google Scholar]
  82. Malekmohammadi M. Price C.M. Hudson A.E. DiCesare J.A.T. Pouratian N. Propofol-induced loss of consciousness is associated with a decrease in thalamocortical connectivity in humans. Brain 2019 142 8 2288 2302 10.1093/brain/awz169 31236577
    [Google Scholar]
  83. Kajiwara M. Kato R. Oi Y. Kobayashi M. Propofol decreases spike firing frequency with an increase in spike synchronization in the cerebral cortex. J. Pharmacol. Sci. 2020 142 3 83 92 10.1016/j.jphs.2019.11.005 31859144
    [Google Scholar]
  84. Zhang Q. Lu H. Wang J. Yang T. Bi W. Zeng Y. Yu B. Hierarchical rhythmic propagation of corticothalamic interactions for con-sciousness: A computational study. Comput. Biol. Med. 2024 169 107843 10.1016/j.compbiomed.2023.107843 38141448
    [Google Scholar]
  85. León-Domínguez U. León-Carrión J. Prefrontal neural dynamics in consciousness. Neuropsychologia 2019 131 25 41 10.1016/j.neuropsychologia.2019.05.018 31132421
    [Google Scholar]
  86. Lewis L.D. Brain states and circuit mechanisms underlying sleep and general anesthesia.Ph.D. Thesis. Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 2014 https://www.semanticscholar.org/paper/96e39aefafa044542195bdae72995f0cf7cf95e2
    [Google Scholar]
  87. Leung L.S. Luo T. Ma J. Herrick I. Brain areas that influence general anesthesia. Prog. Neurobiol. 2014 122 24 44 10.1016/j.pneurobio.2014.08.001
    [Google Scholar]
  88. Malekmohammadi M. AuYong N. Price C.M. Tsolaki E. Hudson A.E. Pouratian N. Propofol-induced changes in α-β sensorimotor cortical connectivity. Anesthesiology 2018 128 2 305 316 10.1097/ALN.0000000000001940 29068830
    [Google Scholar]
  89. Suzuki M. Larkum M.E. General anesthesia decouples cortical pyramidal neurons. Cell 2020 180 4 666 676 10.1016/j.cell.2020.01.024 32084339
    [Google Scholar]
  90. Ali F. Gerhard D.M. Sweasy K. Pothula S. Pittenger C. Duman R.S. Kwan A.C. Ketamine disinhibits dendrites and enhances calci-um signals in prefrontal dendritic spines. Nat. Commun. 2020 11 1 72 10.1038/s41467‑019‑13809‑8 31911591
    [Google Scholar]
  91. Naro A. Russo M. Leo A. Cannavò A. Manuli A. Bramanti A. Bramanti P. Calabrò R.S. Cortical connectivity modulation induced by cerebellar oscillatory transcranial direct current stimulation in patients with chronic disorders of consciousness: A marker of covert cognition? Clin. Neurophysiol. 2016 127 3 1845 1854 10.1016/j.clinph.2015.12.010 26754875
    [Google Scholar]
  92. Choe M. Jin S.H. Kim J.S. Chung C.K. Propofol anesthesia-induced spatiotemporal changes in cortical activity with loss of external and internal awareness: An electrocorticography study. Clin. Neurophysiol. 2023 149 51 60 10.1016/j.clinph.2023.01.020 36898318
    [Google Scholar]
  93. Banks M.I. Krause B.M. Endemann C.M. Campbell D.I. Kovach C.K. Dyken M.E. Kawasaki H. Nourski K.V. Cortical functional connectivity indexes arousal state during sleep and anesthesia. Neuroimage 2020 211 116627 10.1016/j.neuroimage.2020.116627 32045640
    [Google Scholar]
  94. Bachmann T. Hudetz A.G. It is time to combine the two main traditions in the research on the neural correlates of consciousness: C = L × D. Front. Psychol. 2014 5 940 10.3389/fpsyg.2014.00940 25202297
    [Google Scholar]
  95. Leung L.S. Chu L. Prado M.A.M. Prado V.F. Forebrain acetylcholine modulates isoflurane and ketamine anesthesia in adult mice. Anesthesiology 2021 134 4 588 606 10.1097/ALN.0000000000003713 33635947
    [Google Scholar]
  96. Kaplan A. Nash A.I. Freeman A.A.H. Lewicki L.G. Rye D.B. Trotti L.M. Brandt A.L. Jenkins A. Commonly used therapeutics associated with changes in arousal inhibit GABAAR activation. Biomolecules 2023 13 2 365 10.3390/biom13020365 36830736
    [Google Scholar]
  97. Cui J. Ju X. Lee Y. Hong B. Kang H. Han K. Shin W.H. Park J. Lee M.J. Kim Y.H. Ko Y. Heo J.Y. Chung W. Repeated ketamine anesthesia during neurodevelopment upregulates hippocampal activity and enhances drug reward in male mice. Commun. Biol. 2022 5 1 709 10.1038/s42003‑022‑03667‑4 35840630
    [Google Scholar]
  98. Guo J. Ran M. Gao Z. Zhang X. Wang D. Li H. Zhao S. Sun W. Dong H. Hu J. Cell-type-specific imaging of neurotransmis-sion reveals a disrupted excitatory-inhibitory cortical network in isoflurane anaesthesia. EBioMedicine 2021 65 103272 10.1016/j.ebiom.2021.103272 33691246
    [Google Scholar]
  99. Qiu G.L. Peng L.J. Wang P. Yang Z.L. Zhang J.Q. Liu H. Zhu X.N. Rao J. Liu X.S. In vivo imaging reveals a synchronized cor-relation among neurotransmitter dynamics during propofol and sevoflurane anesthesia. Zool. Res. 2024 45 3 679 690 10.24272/j.issn.2095‑8137.2023.302 38766749
    [Google Scholar]
  100. Moody O.A. Zhang E.R. Vincent K.F. Kato R. Melonakos E.D. Nehs C.J. Solt K. The neural circuits underlying general anesthesia and sleep. Anesth. Analg. 2021 132 5 1254 1264 10.1213/ANE.0000000000005361 33857967
    [Google Scholar]
  101. Uhrig L. Dehaene S. Jarraya B. Cerebral mechanisms of general anesthesia. Ann. Fr. Anesth. Reanim. 2014 33 2 72 82 10.1016/j.annfar.2013.11.005 24368069
    [Google Scholar]
  102. Liang Z. Lan Z. Wang Y. Bai Y. He J. Wang J. Li X. The EEG complexity, information integration and brain network changes in minimally conscious state patients during general anesthesia. J. Neural Eng. 2023 20 6 066030 10.1088/1741‑2552/ad12dc 38055962
    [Google Scholar]
  103. McCulloch T.J. Sanders R.D. Depth of anaesthesia monitoring: Time to reject the index? Br. J. Anaesth. 2023 131 2 196 199 10.1016/j.bja.2023.04.016 37198033
    [Google Scholar]
  104. Casey C.P. Tanabe S. Farahbakhsh Z. Parker M. Bo A. White M. Ballweg T. Mcintosh A. Filbey W. Saalmann Y. Pearce R.A. Sanders R.D. Distinct EEG signatures differentiate unconsciousness and disconnection during anaesthesia and sleep. Br. J. Anaesth. 2022 128 6 1006 1018 10.1016/j.bja.2022.01.010 35148892
    [Google Scholar]
  105. Zheng N. Gui Z. Liu X. Wu Y. Wang H. Cai A. Wu J. Li X. Kaewborisuth C. Zhang Z. Wang Q. Manyande A. Xu F. Wang J. Investigations of brain-wide functional and structural networks of dopaminergic and CamKIIα-positive neurons in VTA with DREADD-fMRI and neurotropic virus tracing technologies. J. Transl. Med. 2023 21 1 543 10.1186/s12967‑023‑04362‑6 37580725
    [Google Scholar]
  106. Akeju O. Brown E.N. Neural oscillations demonstrate that general anesthesia and sedative states are neurophysiologically distinct from sleep. Curr. Opin. Neurobiol. 2017 44 178 185 10.1016/j.conb.2017.04.011 28544930
    [Google Scholar]
/content/journals/cn/10.2174/011570159X375644250405041050
Loading
/content/journals/cn/10.2174/011570159X375644250405041050
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test