Skip to content
2000
image of Mediterranean Pattern Diet in Multiple Sclerosis: A Review Focusing on Immunometabolites

Abstract

Multiple Sclerosis (MS), the most common demyelinating disease of the Central Nervous System (CNS), is characterized in its pathogenesis by an interplay of mechanisms pertaining to aberrant immune response, acute and chronic inflammation, glial housekeeping, and neuron survival, ultimately resulting in demyelination, synaptic dysfunction, and neuroaxonal loss. Experimental models as well as epidemiological observations support the hypothesis of a role of diet in the disease onset, activity, and progression. It has been suggested that Western-type diets might be detrimental, while on the other hand, certain dietary regimens, like Mediterranean, low-fat, ketogenic, or intermittent fasting, might lead to disease amelioration, possibly through differential regulatory effects upon inflammation, immunity, and regenerative processes of neurons and glia. Under this perspective, immunometabolites, small intermediates including among the others citrate, itaconate, lactate, glutamate, glutamine, alfa-ketoglutarate, 2-hydroxyglutarate, fumarate, ceramides, whose turn-over reflects metabolic reprogramming of immune cells, might be viewed as significant regulators of cellular responses against either local or systemic noxious stimuli, both in the periphery and in the CNS. The present narrative review aims at summarizing current experimental and clinical evidence regarding the role of immunometabolites in shaping MS pathology, to address whether they could be relevant either as disease markers or therapeutic targets, and whether they might be differentially influenced by dietary approaches, especially by Mediterranean Pattern Diets (MPD).

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X382929250719084728
2025-08-07
2025-10-18
Loading full text...

Full text loading...

References

  1. Dimitrov L.G. Turner B. What’s new in multiple sclerosis? Br. J. Gen. Pract. 2014 64 629 612 613 10.3399/bjgp14X682609 25452512
    [Google Scholar]
  2. Rao S.M. Leo G.J. Bernardin L. Unverzagt F. Cognitive dysfunction in multiple sclerosis. Neurology 1991 41 5 685 691 10.1212/WNL.41.5.685 2027484
    [Google Scholar]
  3. Grothe M. Ellenberger D. von Podewils F. Stahmann A. Rommer P.S. Zettl U.K. Epilepsy as a predictor of disease progression in multiple sclerosis. Mult. Scler. 2022 28 6 942 949 10.1177/13524585211046739 34595974
    [Google Scholar]
  4. Thompson A.J. Banwell B.L. Barkhof F. Carroll W.M. Coetzee T. Comi G. Correale J. Fazekas F. Filippi M. Freedman M.S. Fujihara K. Galetta S.L. Hartung H.P. Kappos L. Lublin F.D. Marrie R.A. Miller A.E. Miller D.H. Montalban X. Mowry E.M. Sorensen P.S. Tintoré M. Traboulsee A.L. Trojano M. Uitdehaag B.M.J. Vukusic S. Waubant E. Weinshenker B.G. Reingold S.C. Cohen J.A. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018 17 2 162 173 10.1016/S1474‑4422(17)30470‑2 29275977
    [Google Scholar]
  5. Dobson R. Giovannoni G. Multiple sclerosis – a review. Eur. J. Neurol. 2019 26 1 27 40 10.1111/ene.13819 30300457
    [Google Scholar]
  6. Leray E. Moreau T. Fromont A. Edan G. Epidemiology of multiple sclerosis. Rev. Neurol. 2016 172 1 3 13 10.1016/j.neurol.2015.10.006 26718593
    [Google Scholar]
  7. Olsson T. Barcellos L.F. Alfredsson L. Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis. Nat. Rev. Neurol. 2017 13 1 25 36 10.1038/nrneurol.2016.187 27934854
    [Google Scholar]
  8. Kular L. Liu Y. Ruhrmann S. Zheleznyakova G. Marabita F. Gomez-Cabrero D. James T. Ewing E. Lindén M. Górnikiewicz B. Aeinehband S. Stridh P. Link J. Andlauer T.F.M. Gasperi C. Wiendl H. Zipp F. Gold R. Tackenberg B. Weber F. Hemmer B. Strauch K. Heilmann-Heimbach S. Rawal R. Schminke U. Schmidt C.O. Kacprowski T. Franke A. Laudes M. Dilthey A.T. Celius E.G. Søndergaard H.B. Tegnér J. Harbo H.F. Oturai A.B. Olafsson S. Eggertsson H.P. Halldorsson B.V. Hjaltason H. Olafsson E. Jonsdottir I. Stefansson K. Olsson T. Piehl F. Ekström T.J. Kockum I. Feinberg A.P. Jagodic M. DNA methylation as a mediator of HLA-DRB1*15:01 and a protective variant in multiple sclerosis. Nat. Commun. 2018 9 1 2397 10.1038/s41467‑018‑04732‑5 29921915
    [Google Scholar]
  9. Baecher-Allan C. Kaskow B.J. Weiner H.L. Multiple sclerosis: Mechanisms and immunotherapy. Neuron 2018 97 4 742 768 10.1016/j.neuron.2018.01.021 29470968
    [Google Scholar]
  10. Minagar A. Maghzi A.H. McGee J.C. Alexander J.S. Emerging roles of endothelial cells in multiple sclerosis pathophysiology and therapy. Neurol. Res. 2012 34 8 738 745 10.1179/1743132812Y.0000000072 22828184
    [Google Scholar]
  11. Van San E. Debruyne A.C. Veeckmans G. Tyurina Y.Y. Tyurin V.A. Zheng H. Choi S.M. Augustyns K. van Loo G. Michalke B. Venkataramani V. Toyokuni S. Bayir H. Vandenabeele P. Hassannia B. Vanden Berghe T. Ferroptosis contributes to multiple sclerosis and its pharmacological targeting suppresses experimental disease progression. Cell Death Differ. 2023 30 9 2092 2103 10.1038/s41418‑023‑01195‑0 37542104
    [Google Scholar]
  12. Zhang Y. Atkinson J. Burd C.E. Graves J. Segal B.M. Biological aging in multiple sclerosis. Mult. Scler. 2023 29 14 1701 1708 10.1177/13524585231204122 37877740
    [Google Scholar]
  13. Katz S.I. The role of diet in multiple sclerosis: Mechanistic connections and current evidence. Curr. Nutr. Rep. 2018 7 3 150 160 10.1007/s13668‑018‑0236‑z 30117071
    [Google Scholar]
  14. Centonze D. Rossi S. Tortiglione A. Picconi B. Prosperetti C. De Chiara V. Bernardi G. Calabresi P. Synaptic plasticity during recovery from permanent occlusion of the middle cerebral artery. Neurobiol. Dis. 2007 27 1 44 53 10.1016/j.nbd.2007.03.012 17490888
    [Google Scholar]
  15. Bierhansl L. Hartung H.P. Aktas O. Ruck T. Roden M. Meuth S.G. Thinking outside the box: Non-canonical targets in multiple sclerosis. Nat. Rev. Drug Discov. 2022 21 8 578 600 10.1038/s41573‑022‑00477‑5 35668103
    [Google Scholar]
  16. Jäger A. Dardalhon V. Sobel R.A. Bettelli E. Kuchroo V.K. Th1, Th17, and Th9 effector cells induce experimental autoimmune encephalomyelitis with different pathological phenotypes. J. Immunol. 2009 183 11 7169 7177 10.4049/jimmunol.0901906 19890056
    [Google Scholar]
  17. Rodríguez M.S. Farez M.F. Quintana F.J. The immune response in multiple sclerosis. Annu. Rev. Pathol. 2022 17 1 121 139 10.1146/annurev‑pathol‑052920‑040318 34606377
    [Google Scholar]
  18. Sakuishi K. Miyake S. Yamamura T. Role of NK cells and invariant NKT cells in multiple sclerosis. Results Probl. Cell Differ. 2009 51 127 147 10.1007/400_2009_11 19582416
    [Google Scholar]
  19. Altieri C. Speranza B. Corbo M.R. Sinigaglia M. Bevilacqua A. Gut-Microbiota, and Multiple Sclerosis: Background, Evidence, and Perspectives. Nutrients 2023 15 4 942 10.3390/nu15040942 36839299
    [Google Scholar]
  20. Vestergaard M.B. Frederiksen J.L. Larsson H.B.W. Cramer S.P. Cerebrovascular reactivity and neurovascular coupling in multiple sclerosis-a systematic review. Front. Neurol. 2022 13 912828 [Jun]. 10.3389/fneur.2022.912828
    [Google Scholar]
  21. Butturini E. Boriero D. Carcereri de Prati A. Mariotto S. STAT1 drives M1 microglia activation and neuroinflammation under hypoxia. Arch. Biochem. Biophys. 2019 669 22 30 10.1016/j.abb.2019.05.011 31121156
    [Google Scholar]
  22. Bennett M.L. Viaene A.N. What are activated and reactive glia and what is their role in neurodegeneration? Neurobiol. Dis. 2021 148 105172 10.1016/j.nbd.2020.105172 33171230
    [Google Scholar]
  23. Piatek P. Namiecinska M. Domowicz M. Przygodzka P. Wieczorek M. Michlewska S. Lewkowicz N. Tarkowski M. Lewkowicz P.M.S. CD49d+CD154+ lymphocytes reprogram oligodendrocytes into immune reactive cells affecting CNS regeneration. Cells 2019 8 12 1508 10.3390/cells8121508 31775315
    [Google Scholar]
  24. Liddelow S.A. Guttenplan K.A. Clarke L.E. Bennett F.C. Bohlen C.J. Schirmer L. Bennett M.L. Münch A.E. Chung W.S. Peterson T.C. Wilton D.K. Frouin A. Napier B.A. Panicker N. Kumar M. Buckwalter M.S. Rowitch D.H. Dawson V.L. Dawson T.M. Stevens B. Barres B.A. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 2017 541 7638 481 487 10.1038/nature21029 28099414
    [Google Scholar]
  25. Barcelos I.P.d. Troxell R.M. Graves J.S. Mitochondrial dysfunction and multiple sclerosis. Biology 2019 8 2 37 10.3390/biology8020037
    [Google Scholar]
  26. Giovannoni G. Popescu V. Wuerfel J. Hellwig K. Iacobaeus E. Jensen M.B. García-Domínguez J.M. Sousa L. De Rossi N. Hupperts R. Fenu G. Bodini B. Kuusisto H.M. Stankoff B. Lycke J. Airas L. Granziera C. Scalfari A. Smouldering multiple sclerosis: The ‘real MS’. Ther. Adv. Neurol. Disord. 2022 15 17562864211066751 10.1177/17562864211066751 35096143
    [Google Scholar]
  27. Prineas J.W. Kwon E.E. Cho E.S. Sharer L.R. Barnett M.H. Oleszak E.L. Hoffman B. Morgan B.P. Immunopathology of secondary‐progressive multiple sclerosis. Ann. Neurol. 2001 50 5 646 657 10.1002/ana.1255 11706971
    [Google Scholar]
  28. Lassmann H. The pathologic substrate of magnetic resonance alterations in multiple sclerosis. Neuroimaging Clin. N. Am. 2008 18 4 563 576 10.1016/j.nic.2008.06.005
    [Google Scholar]
  29. York E.M. Zhang J. Choi H.B. MacVicar B.A. Neuroinflammatory inhibition of synaptic long‐term potentiation requires immunometabolic reprogramming of microglia. Glia 2021 69 3 567 578 10.1002/glia.23913 32946147
    [Google Scholar]
  30. Ponath G. Park C. Pitt D. The role of astrocytes in multiple sclerosis. Front. Immunol. 2018 9 217 10.3389/fimmu.2018.00217 29515568
    [Google Scholar]
  31. Skripuletz T. Astrocytes regulate myelin clearance through recruitment of microglia during cuprizone-induced demyelination. Brain 2013 136 Pt 1 147 167 10.1093/brain/aws262
    [Google Scholar]
  32. Jin Z. Mendu S.K. Birnir B. GABA is an effective immunomodulatory molecule. Amino Acids 2013 45 1 87 94 10.1007/s00726‑011‑1193‑7 22160261
    [Google Scholar]
  33. Ganor Y. Besser M. Ben-Zakay N. Unger T. Levite M. Human T cells express a functional ionotropic glutamate receptor GluR3, and glutamate by itself triggers integrin-mediated adhesion to laminin and fibronectin and chemotactic migration. J. Immunol. 2003 170 8 4362 4372 10.4049/jimmunol.170.8.4362 12682273
    [Google Scholar]
  34. Levite M. Glutamate, T cells and multiple sclerosis. J. Neural Transm. 2017 124 7 775 798 10.1007/s00702‑016‑1661‑z 28236206
    [Google Scholar]
  35. Enders M. Heider T. Ludwig A. Kuerten S. Strategies for neuroprotection in multiple sclerosis and the role of calcium. Int. J. Mol. Sci. 2020 21 5 1663 10.3390/ijms21051663 32121306
    [Google Scholar]
  36. Jürgens T. Reconstruction of single cortical projection neurons reveals primary spine loss in multiple sclerosis. Brain 2016 139 Pt 1 39 46 10.1093/brain/awv353
    [Google Scholar]
  37. Baldasso B.D. Raza S.Z. Islam S.S. Burry I.B. Newell C.J. Hillier S.R. Ploughman M. Disrupted hemodynamic response within dorsolateral prefrontal cortex during cognitive tasks among people with multiple sclerosis-related fatigue. PLoS One 2024 19 6 0303211 10.1371/journal.pone.0303211 38837991
    [Google Scholar]
  38. Brier M.R. Judge B. Ying C. Salter A. An H. Increased white matter aerobic glycolysis in multiple sclerosis. Ann. Neurol. 2025 97 4 766 778 10.1002/ana.27165
    [Google Scholar]
  39. Paternò R. Chillon J.M. Potentially common therapeutic targets for multiple sclerosis and ischemic stroke. Front. Physiol. 2018 9 855 10.3389/fphys.2018.00855 30057552
    [Google Scholar]
  40. Mao P. Reddy P.H. Is multiple sclerosis a mitochondrial disease? Biochim. Biophys. Acta Mol. Basis Dis. 2010 1802 1 66 79 10.1016/j.bbadis.2009.07.002 19607913
    [Google Scholar]
  41. Nakahara J. Remyelination in multiple sclerosis: Pathology and treatment strategies. Clin. Exp. Neuroimmunol. 2017 8 S1 40 46 10.1111/cen3.12349
    [Google Scholar]
  42. Atkins H.L. Bowman M. Allan D. Anstee G. Arnold D.L. Bar-Or A. Bence-Bruckler I. Birch P. Bredeson C. Chen J. Fergusson D. Halpenny M. Hamelin L. Huebsch L. Hutton B. Laneuville P. Lapierre Y. Lee H. Martin L. McDiarmid S. O’Connor P. Ramsay T. Sabloff M. Walker L. Freedman M.S. Immunoablation and autologous haemopoietic stem-cell transplantation for aggressive multiple sclerosis: A multicentre single-group phase 2 trial. Lancet 2016 388 10044 576 585 10.1016/S0140‑6736(16)30169‑6 27291994
    [Google Scholar]
  43. Lassmann H. Multiple sclerosis pathology. Cold Spring Harb. Perspect. Med. 2018 8 3 a028936 10.1101/cshperspect.a028936 29358320
    [Google Scholar]
  44. Wang P.F. Jiang F. Zeng Q.M. Yin W.F. Hu Y.Z. Li Q. Hu Z.L. Mitochondrial and metabolic dysfunction of peripheral immune cells in multiple sclerosis. J. Neuroinflammation 2024 21 1 28 10.1186/s12974‑024‑03016‑8 38243312
    [Google Scholar]
  45. Lee I.H. Mechanisms and disease implications of sirtuin-mediated autophagic regulation. Exp. Mol. Med. 2019 51 9 1 11 10.1038/s12276‑019‑0302‑7 31492861
    [Google Scholar]
  46. Ng X. Sadeghian M. Heales S. Hargreaves I.P. Assessment of mitochondrial dysfunction in experimental autoimmune encephalomyelitis (eae) models of multiple sclerosis. Int. J. Mol. Sci. 2019 20 20 4975 10.3390/ijms20204975 31600882
    [Google Scholar]
  47. Sadeghian M. Mastrolia V. Rezaei Haddad A. Mosley A. Mullali G. Schiza D. Sajic M. Hargreaves I. Heales S. Duchen M.R. Smith K.J. Mitochondrial dysfunction is an important cause of neurological deficits in an inflammatory model of multiple sclerosis. Sci. Rep. 2016 6 1 33249 10.1038/srep33249 27624721
    [Google Scholar]
  48. Riechers S.P. Mojsilovic-Petrovic J. Belton T.B. Chakrabarty R.P. Garjani M. Medvedeva V. Dalton C. Wong Y.C. Chandel N.S. Dienel G. Kalb R.G. Neurons undergo pathogenic metabolic reprogramming in models of familial ALS. Mol. Metab. 2022 60 101468 10.1016/j.molmet.2022.101468 35248787
    [Google Scholar]
  49. Dutta R. McDonough J. Yin X. Peterson J. Chang A. Torres T. Gudz T. Macklin W.B. Lewis D.A. Fox R.J. Rudick R. Mirnics K. Trapp B.D. Mitochondrial dysfunction as a cause of axonal degeneration in multiple sclerosis patients. Ann. Neurol. 2006 59 3 478 489 10.1002/ana.20736 16392116
    [Google Scholar]
  50. Armon-Omer A. Neuman H. Sharabi-Nov A. Shahien R. Mitochondrial activity is impaired in lymphocytes of MS patients in correlation with disease severity. Mult. Scler. Relat. Disord. 2020 41 102025 10.1016/j.msard.2020.102025 32146432
    [Google Scholar]
  51. Fransson J. Bachelin C. Ichou F. Guillot-Noël L. Ponnaiah M. Gloaguen A. Maillart E. Stankoff B. Tenenhaus A. Fontaine B. Mochel F. Louapre C. Zujovic V. Multiple sclerosis patient macrophages impaired metabolism leads to an altered response to activation stimuli. Neurol. Neuroimmunol. Neuroinflamm. 2024 11 6 200312 10.1212/NXI.0000000000200312 39467238
    [Google Scholar]
  52. Yoshida G.J. Metabolic reprogramming: The emerging concept and associated therapeutic strategies. J. Exp. Clin. Cancer Res. 2015 34 1 111 10.1186/s13046‑015‑0221‑y 26445347
    [Google Scholar]
  53. Pang Y. Lu T. Xu-Monette Z.Y. Young K.H. Metabolic reprogramming and potential therapeutic targets in lymphoma. Int. J. Mol. Sci. 2023 24 6 5493 10.3390/ijms24065493
    [Google Scholar]
  54. Lee H.G. Rone J.M. Li Z. Akl C.F. Shin S.W. Lee J.H. Flausino L.E. Pernin F. Chao C.C. Kleemann K.L. Srun L. Illouz T. Giovannoni F. Charabati M. Sanmarco L.M. Kenison J.E. Piester G. Zandee S.E.J. Antel J.P. Rothhammer V. Wheeler M.A. Prat A. Clark I.C. Quintana F.J. Disease-associated astrocyte epigenetic memory promotes CNS pathology. Nature 2024 627 8005 865 872 10.1038/s41586‑024‑07187‑5 38509377
    [Google Scholar]
  55. Ryan D.G. Peace C.G. Hooftman A. Basic mechanisms of immunometabolites in shaping the immune response. J. Innate Immun. 2023 15 1 925 943 10.1159/000535452 37995666
    [Google Scholar]
  56. Vaupel P. Multhoff G. Revisiting the Warburg effect: Historical dogma versus current understanding. J. Physiol. 2021 599 6 1745 1757 10.1113/JP278810 33347611
    [Google Scholar]
  57. Donnelly R.P. Finlay D.K. Glucose, glycolysis and lymphocyte responses. Mol. Immunol. 2015 68 2 Pt C 513 519 10.1016/j.molimm.2015.07.034
    [Google Scholar]
  58. Cluxton D. Petrasca A. Moran B. Fletcher J.M. Differential regulation of human treg and th17 cells by fatty acid synthesis and glycolysis. Front. Immunol. 2019 10 115 10.3389/fimmu.2019.00115 30778354
    [Google Scholar]
  59. Batista-Gonzalez A. Vidal R. Criollo A. Carreño L.J. New insights on the role of lipid metabolism in the metabolic reprogramming of macrophages. Front. Immunol. 2020 10 2993 10.3389/fimmu.2019.02993
    [Google Scholar]
  60. Vander Heiden M.G. Cantley L.C. Thompson C.B. Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science 2009 324 5930 1029 1033 10.1126/science.1160809 19460998
    [Google Scholar]
  61. Liu X. Hartman C.L. Li L. Albert C.J. Si F. Gao A. Huang L. Zhao Y. Lin W. Hsueh E.C. Shen L. Shao Q. Hoft D.F. Ford D.A. Peng G. Reprogramming lipid metabolism prevents effector T cell senescence and enhances tumor immunotherapy. Sci. Transl. Med. 2021 13 587 eaaz6314 10.1126/scitranslmed.aaz6314 33790024
    [Google Scholar]
  62. Mitroulis I. Ruppova K. Wang B. Chen L.S. Grzybek M. Grinenko T. Eugster A. Troullinaki M. Palladini A. Kourtzelis I. Chatzigeorgiou A. Schlitzer A. Beyer M. Joosten L.A.B. Isermann B. Lesche M. Petzold A. Simons K. Henry I. Dahl A. Schultze J.L. Wielockx B. Zamboni N. Mirtschink P. Coskun Ü. Hajishengallis G. Netea M.G. Chavakis T. Modulation of myelopoiesis progenitors is an integral component of trained immunity. Cell 2018 172 1-2 147 161.e12 10.1016/j.cell.2017.11.034 29328910
    [Google Scholar]
  63. Williams N.C. O’Neill L.A.J. A role for the Krebs cycle intermediate citrate in metabolic reprogramming in innate immunity and inflammation. Front. Immunol. 2018 9 141 10.3389/fimmu.2018.00141
    [Google Scholar]
  64. Mossmann D. Park S. Hall M.N. mTOR signalling and cellular metabolism are mutual determinants in cancer. Nat. Rev. Cancer 2018 18 12 744 757 10.1038/s41568‑018‑0074‑8 30425336
    [Google Scholar]
  65. Cavadas M.A.S. Nguyen L.K. Cheong A. Hypoxia-inducible factor (HIF) network: Insights from mathematical models. Cell Commun. Signal. 2013 11 1 42 10.1186/1478‑811X‑11‑42 23758895
    [Google Scholar]
  66. Cardoso D. Perucha E. Cholesterol metabolism: A new molecular switch to control inflammation. Clin. Sci. 2021 135 11 1389 1408 10.1042/CS20201394 34086048
    [Google Scholar]
  67. Grao-Cruces E. Lopez-Enriquez S. Martin M.E. Montserrat-de la Paz S. High-density lipoproteins and immune response: A review. Int. J. Biol. Macromol. 2022 195 117 123 10.1016/j.ijbiomac.2021.12.009 34896462
    [Google Scholar]
  68. Cheng C.F. Ku H.C. Lin H. PGC-1α as a pivotal factor in lipid and metabolic regulation. Int. J. Mol. Sci. 2018 19 11 3447 10.3390/ijms19113447 30400212
    [Google Scholar]
  69. Angela M. Endo Y. Asou H.K. Yamamoto T. Tumes D.J. Tokuyama H. Yokote K. Nakayama T. Fatty acid metabolic reprogramming via mTOR-mediated inductions of PPARγ directs early activation of T cells. Nat. Commun. 2016 7 1 13683 10.1038/ncomms13683 27901044
    [Google Scholar]
  70. Jeong D.W. Park J.W. Kim K.S. Kim J. Huh J. Seo J. Kim Y.L. Cho J.Y. Lee K.W. Fukuda J. Chun Y.S. Palmitoylation-driven PHF2 ubiquitination remodels lipid metabolism through the SREBP1c axis in hepatocellular carcinoma. Nat. Commun. 2023 14 1 6370 10.1038/s41467‑023‑42170‑0 37828054
    [Google Scholar]
  71. Yang X. Chatterjee V. Ma Y. Zheng E. Yuan S.Y. Protein palmitoylation in leukocyte signaling and function. Front. Cell Dev. Biol. 2020 8 600368 10.3389/fcell.2020.600368 33195285
    [Google Scholar]
  72. Morris G. Gevezova M. Sarafian V. Maes M. Redox regulation of the immune response. Cell. Mol. Immunol. 2022 19 10 1079 1101 10.1038/s41423‑022‑00902‑0 36056148
    [Google Scholar]
  73. Olona A. Leishman S. Anand P.K. The NLRP3 inflammasome: Regulation by metabolic signals. Trends Immunol. 2022 43 12 978 989 10.1016/j.it.2022.10.003 36371361
    [Google Scholar]
  74. Aso K. Kono M. Kanda M. Kudo Y. Sakiyama K. Hisada R. Karino K. Ueda Y. Nakazawa D. Fujieda Y. Kato M. Amengual O. Atsumi T. Itaconate ameliorates autoimmunity by modulating T cell imbalance via metabolic and epigenetic reprogramming. Nat. Commun. 2023 14 1 984 10.1038/s41467‑023‑36594‑x 36849508
    [Google Scholar]
  75. Ntranos A. Ntranos V. Bonnefil V. Liu J. Kim-Schulze S. He Y. Zhu Y. Brandstadter R. Watson C.T. Sharp A.J. Katz S.I. Casaccia P. Fumarates target the metabolic-epigenetic interplay of brain-homing T cells in multiple sclerosis. Brain 2019 142 3 647 661 10.1093/brain/awy344 30698680
    [Google Scholar]
  76. Xu T. Stewart K.M. Wang X. Liu K. Xie M. Ryu J.K. Li K. Ma T. Wang H. Ni L. Zhu S. Cao N. Zhu D. Zhang Y. Akassoglou K. Dong C. Driggers E.M. Ding S. Metabolic control of TH17 and induced Treg cell balance by an epigenetic mechanism. Nature 2017 548 7666 228 233 10.1038/nature23475 28783731
    [Google Scholar]
  77. Soriano-Baguet L. Grusdat M. Kurniawan H. Benzarti M. Binsfeld C. Ewen A. Longworth J. Bonetti L. Guerra L. Franchina D.G. Kobayashi T. Horkova V. Verschueren C. Helgueta S. Gérard D. More T.H. Henne A. Dostert C. Farinelle S. Lesur A. Gérardy J.J. Jäger C. Mittelbronn M. Sinkkonen L. Hiller K. Meiser J. Brenner D. Pyruvate dehydrogenase fuels a critical citrate pool that is essential for Th17 cell effector functions. Cell Rep. 2023 42 3 112153 10.1016/j.celrep.2023.112153 36848289
    [Google Scholar]
  78. King A. Selak M.A. Gottlieb E. Succinate dehydrogenase and fumarate hydratase: Linking mitochondrial dysfunction and cancer. Oncogene 2006 25 34 4675 4682 10.1038/sj.onc.1209594 16892081
    [Google Scholar]
  79. Liu P.S. Wang H. Li X. Chao T. Teav T. Christen S. Di Conza G. Cheng W.C. Chou C.H. Vavakova M. Muret C. Debackere K. Mazzone M. Huang H.D. Fendt S.M. Ivanisevic J. Ho P.C. α-ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming. Nat. Immunol. 2017 18 9 985 994 10.1038/ni.3796 28714978
    [Google Scholar]
  80. Li K. Zheng Y. Wang X. The potential relationship between hif-1α and amino acid metabolism after hypoxic ischemia and dual effects on neurons. Front. Neurosci. 2021 15 676553 10.3389/fnins.2021.676553 34483819
    [Google Scholar]
  81. Buonvicino D. Ranieri G. Guasti D. Pistolesi A. La Rocca A.I. Rapizzi E. Chiarugi A. Early derangement of axonal mitochondria occurs in a mouse model of progressive but not relapsing-remitting multiple sclerosis. Neurobiol. Dis. 2023 178 106015 10.1016/j.nbd.2023.106015 36702320
    [Google Scholar]
  82. Bantug G.R. Hess C. The burgeoning world of immunometabolites: Th17 cells take center stage. Cell Metab. 2017 26 4 588 590 10.1016/j.cmet.2017.09.014 28978422
    [Google Scholar]
  83. Kabiraj P. Grund E.M. Clarkson B.D.S. Johnson R.K. LaFrance-Corey R.G. Lucchinetti C.F. Howe C.L. Teriflunomide shifts the astrocytic bioenergetic profile from oxidative metabolism to glycolysis and attenuates TNFα-induced inflammatory responses. Sci. Rep. 2022 12 1 3049 10.1038/s41598‑022‑07024‑7 35197552
    [Google Scholar]
  84. Klotz L. Eschborn M. Lindner M. Liebmann M. Herold M. Janoschka C. Torres Garrido B. Schulte-Mecklenbeck A. Gross C.C. Breuer J. Hundehege P. Posevitz V. Pignolet B. Nebel G. Glander S. Freise N. Austermann J. Wirth T. Campbell G.R. Schneider-Hohendorf T. Eveslage M. Brassat D. Schwab N. Loser K. Roth J. Busch K.B. Stoll M. Mahad D.J. Meuth S.G. Turner T. Bar-Or A. Wiendl H. Teriflunomide treatment for multiple sclerosis modulates T cell mitochondrial respiration with affinity-dependent effects. Sci. Transl. Med. 2019 11 490 eaao5563 10.1126/scitranslmed.aao5563 31043571
    [Google Scholar]
  85. De Riccardis L. Ferramosca A. Danieli A. Trianni G. Zara V. De Robertis F. Maffia M. Metabolic response to glatiramer acetate therapy in multiple sclerosis patients. BBA Clin. 2016 6 131 137 10.1016/j.bbacli.2016.10.004 27785417
    [Google Scholar]
  86. Nemati S. Kondiles B.R. Wheeler S. The contributions of the mTOR complexes: How does regional and temporal heterogeneity affect myelination and remyelination? J. Neurosci. 2023 43 31 5590 5592 10.1523/JNEUROSCI.0545‑23.2023 37532457
    [Google Scholar]
  87. Gruchot J. Weyers V. Göttle P. Förster M. Hartung H.P. Küry P. Kremer D. The molecular basis for remyelination failure in multiple sclerosis. Cells 2019 8 8 825 10.3390/cells8080825 31382620
    [Google Scholar]
  88. Guo Y. Zhu X. Zeng M. Qi L. Tang X. Wang D. Zhang M. Xie Y. Li H. Yang X. Chen D. A diet high in sugar and fat influences neurotransmitter metabolism and then affects brain function by altering the gut microbiota. Transl. Psychiatry 2021 11 1 328 10.1038/s41398‑021‑01443‑2 34045460
    [Google Scholar]
  89. Sanguinetti E. Guzzardi M.A. Panetta D. Tripodi M. De Sena V. Quaglierini M. Burchielli S. Salvadori P.A. Iozzo P. Combined effect of fatty diet and cognitive decline on brain metabolism, food intake, body weight, and counteraction by intranasal insulin therapy in 3×tg mice. Front. Cell. Neurosci. 2019 13 188 10.3389/fncel.2019.00188 31130848
    [Google Scholar]
  90. Dupree J.L. Feinstein D.L. Influence of diet on axonal damage in the EAE mouse model of multiple sclerosis. J. Neuroimmunol. 2018 322 9 14 10.1016/j.jneuroim.2018.05.010 29803554
    [Google Scholar]
  91. Soares E. Prediger R.D. Nunes S. Castro A.A. Viana S.D. Lemos C. De Souza C.M. Agostinho P. Cunha R.A. Carvalho E. Fontes Ribeiro C.A. Reis F. Pereira F.C. Spatial memory impairments in a prediabetic rat model. Neuroscience 2013 250 565 577 10.1016/j.neuroscience.2013.07.055 23912035
    [Google Scholar]
  92. Kyriazis I. Vassi E. Alvanou M. Angelakis C. Skaperda Z. Tekos F. Garikipati V. Spandidos D. Kouretas D. The impact of diet upon mitochondrial physiology (Review). Int. J. Mol. Med. 2022 50 5 135 10.3892/ijmm.2022.5191 36129147
    [Google Scholar]
  93. de Ligt M. Bruls Y.M.H. Hansen J. Habets M.F. Havekes B. Nascimento E.B.M. Moonen-Kornips E. Schaart G. Schrauwen-Hinderling V.B. van Marken Lichtenbelt W. Schrauwen P. Resveratrol improves ex vivo mitochondrial function but does not affect insulin sensitivity or brown adipose tissue in first degree relatives of patients with type 2 diabetes. Mol. Metab. 2018 12 39 47 10.1016/j.molmet.2018.04.004 29706321
    [Google Scholar]
  94. Yoshino J. Smith G.I. Kelly S.C. Julliand S. Reeds D.N. Mittendorfer B. Effect of dietary n-3 PUFA supplementation on the muscle transcriptome in older adults. Physiol. Rep. 2016 4 11 12785 10.14814/phy2.12785 27252251
    [Google Scholar]
  95. Gianfrancesco M. Barcellos L. Obesity and multiple sclerosis susceptibility: A review. J. Neurol. Neuromedicine 2016 1 7 1 5 10.29245/2572.942X/2016/7.1064 27990499
    [Google Scholar]
  96. Huppke B. Ellenberger D. Hummel H. Stark W. Röbl M. Gärtner J. Huppke P. Association of obesity with multiple sclerosis risk and response to first-line disease modifying drugs in children. JAMA Neurol. 2019 76 10 1157 1165 10.1001/jamaneurol.2019.1997 31305922
    [Google Scholar]
  97. Zeng R. Jiang R. Huang W. Wang J. Zhang L. Ma Y. Wu Y. Meng M. Lan H. Lian Q. Leung F.W. Sha W. Chen H. Dissecting shared genetic architecture between obesity and multiple sclerosis. EBioMedicine 2023 93 104647 10.1016/j.ebiom.2023.104647 37300932
    [Google Scholar]
  98. Atabilen B. Akdevelioğlu Y. Effects of different dietary interventions in multiple sclerosis: A systematic review of evidence from 2018 to 2022. Nutr. Neurosci. 2023 26 12 1279 1291 10.1080/1028415X.2022.2146843 36384390
    [Google Scholar]
  99. Ortí J.E.R. Cuerda-Ballester M. Sanchis-Sanchis C.E. Lajara R.J.M. Navarro-Illana E. García P.M.P. Exploring the impact of ketogenic diet on multiple sclerosis: Obesity, anxiety, depression, and the glutamate system. Front. Nutr. 2023 10 1227431 10.3389/fnut.2023.1227431 37693246
    [Google Scholar]
  100. Brenton J.N. Lehner-Gulotta D. Woolbright E. Banwell B. Bergqvist A.G.C. Chen S. Coleman R. Conaway M. Goldman M.D. Phase II study of ketogenic diets in relapsing multiple sclerosis: Safety, tolerability and potential clinical benefits. J. Neurol. Neurosurg. Psychiatry 2022 93 6 637 644 10.1136/jnnp‑2022‑329074 35418509
    [Google Scholar]
  101. Bock M. Steffen F. Zipp F. Bittner S. Impact of dietary intervention on serum neurofilament light chain in multiple sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2022 9 1 1102 10.1212/NXI.0000000000001102 34764215
    [Google Scholar]
  102. Benlloch M. Cuerda Ballester M. Drehmer E. Platero J.L. Carrera-Juliá S. López-Rodríguez M.M. Ceron J.J. Tvarijonaviciute A. Navarro M.Á. Moreno M.L. de la Rubia Ortí J.E. Possible reduction of cardiac risk after supplementation with epigallocatechin gallate and increase of ketone bodies in the blood in patients with multiple sclerosis. a pilot study. Nutrients 2020 12 12 3792 10.3390/nu12123792 33322022
    [Google Scholar]
  103. Platero J.L. Cuerda-Ballester M. Ibáñez V. Sancho D. Lopez-Rodríguez M.M. Drehmer E. de la Rubia Ortí J.E. The impact of coconut oil and epigallocatechin gallate on the levels of il-6, anxiety and disability in multiple sclerosis patients. Nutrients 2020 12 2 305 10.3390/nu12020305 31979305
    [Google Scholar]
  104. Fitzgerald K.C. Vizthum D. Henry-Barron B. Schweitzer A. Cassard S.D. Kossoff E. Hartman A.L. Kapogiannis D. Sullivan P. Baer D.J. Mattson M.P. Appel L.J. Mowry E.M. Effect of intermittent vs. daily calorie restriction on changes in weight and patient-reported outcomes in people with multiple sclerosis. Mult. Scler. Relat. Disord. 2018 23 33 39 10.1016/j.msard.2018.05.002 29753994
    [Google Scholar]
  105. Roman S.N. Fitzgerald K.C. Beier M. Mowry E.M. Safety and feasibility of various fasting-mimicking diets among people with multiple sclerosis. Mult. Scler. Relat. Disord. 2020 42 102149 10.1016/j.msard.2020.102149 32408153
    [Google Scholar]
  106. Wingo B.C. Rinker J.R. Green K. Peterson C.M. Feasibility and acceptability of time-restricted eating in a group of adults with multiple sclerosis. Front. Neurol. 2023 13 1087126 10.3389/fneur.2022.1087126
    [Google Scholar]
  107. Fitzgerald K.C. Intermittent calorie restriction alters T cell subsets and metabolic markers in people with multiple sclerosis. Exp. Biol. Med. 2022 82 104124 10.1016/j.ebiom.2022.104124
    [Google Scholar]
  108. Lin X. Wang S. Gao Y. The effects of intermittent fasting for patients with multiple sclerosis (MS): A systematic review. Front. Nutr. 2024 10 1328426 10.3389/fnut.2023.1328426 38303903
    [Google Scholar]
  109. Villa A.T. Tu B.H. Titcomb T.J. Saxby S.M. Shemirani F. Ten Eyck P. Rubenstein L.M. Snetselaar L.G. Wahls T.L. Association between improved metabolic risk factors and perceived fatigue during dietary intervention trial in relapsing-remitting multiple sclerosis: A secondary analysis of the WAVES trial. Front. Neurol. 2023 13 1022728 10.3389/fneur.2022.1022728 36742040
    [Google Scholar]
  110. Chase E. Chen V. Martin K. Lane M. Wooliscroft L. Adams C. Rice J. Silbermann E. Hollen C. Fryman A. Purnell J.Q. Vong C. Orban A. Horgan A. Khan A. Srikanth P. Yadav V. A low-fat diet improves fatigue in multiple sclerosis: Results from a randomized controlled trial. Mult. Scler. 2023 29 13 1659 1675 10.1177/13524585231208330 37941305
    [Google Scholar]
  111. Yadav V. Marracci G. Kim E. Spain R. Cameron M. Overs S. Riddehough A. Li D.K.B. McDougall J. Lovera J. Murchison C. Bourdette D. Low-fat, plant-based diet in multiple sclerosis: A randomized controlled trial. Mult. Scler. Relat. Disord. 2016 9 80 90 10.1016/j.msard.2016.07.001 27645350
    [Google Scholar]
  112. Navarrete-Pérez A. Gómez-Melero S. Escribano B.M. Galvao-Carmona A. Conde-Gavilán C. Peña-Toledo M.Á. Villarrubia N. Villar L.M. Túnez I. Agüera-Morales E. Caballero-Villarraso J. MIND diet impact on multiple sclerosis patients: Biochemical changes after nutritional intervention. Int. J. Mol. Sci. 2024 25 18 10009 10.3390/ijms251810009 39337497
    [Google Scholar]
  113. Noormohammadi M. Ghorbani Z. Naser Moghadasi A. Saeedirad Z. Shahemi S. Ghanaatgar M. Rezaeimanesh N. Hekmatdoost A. Ghaemi A. Razeghi Jahromi S. MIND diet adherence might be associated with a reduced odds of multiple sclerosis: Results from a case–control study. Neurol. Ther. 2022 11 1 397 412 10.1007/s40120‑022‑00325‑z 35094301
    [Google Scholar]
  114. Snetselaar L.G. Cheek J.J. Fox S.S. Healy H.S. Schweizer M.L. Bao W. Kamholz J. Titcomb T.J. Efficacy of diet on fatigue and quality of life in multiple sclerosis. Neurology 2023 100 4 e357 e366 10.1212/WNL.0000000000201371 36257717
    [Google Scholar]
  115. D’Alessandro A. De Pergola G. The mediterranean diet: Its definition and evaluation of a priori dietary indexes in primary cardiovascular prevention. Int. J. Food Sci. Nutr. 2018 69 6 647 659 10.1080/09637486.2017.1417978 29347867
    [Google Scholar]
  116. Billingsley H.E. Carbone S. The antioxidant potential of the Mediterranean diet in patients at high cardiovascular risk: An in-depth review of the PREDIMED. Nutr. Diabetes 2018 8 1 13 10.1038/s41387‑018‑0025‑1 29549354
    [Google Scholar]
  117. Arias-Sánchez R.A. Torner L. Fenton N.B. Polyphenols and neurodegenerative diseases: Potential effects and mechanisms of neuroprotection. Molecules 2023 28 14 5415 10.3390/molecules28145415 37513286
    [Google Scholar]
  118. Davis C. Bryan J. Hodgson J. Murphy K. Definition of the mediterranean diet; a literature review. Nutrients 2015 7 11 9139 9153 10.3390/nu7115459 26556369
    [Google Scholar]
  119. Menotti A. Kromhout D. Blackburn H. Fidanza F. Buzina R. Nissinen A. Food intake patterns and 25-year mortality from coronary heart disease: Cross-cultural correlations in the Seven Countries Study. Eur. J. Epidemiol. 1999 15 6 507 515 10.1023/A:1007529206050 10485342
    [Google Scholar]
  120. Monllor-Tormos A. García-Vigara A. Morgan O. García-Pérez M.Á. Mendoza N. Tarín J.J. Cano A. Mediterranean diet for cancer prevention and survivorship. Maturitas 2023 178 107841 10.1016/j.maturitas.2023.107841 37660598
    [Google Scholar]
  121. Papadaki A. Nolen-Doerr E. Mantzoros C.S. The effect of the mediterranean diet on metabolic health: A systematic review and meta-analysis of controlled trials in adults. Nutrients 2020 12 11 3342 10.3390/nu12113342 33143083
    [Google Scholar]
  122. Szypowska A. Zatońska K. Szuba A. Regulska-Ilow B. Dietary inflammatory index (DII)® and metabolic syndrome in the selected population of polish adults: Results of the pure poland sub-study. Int. J. Environ. Res. Public Health 2023 20 2 1056 10.3390/ijerph20021056 36673811
    [Google Scholar]
  123. Riccio P. Rossano R. Nutrition facts in multiple sclerosis. ASN Neuro 2015 7 1 1759091414568185 10.1177/1759091414568185 25694551
    [Google Scholar]
  124. Christ A. Günther P. Lauterbach M.A.R. Duewell P. Biswas D. Pelka K. Scholz C.J. Oosting M. Haendler K. Baßler K. Klee K. Schulte-Schrepping J. Ulas T. Moorlag S.J.C.F.M. Kumar V. Park M.H. Joosten L.A.B. Groh L.A. Riksen N.P. Espevik T. Schlitzer A. Li Y. Fitzgerald M.L. Netea M.G. Schultze J.L. Latz E. Western diet triggers NLRP3-dependent innate immune reprogramming. Cell 2018 172 1-2 162 175.e14 10.1016/j.cell.2017.12.013 29328911
    [Google Scholar]
  125. Tuttolomondo A. Simonetta I. Daidone M. Mogavero A. Ortello A. Pinto A. Metabolic and vascular effect of the mediterranean diet. Int. J. Mol. Sci. 2019 20 19 4716 10.3390/ijms20194716 31547615
    [Google Scholar]
  126. Gensous N. Garagnani P. Santoro A. Giuliani C. Ostan R. Fabbri C. Milazzo M. Gentilini D. di Blasio A.M. Pietruszka B. Madej D. Bialecka-Debek A. Brzozowska A. Franceschi C. Bacalini M.G. One-year Mediterranean diet promotes epigenetic rejuvenation with country- and sex-specific effects: A pilot study from the NU-AGE project. Geroscience 2020 42 2 687 701 10.1007/s11357‑019‑00149‑0 31981007
    [Google Scholar]
  127. Arpón A. Riezu-Boj J.I. Milagro F.I. Marti A. Razquin C. Martínez-González M.A. Corella D. Estruch R. Casas R. Fitó M. Ros E. Salas-Salvadó J. Martínez J.A. Adherence to mediterranean diet is associated with methylation changes in inflammation-related genes in peripheral blood cells. J. Physiol. Biochem. 2016 73 3 445 455 10.1007/s13105‑017‑0552‑6 28181167
    [Google Scholar]
  128. Davinelli S. Trichopoulou A. Corbi G. De Vivo I. Scapagnini G. The potential nutrigeroprotective role of Mediterranean diet and its functional components on telomere length dynamics. Ageing Res. Rev. 2019 49 1 10 10.1016/j.arr.2018.11.001 30448616
    [Google Scholar]
  129. Park G. Kadyan S. Hochuli N. Pollak J. Wang B. Salazar G. Chakrabarty P. Efron P. Sheffler J. Nagpal R. A modified Mediterranean-style diet enhances brain function via specific gut-microbiome-brain mechanisms. Gut Microbes 2024 16 1 2323752 10.1080/19490976.2024.2323752 38444392
    [Google Scholar]
  130. Christodoulou C.C. Pitsillides M. Hadjisavvas A. Zamba-Papanicolaou E. Dietary intake, mediterranean and nordic diet adherence in alzheimer’s disease and dementia: A systematic review. Nutrients 2025 17 2 336 10.3390/nu17020336 39861466
    [Google Scholar]
  131. Vaziri Y. The mediterranean diet: A powerful defense against Alzheimer disease-A comprehensive review. Clin. Nutr. ESPEN 2024 64 160 167 10.1016/j.clnesp.2024.09.020 39349103
    [Google Scholar]
  132. Nucci D. Sommariva A. Degoni L.M. Gallo G. Mancarella M. Natarelli F. Savoia A. Catalini A. Ferranti R. Pregliasco F.E. Castaldi S. Gianfredi V. Association between Mediterranean diet and dementia and Alzheimer disease: A systematic review with meta-analysis. Aging Clin. Exp. Res. 2024 36 1 77 10.1007/s40520‑024‑02718‑6 38519775
    [Google Scholar]
  133. Gregory S. Pullen H. Ritchie C.W. Shannon O.M. Stevenson E.J. Muniz-Terrera G. Mediterranean diet and structural neuroimaging biomarkers of Alzheimer’s and cerebrovascular disease: A systematic review. Exp. Gerontol. 2023 172 112065 10.1016/j.exger.2022.112065 36529364
    [Google Scholar]
  134. Ayten Ş. Bilici S. Modulation of gut microbiota through dietary intervention in neuroinflammation and Alzheimer’s and Parkinson’s diseases. Curr. Nutr. Rep. 2024 13 2 82 96 10.1007/s13668‑024‑00539‑7 38652236
    [Google Scholar]
  135. Zhao J. Peng Y. Lin Z. Gong Y. Association between Mediterranean diet adherence and Parkinson’s disease: A systematic review and meta-analysis. J. Nutr. Health Aging 2025 29 2 100451 10.1016/j.jnha.2024.100451 39693849
    [Google Scholar]
  136. Bisaglia M. Mediterranean diet and parkinson’s disease. Int. J. Mol. Sci. 2022 24 1 42 10.3390/ijms24010042 36613486
    [Google Scholar]
  137. Seelarbokus B.A. Menozzi E. Schapira A.H.V. Kalea A.Z. Macnaughtan J. Mediterranean diet adherence, gut microbiota and parkinson’s disease: A systematic review. Nutrients 2024 16 14 2181 10.3390/nu16142181 39064625
    [Google Scholar]
  138. Solch R.J. Aigbogun J.O. Voyiadjis A.G. Talkington G.M. Darensbourg R.M. O’Connell S. Pickett K.M. Perez S.R. Maraganore D.M. Mediterranean diet adherence, gut microbiota, and Alzheimer’s or Parkinson’s disease risk: A systematic review. J. Neurol. Sci. 2022 434 120166 10.1016/j.jns.2022.120166 35144237
    [Google Scholar]
  139. Abbasi H. Mediterranean-like diets in multiple sclerosis: A systematic review. Rev. Neurol 2023 vol. 1 6 39492055
    [Google Scholar]
  140. Tankou S.K. Regev K. Healy B.C. Tjon E. Laghi L. Cox L.M. Kivisäkk P. Pierre I.V. Hrishikesh L. Gandhi R. Cook S. Glanz B. Stankiewicz J. Weiner H.L. A probiotic modulates the microbiome and immunity in multiple sclerosis. Ann. Neurol. 2018 83 6 1147 1161 10.1002/ana.25244 29679417
    [Google Scholar]
  141. Chriett S. Dąbek A. Wojtala M. Vidal H. Balcerczyk A. Pirola L. Prominent action of butyrate over β-hydroxybutyrate as histone deacetylase inhibitor, transcriptional modulator and anti-inflammatory molecule. Sci. Rep. 2019 9 1 742 10.1038/s41598‑018‑36941‑9 30679586
    [Google Scholar]
  142. Duscha A. Gisevius B. Hirschberg S. Yissachar N. Stangl G.I. Dawin E. Bader V. Haase S. Kaisler J. David C. Schneider R. Troisi R. Zent D. Hegelmaier T. Dokalis N. Gerstein S. Del Mare-Roumani S. Amidror S. Staszewski O. Poschmann G. Stühler K. Hirche F. Balogh A. Kempa S. Träger P. Zaiss M.M. Holm J.B. Massa M.G. Nielsen H.B. Faissner A. Lukas C. Gatermann S.G. Scholz M. Przuntek H. Prinz M. Forslund S.K. Winklhofer K.F. Müller D.N. Linker R.A. Gold R. Haghikia A. Propionic acid shapes the multiple sclerosis disease course by an immunomodulatory mechanism. Cell 2020 180 6 1067 1080.e16 10.1016/j.cell.2020.02.035 32160527
    [Google Scholar]
  143. Tang C. Iron metabolism disorder and multiple sclerosis: A comprehensive analysis. Front. Immunol. 2024 15 1376838 10.3389/fimmu.2024.1376838
    [Google Scholar]
  144. Zierfuss B. Wang Z. Jackson A.N. Moezzi D. Yong V.W. Iron in multiple sclerosis – Neuropathology, immunology, and real-world considerations. Mult. Scler. Relat. Disord. 2023 78 104934 10.1016/j.msard.2023.104934 37579645
    [Google Scholar]
  145. Siotto M. Filippi M.M. Simonelli I. Landi D. Oxidative stress related to iron metabolism in relapsing remitting multiple sclerosis patients with low disability. Front. Neurosci. 2019 13 86 10.3389/fnins.2019.00086
    [Google Scholar]
  146. Khalil M. Teunissen C. Langkammer C. Iron and neurodegeneration in multiple sclerosis. Mult. Scler. Int. 2011 2011 1 6 10.1155/2011/606807 22096640
    [Google Scholar]
  147. Terracina S. Alcohol consumption and autoimmune diseases. Int. J. Mol. Sci. 2025 26 2 845 10.3390/ijms26020845
    [Google Scholar]
  148. Dreyer-Alster S. Achiron A. Giovannoni G. Jacobs B.M. Dobson R. No evidence for an association between alcohol consumption and Multiple Sclerosis risk: A UK Biobank study. Sci. Rep. 2022 12 1 22158 10.1038/s41598‑022‑26409‑2 36550182
    [Google Scholar]
  149. Mortazavi S.H. Moghadasi A.N. Almasi-Hashiani A. Sahraian M.A. Goudarzi H. Eskandarieh S. Waterpipe and cigarette smoking and drug and alcohol consumption, and the risk of primary progressive multiple sclerosis: A population-based case-control study. Curr. J. Neurol. 2023 22 2 72 81 10.18502/cjn.v22i2.13331 38011368
    [Google Scholar]
  150. Malekifar P. Nedjat S. Abdollahpour I. Nazemipour M. Malekifar S. Mansournia M.A. Impact of alcohol consumption on multiple sclerosis using model-based standardization and misclassification adjustment via probabilistic bias analysis. Arch. Iran Med. 2023 26 10 567 574 10.34172/aim.2023.83 38310413
    [Google Scholar]
  151. Massa J. O’Reilly E.J. Munger K.L. Ascherio A. Caffeine and alcohol intakes have no association with risk of multiple sclerosis. Mult. Scler. 2013 19 1 53 58 10.1177/1352458512448108 22641303
    [Google Scholar]
  152. Katz Sand I. Levy S. Fitzgerald K. Sorets T. Sumowski J.F. Mediterranean diet is linked to less objective disability in multiple sclerosis. Mult. Scler. 2023 29 2 248 260 10.1177/13524585221127414 36226971
    [Google Scholar]
  153. Felicetti F. Tommasin S. Petracca M. De Giglio L. Gurreri F. Ianniello A. Nistri R. Pozzilli C. Ruggieri S. Eating hubs in multiple sclerosis: Exploring the relationship between mediterranean diet and disability status in italy. Front. Nutr. 2022 9 882426 10.3389/fnut.2022.882426 35782931
    [Google Scholar]
  154. Bronzini M. Maglione A. Rosso R. Masuzzo F. Matta M. Meroni R. Rolla S. Clerico M. Lower multiple sclerosis severity score is associated with higher adherence to mediterranean diet in subjects with multiple sclerosis from northwestern italy. Nutrients 2024 16 6 880 10.3390/nu16060880 38542790
    [Google Scholar]
  155. Alfredsson L. Olsson T. Hedström A.K. Inverse association between Mediterranean diet and risk of multiple sclerosis. Mult. Scler. 2023 29 9 1118 1125 10.1177/13524585231181841 37366345
    [Google Scholar]
  156. Black L.J. Baker K. Ponsonby A.L. van der Mei I. Lucas R.M. Pereira G. A higher mediterranean diet score, including unprocessed red meat, is associated with reduced risk of central nervous system demyelination in a case-control study of australian adults. J. Nutr. 2019 149 8 1385 1392 10.1093/jn/nxz089 31131415
    [Google Scholar]
  157. Castañer O. Corella D. Covas M.I. Sorlí J.V. Subirana I. Flores-Mateo G. Nonell L. Bulló M. de la Torre R. Portolés O. Fitó M. In vivo transcriptomic profile after a Mediterranean diet in high-cardiovascular risk patients: A randomized controlled trial. Am. J. Clin. Nutr. 2013 98 3 845 853 10.3945/ajcn.113.060582 23902780
    [Google Scholar]
  158. Zhang Y. Li F. Chen C. Li Y. Xie W. Huang D. Zhai X. Yu W. Wan J. Li P. RAGE-mediated T cell metabolic reprogramming shapes T cell inflammatory response after stroke. J. Cereb. Blood Flow Metab. 2022 42 6 952 965 10.1177/0271678X211067133 34910890
    [Google Scholar]
  159. Sudha M. Banita A.K. Ram A.K. Bhatia A. Effect of dietary AGEs on the transcriptional profile of peripheral blood lymphocytes. Applied. Food Res. 2022 2 1 100086 10.1016/j.afres.2022.100086
    [Google Scholar]
  160. Cannataro R. Fazio A. La Torre C. Caroleo M.C. Cione E. Polyphenols in the mediterranean diet: From dietary sources to microrna modulation. Antioxidants 2021 10 2 328 10.3390/antiox10020328 33672251
    [Google Scholar]
  161. Baek S.C. Park M.H. Ryu H.W. Lee J.P. Kang M.G. Park D. Park C.M. Oh S.R. Kim H. Rhamnocitrin isolated from Prunus padus var. seoulensis: A potent and selective reversible inhibitor of human monoamine oxidase A. Bioorg. Chem. 2019 83 317 325 10.1016/j.bioorg.2018.10.051 30396116
    [Google Scholar]
  162. Tayab M.A. Islam M.N. Chowdhury K.A.A. Tasnim F.M. Targeting neuroinflammation by polyphenols: A promising therapeutic approach against inflammation-associated depression. Biomed. Pharmacother. 2022 147 112668 10.1016/j.biopha.2022.112668 35104696
    [Google Scholar]
  163. Bhakkiyalakshmi E. Dineshkumar K. Karthik S. Sireesh D. Hopper W. Paulmurugan R. Ramkumar K.M. Pterostilbene-mediated Nrf2 activation: Mechanistic insights on Keap1:Nrf2 interface. Bioorg. Med. Chem. 2016 24 16 3378 3386 10.1016/j.bmc.2016.05.011 27312421
    [Google Scholar]
  164. Si T.L. Liu Q.I. Ren Y.U.F.E.I. Li H.U.I. Xu X.Y. Li E.R.H.U. Pan S.I.Y.I. Zhang J.L. Wang K.X. Enhanced anti-inflammatory effects of DHA and quercetin in lipopolysaccharide-induced RAW264.7 macrophages by inhibiting NF-κB and MAPK activation. Mol. Med. Rep. 2016 14 1 499 508 10.3892/mmr.2016.5259 27176922
    [Google Scholar]
  165. Samec M. Liskova A. Koklesova L. Samuel S.M. Zhai K. Buhrmann C. Varghese E. Abotaleb M. Qaradakhi T. Zulli A. Kello M. Mojzis J. Zubor P. Kwon T.K. Shakibaei M. Büsselberg D. Sarria G.R. Golubnitschaja O. Kubatka P. Flavonoids against the Warburg phenotype—concepts of predictive, preventive and personalised medicine to cut the Gordian knot of cancer cell metabolism. EPMA J. 2020 11 3 377 398 10.1007/s13167‑020‑00217‑y 32843908
    [Google Scholar]
  166. Khalil M. Shanmugam H. Abdallah H. John Britto J.S. Galerati I. Gómez-Ambrosi J. Frühbeck G. Portincasa P. The potential of the mediterranean diet to improve mitochondrial function in experimental models of obesity and metabolic syndrome. Nutrients 2022 14 15 3112 10.3390/nu14153112 35956289
    [Google Scholar]
  167. Grubić Kezele T. Ćurko-Cofek B. Neuroprotective panel of olive polyphenols: Mechanisms of action, anti-demyelination, and anti-stroke properties. Nutrients 2022 14 21 4533 10.3390/nu14214533 36364796
    [Google Scholar]
  168. Lagouge M. Argmann C. Gerhart-Hines Z. Meziane H. Lerin C. Daussin F. Messadeq N. Milne J. Lambert P. Elliott P. Geny B. Laakso M. Puigserver P. Auwerx J. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell 2006 127 6 1109 1122 10.1016/j.cell.2006.11.013 17112576
    [Google Scholar]
  169. Walker J.M. Klakotskaia D. Ajit D. Weisman G.A. Wood W.G. Sun G.Y. Serfozo P. Simonyi A. Schachtman T.R. Beneficial effects of dietary EGCG and voluntary exercise on behavior in an Alzheimer’s disease mouse model. J. Alzheimers Dis. 2015 44 2 561 572 10.3233/JAD‑140981 25318545
    [Google Scholar]
  170. Vingtdeux V. Giliberto L. Zhao H. Chandakkar P. Wu Q. Simon J.E. Janle E.M. Lobo J. Ferruzzi M.G. Davies P. Marambaud P. AMP-activated protein kinase signaling activation by resveratrol modulates amyloid-beta peptide metabolism. J. Biol. Chem. 2010 285 12 9100 9113 10.1074/jbc.M109.060061 20080969
    [Google Scholar]
  171. Kujawska M. Jodynis-Liebert J. Polyphenols in Parkinson’s disease: A systematic review of in vivo studies. Nutrients 2018 10 5 642 10.3390/nu10050642 29783725
    [Google Scholar]
  172. La Rosa G. Lonardo M.S. Cacciapuoti N. Muscariello E. Guida B. Faraonio R. Santillo M. Damiano S. Dietary polyphenols, microbiome, and multiple sclerosis: From molecular anti-inflammatory and neuroprotective mechanisms to clinical evidence. Int. J. Mol. Sci. 2023 24 8 7247 10.3390/ijms24087247 37108412
    [Google Scholar]
  173. Hendriks J.J.A. de Vries H.E. van der Pol S.M.A. van den Berg T.K. van Tol E.A.F. Dijkstra C.D. Flavonoids inhibit myelin phagocytosis by macrophages; a structure–activity relationship study. Biochem. Pharmacol. 2003 65 5 877 885 10.1016/S0006‑2952(02)01609‑X 12628496
    [Google Scholar]
  174. Fang M.Z. Wang Y. Ai N. Hou Z. Sun Y. Lu H. Welsh W. Yang C.S. Tea polyphenol (-)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res. 2003 63 22 7563 7570 14633667
    [Google Scholar]
  175. Nandakumar V. Vaid M. Katiyar S.K. (-)-Epigallocatechin-3-gallate reactivates silenced tumor suppressor genes, Cip1/p21 and p16INK4a, by reducing DNA methylation and increasing histones acetylation in human skin cancer cells. Carcinogenesis 2011 32 4 537 544 10.1093/carcin/bgq285 21209038
    [Google Scholar]
  176. Arola-Arnal A. Bladé C. Proanthocyanidins modulate microRNA expression in human HepG2 cells. PLoS One 2011 6 10 25982 10.1371/journal.pone.0025982 21998738
    [Google Scholar]
  177. Neckers L. Trepel J. Lee S. Chung E.J. Lee M.J. Jung Y-J. Marcu M. Curcumin is an inhibitor of p300 histone acetylatransferase. Med. Chem. 2006 2 2 169 174 10.2174/157340606776056133 16787365
    [Google Scholar]
  178. Tseng; Chen, Y.R.; Tseng, T.H. Quercetin induces FasL-related apoptosis, in part, through promotion of histone H3 acetylation in human leukemia HL-60 cells. Oncol. Rep. 2011 25 2 583 591 10.3892/or.2010.1097 21165570
    [Google Scholar]
  179. Diaz-Marugan L. Kantsjö J.B. Rutsch A. Ronchi F. Microbiota, diet, and the gut–brain axis in multiple sclerosis and stroke. Eur. J. Immunol. 2023 53 11 2250229 10.1002/eji.202250229 37470461
    [Google Scholar]
  180. Suriano F. Nyström E.E.L. Sergi D. Gustafsson J.K. Diet, microbiota, and the mucus layer: The guardians of our health. Front. Immunol. 2022 13 953196 10.3389/fimmu.2022.953196 36177011
    [Google Scholar]
  181. Mascanfroni I.D. Takenaka M.C. Yeste A. Patel B. Wu Y. Kenison J.E. Siddiqui S. Basso A.S. Otterbein L.E. Pardoll D.M. Pan F. Priel A. Clish C.B. Robson S.C. Quintana F.J. Metabolic control of type 1 regulatory T cell differentiation by AHR and HIF1-α. Nat. Med. 2015 21 6 638 646 10.1038/nm.3868 26005855
    [Google Scholar]
  182. Zou T. Yang Y. Xia F. Huang A. Gao X. Fang D. Xiong S. Zhang J. Resveratrol inhibits CD4+ T cell activation by enhancing the expression and activity of Sirt1. PLoS One 2013 8 9 75139 10.1371/journal.pone.0075139 24073240
    [Google Scholar]
  183. Jiang T.T. Ji C.L. Yu L.J. Song M.K. Li Y. Liao Q. Wei T. Olatunji O.J. Zuo J. Han J. Resveratrol-induced SIRT1 activation inhibits glycolysis-fueled angiogenesis under rheumatoid arthritis conditions independent of HIF-1α. Inflamm. Res. 2023 72 5 1021 1035 10.1007/s00011‑023‑01728‑w 37016140
    [Google Scholar]
  184. Craveiro M. Cretenet G. Mongellaz C. Matias M.I. Caron O. de Lima M.C.P. Zimmermann V.S. Solary E. Dardalhon V. Dulić V. Taylor N. Resveratrol stimulates the metabolic reprogramming of human CD4 + T cells to enhance effector function. Sci. Signal. 2017 10 501 eaal3024 10.1126/scisignal.aal3024 29042482
    [Google Scholar]
  185. Rosa P.M. Martins L.A.M. Souza D.O. Quincozes-Santos A. Glioprotective effect of resveratrol: An emerging therapeutic role for oligodendroglial cells. Mol. Neurobiol. 2018 55 4 2967 2978 10.1007/s12035‑017‑0510‑x 28456938
    [Google Scholar]
  186. Russo M. Sansone L. Polletta L. Runci A. Rashid M. Santis E. Vernucci E. Carnevale I. Tafani M. Sirtuins and resveratrol-derived compounds: A model for understanding the beneficial effects of the Mediterranean diet. Endocr. Metab. Immune Disord. Drug Targets 2014 14 4 300 308 10.2174/1871530314666140709093305 25008762
    [Google Scholar]
  187. Lan F. Weikel K. Cacicedo J. Ido Y. Resveratrol-induced AMP-activated protein kinase activation is cell-type dependent: Lessons from basic research for clinical application. Nutrients 2017 9 7 751 10.3390/nu9070751 28708087
    [Google Scholar]
  188. Ghosh H.S. McBurney M. Robbins P.D. SIRT1 negatively regulates the mammalian target of rapamycin. PLoS One 2010 5 2 9199 10.1371/journal.pone.0009199 20169165
    [Google Scholar]
  189. De Stefano D. Maiuri M.C. Simeon V. Grassia G. Soscia A. Cinelli M.P. Carnuccio R. Lycopene, quercetin and tyrosol prevent macrophage activation induced by gliadin and IFN-γ. Eur. J. Pharmacol. 2007 566 1-3 192 199 10.1016/j.ejphar.2007.03.051 17477920
    [Google Scholar]
  190. Maiuri M.C. De Stefano D. Di Meglio P. Irace C. Savarese M. Sacchi R. Cinelli M.P. Carnuccio R. Hydroxytyrosol, a phenolic compound from virgin olive oil, prevents macrophage activation. Naunyn Schmiedebergs Arch. Pharmacol. 2005 371 6 457 465 10.1007/s00210‑005‑1078‑y 16025269
    [Google Scholar]
  191. Patwardhan R.S. Gohil D. Singh B. Kumar B.K. Purohit V. Thoh M. Checker R. Gardi N. Gota V. Kutala V.K. Patwardhan S. Sharma D. Sandur S.K. Mitochondrial‐targeted curcumin inhibits T‐cell activation via Nrf2 and inhibits graft‐versus‐host‐disease in a mouse model. Phytother. Res. 2024 38 3 1555 1573 10.1002/ptr.8126 38281735
    [Google Scholar]
  192. de Pablos R.M. Espinosa-Oliva A.M. Hornedo-Ortega R. Cano M. Arguelles S. Hydroxytyrosol protects from aging process via AMPK and autophagy; a review of its effects on cancer, metabolic syndrome, osteoporosis, immune-mediated and neurodegenerative diseases. Pharmacol. Res. 2019 143 58 72 10.1016/j.phrs.2019.03.005 30853597
    [Google Scholar]
  193. Giacometti J. Grubić-Kezele T. Olive leaf polyphenols attenuate the clinical course of experimental autoimmune encephalomyelitis and provide neuroprotection by reducing oxidative stress, regulating microglia and sirt1, and preserving myelin integrity. Oxid. Med. Cell. Longev. 2020 2020 1 20 10.1155/2020/6125638 32802267
    [Google Scholar]
  194. Wang D. Li S.P. Fu J.S. Zhang S. Bai L. Guo L. Resveratrol defends blood-brain barrier integrity in experimental autoimmune encephalomyelitis mice. J. Neurophysiol. 2016 116 5 2173 2179 10.1152/jn.00510.2016 27535376
    [Google Scholar]
  195. Fonseca-Kelly Z. Nassrallah M. Uribe J. Khan R.S. Dine K. Dutt M. Shindler K.S. Resveratrol neuroprotection in a chronic mouse model of multiple sclerosis. Front. Neurol. 2012 3 84 10.3389/fneur.2012.00084 22654783
    [Google Scholar]
  196. Ghaiad H.R. Nooh M.M. El-Sawalhi M.M. Shaheen A.A. Resveratrol promotes remyelination in cuprizone model of multiple sclerosis: Biochemical and histological study. Mol. Neurobiol. 2017 54 5 3219 3229 10.1007/s12035‑016‑9891‑5 27067589
    [Google Scholar]
  197. Niu X. Sang H. Wang J. Naringenin attenuates experimental autoimmune encephalomyelitis by protecting the intact of blood-brain barrier and controlling inflammatory cell migration. J. Nutr. Biochem. 2021 89 108560 10.1016/j.jnutbio.2020.108560 33249188
    [Google Scholar]
  198. Ginwala R. McTish E. Raman C. Singh N. Nagarkatti M. Nagarkatti P. Sagar D. Jain P. Khan Z.K. Apigenin, a natural flavonoid, attenuates eae severity through the modulation of dendritic cell and other immune cell functions. J. Neuroimmune Pharmacol. 2016 11 1 36 47 10.1007/s11481‑015‑9617‑x 26040501
    [Google Scholar]
  199. Singh A. Upadhayay S. Mehan S. Inhibition of c-JNK/p38MAPK signaling pathway by Apigenin prevents neurobehavioral and neurochemical defects in ethidium bromide-induced experimental model of multiple sclerosis in rats: Evidence from CSF, blood plasma and brain samples. Phytomedicine Plus 2021 1 4 100139 10.1016/j.phyplu.2021.100139
    [Google Scholar]
  200. Busto R. Serna J. Perianes-Cachero A. Quintana-Portillo R. García-Seisdedos D. Canfrán-Duque A. Paino C.L. Lerma M. Casado M.E. Martín-Hidalgo A. Arilla-Ferreiro E. Lasunción M.A. Pastor Ó. Ellagic acid protects from myelin-associated sphingolipid loss in experimental autoimmune encephalomyelitis. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2018 1863 9 958 967 10.1016/j.bbalip.2018.05.009 29793057
    [Google Scholar]
  201. Kiasalari Z. Afshin-Majd S. Baluchnejadmojarad T. Azadi-Ahmadabadi E. Esmaeil-Jamaat E. Fahanik-Babaei J. Fakour M. Fereidouni F. Ghasemi-Tarie R. Jalalzade-Ogvar S. Khodashenas V. Sanaierad A. Zahedi E. Roghani M. Ellagic acid ameliorates neuroinflammation and demyelination in experimental autoimmune encephalomyelitis: Involvement of NLRP3 and pyroptosis. J. Chem. Neuroanat. 2021 111 101891 10.1016/j.jchemneu.2020.101891 33217488
    [Google Scholar]
  202. Ciftci O. Ozcan C. Kamisli O. Cetin A. Basak N. Aytac B. Hesperidin, a citrus flavonoid, has the ameliorative effects against experimental autoimmune encephalomyelitis (EAE) in a C57BL/J6 mouse model. Neurochem. Res. 2015 40 6 1111 1120 10.1007/s11064‑015‑1571‑8 25859982
    [Google Scholar]
  203. Liu L. Zhao Y. Bu J. Peng S. Li Y. Su P. Li Y. Baicalin and kaempferol alleviates cuprizone-induced demyelination and microglial activation by inhibiting the STAT3 and NF-κB signaling pathways. Int. Immunopharmacol. 2025 154 114592 10.1016/j.intimp.2025.114592 40174341
    [Google Scholar]
  204. Sadek M.A. Rabie M.A. El Sayed N.S. Sayed H.M. Kandil E.A. Neuroprotective effect of curcumin against experimental autoimmune encephalomyelitis-induced cognitive and physical impairments in mice: An insight into the role of the AMPK/SIRT1 pathway. Inflammopharmacology 2024 32 2 1499 1518 10.1007/s10787‑023‑01399‑3 38112964
    [Google Scholar]
  205. Schaffer S. Halliwell B. Do polyphenols enter the brain and does it matter? Some theoretical and practical considerations. Genes Nutr. 2012 7 2 99 109 10.1007/s12263‑011‑0255‑5 22012276
    [Google Scholar]
  206. Zini A. Rio D.D. Stewart A.J. Mandrioli J. Merelli E. Sola P. Nichelli P. Serafini M. Brighenti F. Edwards C.A. Crozier A. Do flavan-3-ols from green tea reach the human brain? Nutr. Neurosci. 2006 9 1-2 57 61 10.1080/10284150600637739 16910171
    [Google Scholar]
  207. Grabska-Kobylecka I. Kaczmarek-Bak J. Figlus M. Prymont-Przyminska A. Zwolinska A. Sarniak A. Wlodarczyk A. Glabinski A. Nowak D. The presence of caffeic acid in cerebrospinal fluid: Evidence that dietary polyphenols can cross the blood-brain barrier in humans. Nutrients 2020 12 5 1531 10.3390/nu12051531 32466115
    [Google Scholar]
  208. Mähler A. Steiniger J. Bock M. Klug L. Parreidt N. Lorenz M. Zimmermann B.F. Krannich A. Paul F. Boschmann M. Metabolic response to epigallocatechin-3-gallate in relapsing-remitting multiple sclerosis: A randomized clinical trial. Am. J. Clin. Nutr. 2015 101 3 487 495 10.3945/ajcn.113.075309 25733633
    [Google Scholar]
  209. Dolati S. Ahmadi M. Rikhtegar R. Babaloo Z. Ayromlou H. Aghebati-Maleki L. Nouri M. Yousefi M. Changes in Th17 cells function after nanocurcumin use to treat multiple sclerosis. Int. Immunopharmacol. 2018 61 74 81 10.1016/j.intimp.2018.05.018 29852475
    [Google Scholar]
  210. Petracca M. Quarantelli M. Moccia M. Vacca G. Satelliti B. D’Ambrosio G. Carotenuto A. Ragucci M. Assogna F. Capacchione A. Lanzillo R. Morra V.B. ProspeCtive study to evaluate efficacy, safety and tOlerability of dietary supplemeNT of Curcumin (BCM95) in subjects with Active relapsing MultIple Sclerosis treated with subcutaNeous Interferon beta 1a 44 mcg TIW (CONTAIN): A randomized, controlled trial. Mult. Scler. Relat. Disord. 2021 56 103274 10.1016/j.msard.2021.103274 34583214
    [Google Scholar]
  211. Hajiluian G. Karegar S.J. Shidfar F. Aryaeian N. Salehi M. Lotfi T. Farhangnia P. Heshmati J. Delbandi A.A. The effects of Ellagic acid supplementation on neurotrophic, inflammation, and oxidative stress factors, and indoleamine 2, 3-dioxygenase gene expression in multiple sclerosis patients with mild to moderate depressive symptoms: A randomized, triple-blind, placebo-controlled trial. Phytomedicine 2023 121 155094 10.1016/j.phymed.2023.155094 37806153
    [Google Scholar]
  212. Fan J. Teng X. Liu L. Mattaini K.R. Looper R.E. Vander Heiden M.G. Rabinowitz J.D. Human phosphoglycerate dehydrogenase produces the oncometabolite D-2-hydroxyglutarate. ACS Chem. Biol. 2015 10 2 510 516 10.1021/cb500683c 25406093
    [Google Scholar]
  213. Ježek P. 2-Hydroxyglutarate in cancer cells. Antioxid. Redox Signal. 2020 33 13 903 926 10.1089/ars.2019.7902 31847543
    [Google Scholar]
  214. Zhao S. Lin Y. Xu W. Jiang W. Zha Z. Wang P. Yu W. Li Z. Gong L. Peng Y. Ding J. Lei Q. Guan K.L. Xiong Y. Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha. Science 2009 324 5924 261 265 10.1126/science.1170944 19359588
    [Google Scholar]
  215. Bunse L. Pusch S. Bunse T. Sahm F. Sanghvi K. Friedrich M. Alansary D. Sonner J.K. Green E. Deumelandt K. Kilian M. Neftel C. Uhlig S. Kessler T. von Landenberg A. Berghoff A.S. Marsh K. Steadman M. Zhu D. Nicolay B. Wiestler B. Breckwoldt M.O. Al-Ali R. Karcher-Bausch S. Bozza M. Oezen I. Kramer M. Meyer J. Habel A. Eisel J. Poschet G. Weller M. Preusser M. Nadji-Ohl M. Thon N. Burger M.C. Harter P.N. Ratliff M. Harbottle R. Benner A. Schrimpf D. Okun J. Herold-Mende C. Turcan S. Kaulfuss S. Hess-Stumpp H. Bieback K. Cahill D.P. Plate K.H. Hänggi D. Dorsch M. Suvà M.L. Niemeyer B.A. von Deimling A. Wick W. Platten M. Suppression of antitumor T cell immunity by the oncometabolite (R)-2-hydroxyglutarate. Nat. Med. 2018 24 8 1192 1203 10.1038/s41591‑018‑0095‑6 29988124
    [Google Scholar]
  216. Du X. Hu H. The roles of 2-hydroxyglutarate. Front. Cell Dev. Biol. 2021 9 651317 10.3389/fcell.2021.651317 33842477
    [Google Scholar]
  217. Tyrakis P.A. Palazon A. Macias D. Lee K.L. Phan A.T. Veliça P. You J. Chia G.S. Sim J. Doedens A. Abelanet A. Evans C.E. Griffiths J.R. Poellinger L. Goldrath A.W. Johnson R.S. S-2-hydroxyglutarate regulates CD8+ T-lymphocyte fate. Nature 2016 540 7632 236 241 10.1038/nature20165 27798602
    [Google Scholar]
  218. Williams N.C. Ryan D.G. Costa A.S.H. Mills E.L. Jedrychowski M.P. Cloonan S.M. Frezza C. O’Neill L.A. Signaling metabolite L-2-hydroxyglutarate activates the transcription factor HIF-1α in lipopolysaccharide-activated macrophages. J. Biol. Chem. 2022 298 2 101501 10.1016/j.jbc.2021.101501 34929172
    [Google Scholar]
  219. Han C. Zheng J. Sun L. Yang H. Cao Z. Zhang X. Zheng L. Zhen X. The oncometabolite 2-hydroxyglutarate inhibits microglial activation via the AMPK/mTOR/NF-κB pathway. Acta Pharmacol. Sin. 2019 40 10 1292 1302 10.1038/s41401‑019‑0225‑9 31015738
    [Google Scholar]
  220. Kranendijk M. Struys E.A. Salomons G.S. Van der Knaap M.S. Jakobs C. Progress in understanding 2‐hydroxyglutaric acidurias. J. Inherit. Metab. Dis. 2012 35 4 571 587 10.1007/s10545‑012‑9462‑5 22391998
    [Google Scholar]
  221. Lai R.K. Goldman P. Urinary organic acid profiles in obese (ob/ob) mice: Indications for the impaired ω-oxidation of fatty acids. Metabolism 1992 41 1 97 105 10.1016/0026‑0495(92)90197‑I 1538648
    [Google Scholar]
  222. Thomas D. Wu M. Nakauchi Y. Zheng M. Thompson-Peach C.A.L. Lim K. Landberg N. Köhnke T. Robinson N. Kaur S. Kutyna M. Stafford M. Hiwase D. Reinisch A. Peltz G. Majeti R. Dysregulated lipid synthesis by oncogenic idh1 mutation is a targetable synthetic lethal vulnerability. Cancer Discov. 2023 13 2 496 515 10.1158/2159‑8290.CD‑21‑0218 36355448
    [Google Scholar]
  223. Santos J.L. Ruiz-Canela M. Razquin C. Clish C.B. Guasch-Ferré M. Babio N. Corella D. Gómez-Gracia E. Fiol M. Estruch R. Lapetra J. Fitó M. Aros F. Serra-Majem L. Liang L. Martínez M.Á. Toledo E. Salas-Salvadó J. Hu F.B. Martínez-González M.A. Circulating citric acid cycle metabolites and risk of cardiovascular disease in the PREDIMED study. Nutr. Metab. Cardiovasc. Dis. 2023 33 4 835 843 10.1016/j.numecd.2023.01.002 36739229
    [Google Scholar]
  224. Mathur D. López-Rodas G. Casanova B. Marti M.B. Perturbed glucose metabolism: Insights into multiple sclerosis pathogenesis. Front. Neurol. 2014 5 250 10.3389/fneur.2014.00250 25520698
    [Google Scholar]
  225. Akram M. Citric acid cycle and role of its intermediates in metabolism. Cell Biochem. Biophys. 2014 68 3 475 478 10.1007/s12013‑013‑9750‑1 24068518
    [Google Scholar]
  226. Batchuluun B. Pinkosky S.L. Steinberg G.R. Lipogenesis inhibitors: Therapeutic opportunities and challenges. Nat. Rev. Drug Discov. 2022 21 4 283 305 10.1038/s41573‑021‑00367‑2 35031766
    [Google Scholar]
  227. Everts B. Amiel E. Huang S.C.C. Smith A.M. Chang C.H. Lam W.Y. Redmann V. Freitas T.C. Blagih J. van der Windt G.J.W. Artyomov M.N. Jones R.G. Pearce E.L. Pearce E.J. TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKɛ supports the anabolic demands of dendritic cell activation. Nat. Immunol. 2014 15 4 323 332 10.1038/ni.2833 24562310
    [Google Scholar]
  228. Lampropoulou V. Sergushichev A. Bambouskova M. Nair S. Vincent E.E. Loginicheva E. Cervantes-Barragan L. Ma X. Huang S.C.C. Griss T. Weinheimer C.J. Khader S. Randolph G.J. Pearce E.J. Jones R.G. Diwan A. Diamond M.S. Artyomov M.N. Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation. Cell Metab. 2016 24 1 158 166 10.1016/j.cmet.2016.06.004 27374498
    [Google Scholar]
  229. Patil N.K. Bohannon J.K. Hernandez A. Patil T.K. Sherwood E.R. Regulation of leukocyte function by citric acid cycle intermediates. J. Leukoc. Biol. 2019 106 1 105 117 10.1002/JLB.3MIR1118‑415R 30791134
    [Google Scholar]
  230. Kaushik D.K. Yong V.W. Metabolic needs of brain‐infiltrating leukocytes and microglia in multiple sclerosis. J. Neurochem. 2021 158 1 14 24 10.1111/jnc.15206 33025576
    [Google Scholar]
  231. Infantino V. Convertini P. Cucci L. Panaro M.A. Di Noia M.A. Calvello R. Palmieri F. Iacobazzi V. The mitochondrial citrate carrier: A new player in inflammation. Biochem. J. 2011 438 3 433 436 10.1042/BJ20111275 21787310
    [Google Scholar]
  232. Weger B.D. Weger M. Görling B. Schink A. Gobet C. Keime C. Poschet G. Jost B. Krone N. Hell R. Gachon F. Luy B. Dickmeis T. Extensive regulation of diurnal transcription and metabolism by glucocorticoids. PLoS Genet. 2016 12 12 1006512 10.1371/journal.pgen.1006512 27941970
    [Google Scholar]
  233. Zahoor I. Suhail H. Datta I. Ahmed M.E. Poisson L.M. Waters J. Rashid F. Bin R. Singh J. Cerghet M. Kumar A. Hoda M.N. Rattan R. Mangalam A.K. Giri S. Blood-based untargeted metabolomics in relapsing-remitting multiple sclerosis revealed the testable therapeutic target. Proc. Natl. Acad. Sci. USA 2022 119 25 2123265119 10.1073/pnas.2123265119 35700359
    [Google Scholar]
  234. Sylvestre D.A. Slupsky C.M. Aviv R.I. Swardfager W. Taha A.Y. Untargeted metabolomic analysis of plasma from relapsing-remitting multiple sclerosis patients reveals changes in metabolites associated with structural changes in brain. Brain Res. 2020 1732 146589 10.1016/j.brainres.2019.146589 31816317
    [Google Scholar]
  235. Costello L.C. Franklin R.B. Plasma citrate homeostasis: How it is regulated; and its physiological and clinical implications. An important, but neglected, relationship in medicine. J. Hum. Endocrinol. 2016 1 1 1 5
    [Google Scholar]
  236. Macias S. Kirma J. Yilmaz A. Moore S.E. McKinley M.C. McKeown P.P. Woodside J.V. Graham S.F. Green B.D. Application of 1H-NMR metabolomics for the discovery of blood plasma biomarkers of a mediterranean diet. Metabolites 2019 9 10 201 10.3390/metabo9100201 31569638
    [Google Scholar]
  237. Taguchi H. Ohta T. D-lactate dehydrogenase is a member of the D-isomer-specific 2-hydroxyacid dehydrogenase family. Cloning, sequencing, and expression in Escherichia coli of the D-lactate dehydrogenase gene of Lactobacillus plantarum. J. Biol. Chem. 1991 266 19 12588 12594 10.1016/S0021‑9258(18)98939‑8 1840590
    [Google Scholar]
  238. Kochhar S. Hunziker P.E. Leong-Morgenthaler P. Hottinger H. Evolutionary relationship of NAD+-dependent D-lactate dehydrogenase: Comparison of primary structure of 2-hydroxy acid dehydrogenases. Biochem. Biophys. Res. Commun. 1992 184 1 60 66 10.1016/0006‑291X(92)91157‑L 1567457
    [Google Scholar]
  239. de Bari L. Atlante A. Armeni T. Kalapos M.P. Synthesis and metabolism of methylglyoxal, S-D-lactoylglutathione and D-lactate in cancer and Alzheimer’s disease. Exploring the crossroad of eternal youth and premature aging. Ageing Res. Rev. 2019 53 100915 10.1016/j.arr.2019.100915 31173890
    [Google Scholar]
  240. Manosalva C. Quiroga J. Hidalgo A.I. Alarcón P. Ansoleaga N. Hidalgo M.A. Burgos R.A. Role of lactate in inflammatory processes: Friend or foe. Front. Immunol. 2022 12 808799 10.3389/fimmu.2021.808799 35095895
    [Google Scholar]
  241. Colegio O.R. Chu N.Q. Szabo A.L. Chu T. Rhebergen A.M. Jairam V. Cyrus N. Brokowski C.E. Eisenbarth S.C. Phillips G.M. Cline G.W. Phillips A.J. Medzhitov R. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 2014 513 7519 559 563 10.1038/nature13490 25043024
    [Google Scholar]
  242. de Melo Pereira G.V. de Oliveira Coelho B. Magalhães, Júnior A.I. Thomaz-Soccol V. Soccol C.R. How to select a probiotic? A review and update of methods and criteria. Biotechnol. Adv. 2018 36 8 2060 2076 10.1016/j.biotechadv.2018.09.003 30266342
    [Google Scholar]
  243. Llibre A. Kucuk S. Gope A. Certo M. Mauro C. Lactate: A key regulator of the immune response. Immunity 2025 58 3 535 554 10.1016/j.immuni.2025.02.008 40073846
    [Google Scholar]
  244. Rubio-Araiz A. Finucane O.M. Keogh S. Lynch M.A. Anti-TLR2 antibody triggers oxidative phosphorylation in microglia and increases phagocytosis of β-amyloid. J. Neuroinflammation 2018 15 1 247 10.1186/s12974‑018‑1281‑7 30170611
    [Google Scholar]
  245. Voloboueva L.A. Emery J.F. Sun X. Giffard R.G. Inflammatory response of microglial BV‐2 cells includes a glycolytic shift and is modulated by mitochondrial glucose‐regulated protein 75/mortalin. FEBS Lett. 2013 587 6 756 762 10.1016/j.febslet.2013.01.067 23395614
    [Google Scholar]
  246. Pucino V. Certo M. Bulusu V. Cucchi D. Goldmann K. Pontarini E. Haas R. Smith J. Headland S.E. Blighe K. Ruscica M. Humby F. Lewis M.J. Kamphorst J.J. Bombardieri M. Pitzalis C. Mauro C. Lactate buildup at the site of chronic inflammation promotes disease by inducing CD4+ T cell metabolic rewiring. Cell Metab. 2019 30 6 1055 1074.e8 10.1016/j.cmet.2019.10.004 31708446
    [Google Scholar]
  247. Haas R. Smith J. Rocher-Ros V. Nadkarni S. Montero-Melendez T. D’Acquisto F. Bland E.J. Bombardieri M. Pitzalis C. Perretti M. Marelli-Berg F.M. Mauro C. Lactate regulates metabolic and pro-inflammatory circuits in control of t cell migration and effector functions. PLoS Biol. 2015 13 7 1002202 10.1371/journal.pbio.1002202 26181372
    [Google Scholar]
  248. Angelin A. Gil-de-Gómez L. Dahiya S. Jiao J. Guo L. Levine M.H. Wang Z. Quinn W.J. Kopinski P.K. Wang L. Akimova T. Liu Y. Bhatti T.R. Han R. Laskin B.L. Baur J.A. Blair I.A. Wallace D.C. Hancock W.W. Beier U.H. Foxp3 reprograms T cell metabolism to function in low-glucose, high-lactate environments. Cell Metab. 2017 25 6 1282 1293.e7 10.1016/j.cmet.2016.12.018 28416194
    [Google Scholar]
  249. Romero M. Miller K. Gelsomini A. Garcia D. Li K. Suresh D. Frasca D. Immunometabolic effects of lactate on humoral immunity in healthy individuals of different ages. Nat. Commun. 2024 15 1 7515 10.1038/s41467‑024‑51207‑x 39209820
    [Google Scholar]
  250. Sanmarco L.M. Rone J.M. Polonio C.M. Fernandez Lahore G. Giovannoni F. Ferrara K. Gutierrez-Vazquez C. Li N. Sokolovska A. Plasencia A. Faust Akl C. Nanda P. Heck E.S. Li Z. Lee H.G. Chao C.C. Rejano-Gordillo C.M. Fonseca-Castro P.H. Illouz T. Linnerbauer M. Kenison J.E. Barilla R.M. Farrenkopf D. Stevens N.A. Piester G. Chung E.N. Dailey L. Kuchroo V.K. Hava D. Wheeler M.A. Clish C. Nowarski R. Balsa E. Lora J.M. Quintana F.J. Lactate limits CNS autoimmunity by stabilizing HIF-1α in dendritic cells. Nature 2023 620 7975 881 889 10.1038/s41586‑023‑06409‑6 37558878
    [Google Scholar]
  251. Kaushik D.K. Bhattacharya A. Mirzaei R. Rawji K.S. Ahn Y. Rho J.M. Yong V.W. Enhanced glycolytic metabolism supports transmigration of brain-infiltrating macrophages in multiple sclerosis. J. Clin. Invest. 2019 129 8 3277 3292 10.1172/JCI124012 31112527
    [Google Scholar]
  252. Lutz N.W. Viola A. Malikova I. Confort-Gouny S. Audoin B. Ranjeva J.P. Pelletier J. Cozzone P.J. Inflammatory multiple-sclerosis plaques generate characteristic metabolic profiles in cerebrospinal fluid. PLoS One 2007 2 7 595 10.1371/journal.pone.0000595 17611627
    [Google Scholar]
  253. Esmael A. Talaat M. Egila H. Eltoukhy K. Mitochondrial dysfunction and serum lactate as a biomarker for the progression and disability in MS and its correlation with the radiological findings. Neurol. Res. 2021 43 7 582 590 10.1080/01616412.2021.1893567 33657991
    [Google Scholar]
  254. Chen X. Zhang Y. Wang H. Liu L. Li W. Xie P. The regulatory effects of lactic acid on neuropsychiatric disorders. Discov Ment. Health. 2022 2 1 8 10.1007/s44192‑022‑00011‑4 37861858
    [Google Scholar]
  255. Amato A. Ragonese P. Ingoglia S. Schiera G. Schirò G. Di Liegro C.M. Salemi G. Di Liegro I. Proia P. Lactate threshold training program on patients with multiple sclerosis: A multidisciplinary approach. Nutrients 2021 13 12 4284 10.3390/nu13124284 34959834
    [Google Scholar]
  256. Cerexhe L. Easton C. Macdonald E. Renfrew L. Sculthorpe N. Blood lactate concentrations during rest and exercise in people with multiple sclerosis: A systematic review and meta-analysis. Mult. Scler. Relat. Disord. 2022 57 103454 10.1016/j.msard.2021.103454 34915317
    [Google Scholar]
  257. Zaenker P. Favret F. Lonsdorfer E. Muff G. de Seze J. Isner-Horobeti M.E. High-intensity interval training combined with resistance training improves physiological capacities, strength and quality of life in multiple sclerosis patients: A pilot study. Eur. J. Phys. Rehabil. Med. 2018 54 1 58 67 10.23736/S1973‑9087.17.04637‑8 28681596
    [Google Scholar]
  258. Zeng Y.R. Song J.B. Wang D. Huang Z.X. Zhang C. Sun Y.P. Shu G. Xiong Y. Guan K.L. Ye D. Wang P. The immunometabolite itaconate stimulates OXGR1 to promote mucociliary clearance during the pulmonary innate immune response. J. Clin. Invest. 2023 133 6 160463 10.1172/JCI160463 36919698
    [Google Scholar]
  259. Runtsch M.C. Angiari S. Hooftman A. Wadhwa R. Zhang Y. Zheng Y. Spina J.S. Ruzek M.C. Argiriadi M.A. McGettrick A.F. Mendez R.S. Zotta A. Peace C.G. Walsh A. Chirillo R. Hams E. Fallon P.G. Jayaraman R. Dua K. Brown A.C. Kim R.Y. Horvat J.C. Hansbro P.M. Wang C. O’Neill L.A.J. Itaconate and itaconate derivatives target JAK1 to suppress alternative activation of macrophages. Cell Metab. 2022 34 3 487 501.e8 10.1016/j.cmet.2022.02.002 35235776
    [Google Scholar]
  260. Peace C.G. O’Neill L.A.J. The role of itaconate in host defense and inflammation. J. Clin. Invest. 2022 132 2 148548 10.1172/JCI148548 35040439
    [Google Scholar]
  261. O’Neill L.A.J. Artyomov M.N. Itaconate: The poster child of metabolic reprogramming in macrophage function. Nat. Rev. Immunol. 2019 19 5 273 281 10.1038/s41577‑019‑0128‑5 30705422
    [Google Scholar]
  262. Mills E.L. Ryan D.G. Prag H.A. Dikovskaya D. Menon D. Zaslona Z. Jedrychowski M.P. Costa A.S.H. Higgins M. Hams E. Szpyt J. Runtsch M.C. King M.S. McGouran J.F. Fischer R. Kessler B.M. McGettrick A.F. Hughes M.M. Carroll R.G. Booty L.M. Knatko E.V. Meakin P.J. Ashford M.L.J. Modis L.K. Brunori G. Sévin D.C. Fallon P.G. Caldwell S.T. Kunji E.R.S. Chouchani E.T. Frezza C. Dinkova-Kostova A.T. Hartley R.C. Murphy M.P. O’Neill L.A. Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature 2018 556 7699 113 117 10.1038/nature25986 29590092
    [Google Scholar]
  263. Auger J.P. Zimmermann M. Faas M. Stifel U. Chambers D. Krishnacoumar B. Taudte R.V. Grund C. Erdmann G. Scholtysek C. Uderhardt S. Ben Brahim O. Pascual Maté M. Stoll C. Böttcher M. Palumbo-Zerr K. Mangan M.S.J. Dzamukova M. Kieler M. Hofmann M. Blüml S. Schabbauer G. Mougiakakos D. Sonnewald U. Hartmann F. Simon D. Kleyer A. Grüneboom A. Finotto S. Latz E. Hofmann J. Schett G. Tuckermann J. Krönke G. Metabolic rewiring promotes anti-inflammatory effects of glucocorticoids. Nature 2024 629 8010 184 192 10.1038/s41586‑024‑07282‑7 38600378
    [Google Scholar]
  264. Coelho C. Itaconate or how I learned to stop avoiding the study of immunometabolism. PLoS Pathog. 2022 18 3 1010361 10.1371/journal.ppat.1010361 35325008
    [Google Scholar]
  265. Cordes T. Lucas A. Divakaruni A.S. Murphy A.N. Cabrales P. Metallo C.M. Itaconate modulates tricarboxylic acid and redox metabolism to mitigate reperfusion injury. Mol. Metab. 2020 32 122 135 10.1016/j.molmet.2019.11.019 32029222
    [Google Scholar]
  266. Kuo P.C. Weng W.T. Scofield B.A. Paraiso H.C. Brown D.A. Wang P.Y. Yu I.C. Yen J.H. Dimethyl itaconate, an itaconate derivative, exhibits immunomodulatory effects on neuroinflammation in experimental autoimmune encephalomyelitis. J. Neuroinflammation 2020 17 1 138 10.1186/s12974‑020‑01768‑7 32349768
    [Google Scholar]
  267. Zhao N. Yi M. Zhang L.J. Zhang Q.X. Yang L. 4-octyl itaconate attenuates neuroinflammation in experimental autoimmune encephalomyelitis via regulating microglia. Inflammation 2024 48 1 151 164 10.1007/s10753‑024‑02050‑1 38761250
    [Google Scholar]
  268. Hoyle C. Green J.P. Allan S.M. Brough D. Lemarchand E. Itaconate and fumarate derivatives inhibit priming and activation of the canonical NLRP3 inflammasome in macrophages. Immunology 2022 165 4 460 480 10.1111/imm.13454 35137954
    [Google Scholar]
  269. Sangineto M. Ciarnelli M. Moola A. Naik Bukke V. Cassano T. Villani R. Romano A.D. Di Gioia G. Avolio C. Serviddio G. Krebs cycle derivatives, dimethyl fumarate and itaconate, control metabolic reprogramming in inflammatory human microglia cell line. Mitochondrion 2024 79 101966 10.1016/j.mito.2024.101966 39276907
    [Google Scholar]
  270. Yu Z. Li X. Quan Y. Chen J. Liu J. Zheng N. Liu S. Wang Y. Liu W. Qiu C. Wang Y. Zheng R. Qin J. Itaconate alleviates diet-induced obesity via activation of brown adipocyte thermogenesis. Cell Rep. 2024 43 5 114142 10.1016/j.celrep.2024.114142 38691458
    [Google Scholar]
  271. Pan W. Zhao J. Wu J. Xu D. Meng X. Jiang P. Shi H. Ge X. Yang X. Hu M. Zhang P. Tang R. Nagaratnam N. Zheng K. Huang X.F. Yu Y. Dimethyl itaconate ameliorates cognitive impairment induced by a high-fat diet via the gut-brain axis in mice. Microbiome 2023 11 1 30 10.1186/s40168‑023‑01471‑8 36810115
    [Google Scholar]
  272. Eberhart T. Stanley F.U. Ricci L. Chirico T. Ferrarese R. Sisti S. Scagliola A. Baj A. Badurek S. Sommer A. Culp-Hill R. Dzieciatkowska M. Shokry E. Sumpton D. D’Alessandro A. Clementi N. Mancini N. Cardaci S. ACOD1 deficiency offers protection in a mouse model of diet-induced obesity by maintaining a healthy gut microbiota. Cell Death Dis. 2024 15 2 105 10.1038/s41419‑024‑06483‑2 38302438
    [Google Scholar]
  273. Vázquez-Fresno R. Llorach R. Urpi-Sarda M. Lupianez-Barbero A. Estruch R. Corella D. Fitó M. Arós F. Ruiz-Canela M. Salas-Salvadó J. Andres-Lacueva C. Metabolomic pattern analysis after mediterranean diet intervention in a nondiabetic population: A 1- and 3-year follow-up in the PREDIMED study. J. Proteome Res. 2015 14 1 531 540 10.1021/pr5007894 25353684
    [Google Scholar]
  274. Schiweck C. Edwin Thanarajah S. Aichholzer M. Matura S. Reif A. Vrieze E. Weigert A. Visekruna A. Regulation of CD4+ and CD8+ T cell biology by short-chain fatty acids and its relevance for autoimmune pathology. Int. J. Mol. Sci. 2022 23 15 8272 10.3390/ijms23158272 35955407
    [Google Scholar]
  275. Luu M. Pautz S. Kohl V. Singh R. Romero R. Lucas S. Hofmann J. Raifer H. Vachharajani N. Carrascosa L.C. Lamp B. Nist A. Stiewe T. Shaul Y. Adhikary T. Zaiss M.M. Lauth M. Steinhoff U. Visekruna A. The short-chain fatty acid pentanoate suppresses autoimmunity by modulating the metabolic-epigenetic crosstalk in lymphocytes. Nat. Commun. 2019 10 1 760 10.1038/s41467‑019‑08711‑2 30770822
    [Google Scholar]
  276. Macfarlane S. Macfarlane G.T. Regulation of short-chain fatty acid production. Proc. Nutr. Soc. 2003 62 1 67 72 10.1079/PNS2002207 12740060
    [Google Scholar]
  277. Le Poul E. Loison C. Struyf S. Springael J.Y. Lannoy V. Decobecq M.E. Brezillon S. Dupriez V. Vassart G. Van Damme J. Parmentier M. Detheux M. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J. Biol. Chem. 2003 278 28 25481 25489 10.1074/jbc.M301403200 12711604
    [Google Scholar]
  278. Schlatterer K. Peschel A. Kretschmer D. Short-chain fatty acid and ffar2 activation – a new option for treating infections? Front. Cell. Infect. Microbiol. 2021 11 785833 10.3389/fcimb.2021.785833 34926327
    [Google Scholar]
  279. Moniri N.H. Free-fatty acid receptor-4 (GPR120): Cellular and molecular function and its role in metabolic disorders. Biochem. Pharmacol. 2016 110-111 1 15 10.1016/j.bcp.2016.01.021 26827942
    [Google Scholar]
  280. Thorburn A.N. Macia L. Mackay C.R. Diet, metabolites, and “western-lifestyle” inflammatory diseases. Immunity 2014 40 6 833 842 10.1016/j.immuni.2014.05.014 24950203
    [Google Scholar]
  281. He Y. Fu L. Li Y. Wang W. Gong M. Zhang J. Dong X. Huang J. Wang Q. Mackay C.R. Fu Y.X. Chen Y. Guo X. Gut microbial metabolites facilitate anticancer therapy efficacy by modulating cytotoxic CD8+ T cell immunity. Cell Metab. 2021 33 5 988 1000.e7 10.1016/j.cmet.2021.03.002 33761313
    [Google Scholar]
  282. Wang J. Yang Y. Shao F. Meng Y. Guo D. He J. Lu Z. Acetate reprogrammes tumour metabolism and promotes PD-L1 expression and immune evasion by upregulating c-Myc. Nat. Metab. 2024 6 5 914 932 10.1038/s42255‑024‑01037‑4 38702440
    [Google Scholar]
  283. Nakamura Y.K. Janowitz C. Metea C. Asquith M. Karstens L. Rosenbaum J.T. Lin P. Short chain fatty acids ameliorate immune-mediated uveitis partially by altering migration of lymphocytes from the intestine. Sci. Rep. 2017 7 1 11745 10.1038/s41598‑017‑12163‑3 28924192
    [Google Scholar]
  284. Nouri M. Bredberg A. Weström B. Lavasani S. Intestinal barrier dysfunction develops at the onset of experimental autoimmune encephalomyelitis, and can be induced by adoptive transfer of auto-reactive T cells. PLoS One 2014 9 9 106335 10.1371/journal.pone.0106335 25184418
    [Google Scholar]
  285. Haase S. Mäurer J. Duscha A. Lee D.H. Balogh A. Gold R. Müller D.N. Haghikia A. Linker R.A. Propionic acid rescues high-fat diet enhanced immunopathology in autoimmunity via effects on th17 responses. Front. Immunol. 2021 12 701626 10.3389/fimmu.2021.701626 34140958
    [Google Scholar]
  286. Caetano-Silva M.E. Rund L. Hutchinson N.T. Woods J.A. Steelman A.J. Johnson R.W. Inhibition of inflammatory microglia by dietary fiber and short-chain fatty acids. Sci. Rep. 2023 13 1 2819 10.1038/s41598‑022‑27086‑x 36797287
    [Google Scholar]
  287. Trend S. Leffler J. Jones A.P. Cha L. Gorman S. Brown D.A. Breit S.N. Kermode A.G. French M.A. Ward N.C. Hart P.H. Associations of serum short-chain fatty acids with circulating immune cells and serum biomarkers in patients with multiple sclerosis. Sci. Rep. 2021 11 1 5244 10.1038/s41598‑021‑84881‑8 33664396
    [Google Scholar]
  288. Park J. Wang Q. Wu Q. Mao-Draayer Y. Kim C.H. Bidirectional regulatory potentials of short-chain fatty acids and their G-protein-coupled receptors in autoimmune neuroinflammation. Sci. Rep. 2019 9 1 8837 10.1038/s41598‑019‑45311‑y 31222050
    [Google Scholar]
  289. Koda S. Hu J. Ju X. Sun G. Shao S. Tang R.X. Zheng K.Y. Yan J. The role of glutamate receptors in the regulation of the tumor microenvironment. Front. Immunol. 2023 14 1123841 10.3389/fimmu.2023.1123841 36817470
    [Google Scholar]
  290. Cassago A. Ferreira A.P.S. Ferreira I.M. Fornezari C. Gomes E.R.M. Greene K.S. Pereira H.M. Garratt R.C. Dias S.M.G. Ambrosio A.L.B. Mitochondrial localization and structure-based phosphate activation mechanism of Glutaminase C with implications for cancer metabolism. Proc. Natl. Acad. Sci. USA 2012 109 4 1092 1097 10.1073/pnas.1112495109 22228304
    [Google Scholar]
  291. Kono M. Yoshida N. Maeda K. Tsokos G.C. Transcriptional factor ICER promotes glutaminolysis and the generation of Th17 cells. Proc. Natl. Acad. Sci. USA 2018 115 10 2478 2483 10.1073/pnas.1714717115 29463741
    [Google Scholar]
  292. Wang R. Dillon C.P. Shi L.Z. Milasta S. Carter R. Finkelstein D. McCormick L.L. Fitzgerald P. Chi H. Munger J. Green D.R. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 2011 35 6 871 882 10.1016/j.immuni.2011.09.021 22195744
    [Google Scholar]
  293. Matias M.I. Yong C.S. Foroushani A. Goldsmith C. Mongellaz C. Sezgin E. Levental K.R. Talebi A. Perrault J. Rivière A. Dehairs J. Delos O. Bertand-Michel J. Portais J.C. Wong M. Marie J.C. Kelekar A. Kinet S. Zimmermann V.S. Levental I. Yvan-Charvet L. Swinnen J.V. Muljo S.A. Hernandez-Vargas H. Tardito S. Taylor N. Dardalhon V. Regulatory T cell differentiation is controlled by αKG-induced alterations in mitochondrial metabolism and lipid homeostasis. Cell Rep. 2021 37 5 109911 10.1016/j.celrep.2021.109911 34731632
    [Google Scholar]
  294. Liu S. He L. Yao K. The antioxidative function of alpha-ketoglutarate and its applications. BioMed Res. Int. 2018 2018 1 1 6 10.1155/2018/3408467 29750149
    [Google Scholar]
  295. He L. Zhou X. Huang N. Li H. Cui Z. Tian J. Jiang Q. Liu S. Wu J. Li T. Yao K. Yin Y. Administration of alpha-ketoglutarate improves epithelial restitution under stress injury in early-weaning piglets. Oncotarget 2017 8 54 91965 91978 10.18632/oncotarget.20555 29190890
    [Google Scholar]
  296. Chen S. Bin P. Ren W. Gao W. Liu G. Yin J. Duan J. Li Y. Yao K. Huang R. Tan B. Yin Y. Alpha-ketoglutarate (AKG) lowers body weight and affects intestinal innate immunity through influencing intestinal microbiota. Oncotarget 2017 8 24 38184 38192 10.18632/oncotarget.17132 28465471
    [Google Scholar]
  297. Gyanwali B. Lim Z.X. Soh J. Lim C. Guan S.P. Goh J. Maier A.B. Kennedy B.K. Alpha-Ketoglutarate dietary supplementation to improve health in humans. Trends Endocrinol. Metab. 2022 33 2 136 146 10.1016/j.tem.2021.11.003 34952764
    [Google Scholar]
  298. Magi S. Arcangeli S. Castaldo P. Nasti A.A. Berrino L. Piegari E. Bernardini R. Amoroso S. Lariccia V. Glutamate-induced ATP synthesis: Relationship between plasma membrane Na+/Ca2+ exchanger and excitatory amino acid transporters in brain and heart cell models. Mol. Pharmacol. 2013 84 4 603 614 10.1124/mol.113.087775 23913256
    [Google Scholar]
  299. Brand K. Fekl W. von Hintzenstern J. Langer K. Luppa P. Schoerner C. Metabolism of glutamine in lymphocytes. Metabolism 1989 38 8 29 33 10.1016/0026‑0495(89)90136‑4 2569663
    [Google Scholar]
  300. Sulkowski G. Dąbrowska-Bouta B. Salińska E. Strużyńska L. Modulation of glutamate transport and receptor binding by glutamate receptor antagonists in EAE rat brain. PLoS One 2014 9 11 113954 10.1371/journal.pone.0113954 25426719
    [Google Scholar]
  301. Ohgoh M. Hanada T. Smith T. Hashimoto T. Ueno M. Yamanishi Y. Watanabe M. Nishizawa Y. Altered expression of glutamate transporters in experimental autoimmune encephalomyelitis. J. Neuroimmunol. 2002 125 1-2 170 178 10.1016/S0165‑5728(02)00029‑2 11960654
    [Google Scholar]
  302. Malik A.R. Willnow T.E. Excitatory amino acid transporters in physiology and disorders of the central nervous system. Int. J. Mol. Sci. 2019 20 22 5671 10.3390/ijms20225671 31726793
    [Google Scholar]
  303. Sarchielli P. Di Filippo M. Candeliere A. Chiasserini D. Mattioni A. Tenaglia S. Bonucci M. Calabresi P. Expression of ionotropic glutamate receptor GLUR3 and effects of glutamate on MBP- and MOG-specific lymphocyte activation and chemotactic migration in multiple sclerosis patients. J. Neuroimmunol. 2007 188 1-2 146 158 10.1016/j.jneuroim.2007.05.021 17628700
    [Google Scholar]
  304. Fallarino F. Volpi C. Fazio F. Notartomaso S. Vacca C. Busceti C. Bicciato S. Battaglia G. Bruno V. Puccetti P. Fioretti M.C. Nicoletti F. Grohmann U. Di Marco R. Metabotropic glutamate receptor-4 modulates adaptive immunity and restrains neuroinflammation. Nat. Med. 2010 16 8 897 902 10.1038/nm.2183 20657581
    [Google Scholar]
  305. Palmieri E.M. Menga A. Lebrun A. Hooper D.C. Butterfield D.A. Mazzone M. Castegna A. Blockade of glutamine synthetase enhances inflammatory response in microglial cells. Antioxid. Redox Signal. 2017 26 8 351 363 10.1089/ars.2016.6715 27758118
    [Google Scholar]
  306. Hollinger K.R. Smith M.D. Kirby L.A. Prchalova E. Alt J. Rais R. Calabresi P.A. Slusher B.S. Glutamine antagonism attenuates physical and cognitive deficits in a model of MS. Neurol. Neuroimmunol. Neuroinflamm. 2019 6 6 609 10.1212/NXI.0000000000000609 31467038
    [Google Scholar]
  307. Kono M. Yoshida N. Maeda K. Suárez-Fueyo A. Kyttaris V.C. Tsokos G.C. Glutaminase 1 inhibition reduces glycolysis and ameliorates lupus‐like disease in MRL/lpr mice and experimental autoimmune encephalomyelitis. Arthritis Rheumatol. 2019 71 11 1869 1878 10.1002/art.41019 31233276
    [Google Scholar]
  308. Kumar A. Sharma M. Su Y. Singh S. Hsu F.C. Neth B.J. Register T.C. Blennow K. Zetterberg H. Craft S. Deep G. Small extracellular vesicles in plasma reveal molecular effects of modified Mediterranean-ketogenic diet in participants with mild cognitive impairment. Brain Commun. 2022 4 6 fcac262 10.1093/braincomms/fcac262 36337342
    [Google Scholar]
  309. Al Gawwam G. Sharquie I.K. Serum glutamate is a predictor for the diagnosis of multiple sclerosis. Sci. World J. 2017 2017 9320802 10.1155/2017/9320802
    [Google Scholar]
  310. Sarchielli P. Greco L. Floridi A. Floridi A. Gallai V. Excitatory amino acids and multiple sclerosis: Evidence from cerebrospinal fluid. Arch. Neurol. 2003 60 8 1082 1088 10.1001/archneur.60.8.1082 12925363
    [Google Scholar]
  311. Papandreou C. Hernández-Alonso P. Bulló M. Ruiz-Canela M. Li J. Guasch-Ferré M. Toledo E. Clish C. Corella D. Estruch R. Cofán M. Fitó M. Razquin C. Arós F. Fiol M. Santos-Lozano J.M. Serra-Majem L. Liang L. MartÍnez-GonzálezM.A. HuF.B. Salas-SalvadóJ. High plasma glutamate and a low glutamine-to-glutamate ratio are associated with increased risk of heart failure but not atrial fibrillation in the prevención con dieta mediterránea (PREDIMED) study. J. Nutr. 2020 150 11 2882 2889 10.1093/jn/nxaa273 32939552
    [Google Scholar]
  312. Cheng J. Yan J. Liu Y. Shi J. Wang H. Zhou H. Zhou Y. Zhang T. Zhao L. Meng X. Gong H. Zhang X. Zhu H. Jiang P. Cancer-cell-derived fumarate suppresses the anti-tumor capacity of CD8+ T cells in the tumor microenvironment. Cell Metab. 2023 35 6 961 978.e10 10.1016/j.cmet.2023.04.017 37178684
    [Google Scholar]
  313. Ryder B. Moore F. Mitchell A. Thompson S. Christodoulou J. Balasubramaniam S. Fumarase deficiency: A safe and potentially disease modifying effect of high fat/low carbohydrate diet. JIMD Rep. 2017 40 77 83 10.1007/8904_2017_65 29052812
    [Google Scholar]
  314. Peace C.G. O’Carroll S.M. O’Neill L.A.J. Fumarate hydratase as a metabolic regulator of immunity. Trends Cell Biol. 2024 34 6 442 450 10.1016/j.tcb.2023.10.005 37940417
    [Google Scholar]
  315. Hooftman A. Peace C.G. Ryan D.G. Day E.A. Yang M. McGettrick A.F. Yin M. Montano E.N. Huo L. Toller-Kawahisa J.E. Zecchini V. Ryan T.A.J. Bolado-Carrancio A. Casey A.M. Prag H.A. Costa A.S.H. De Los Santos G. Ishimori M. Wallace D.J. Venuturupalli S. Nikitopoulou E. Frizzell N. Johansson C. Von Kriegsheim A. Murphy M.P. Jefferies C. Frezza C. O’Neill L.A.J. Macrophage fumarate hydratase restrains mtRNA-mediated interferon production. Nature 2023 615 7952 490 498 10.1038/s41586‑023‑05720‑6 36890227
    [Google Scholar]
  316. Hammer A. Waschbisch A. Kuhbandner K. Bayas A. Lee D.H. Duscha A. Haghikia A. Gold R. Linker R.A. The NRF 2 pathway as potential biomarker for dimethyl fumarate treatment in multiple sclerosis. Ann. Clin. Transl. Neurol. 2018 5 6 668 676 10.1002/acn3.553 29928650
    [Google Scholar]
  317. Pålsson-McDermott E.M. O’Neill L.A.J. Targeting immunometabolism as an anti-inflammatory strategy. Cell Res. 2020 30 4 300 314 10.1038/s41422‑020‑0291‑z 32132672
    [Google Scholar]
  318. Lima A.D.R. Ferrari B.B. Pradella F. Carvalho R.M. Rivero S.L.S. Quintiliano R.P.S. Souza M.A. Brunetti N.S. Marques A.M. Santos I.P. Farias A.S. Oliveira E.C. Santos L.M.B. Dimethyl fumarate modulates the regulatory T cell response in the mesenteric lymph nodes of mice with experimental autoimmune encephalomyelitis. Front. Immunol. 2024 15 1391949 10.3389/fimmu.2024.1391949 38765015
    [Google Scholar]
  319. Kornberg M.D. Bhargava P. Kim P.M. Putluri V. Snowman A.M. Putluri N. Calabresi P.A. Snyder S.H. Dimethyl fumarate targets GAPDH and aerobic glycolysis to modulate immunity. Science 2018 360 6387 449 453 10.1126/science.aan4665 29599194
    [Google Scholar]
  320. Sarkar P. Redondo J. Hares K. Bailey S. Georgievskaya A. Heesom K. Kemp K.C. Scolding N.J. Rice C.M. Reduced expression of mitochondrial fumarate hydratase in progressive multiple sclerosis contributes to impaired in vitro mesenchymal stromal cell-mediated neuroprotection. Mult. Scler. 2022 28 8 1179 1188 10.1177/13524585211060686 34841955
    [Google Scholar]
  321. Obeid L.M. Linardic C.M. Karolak L.A. Hannun Y.A. Programmed cell death induced by ceramide. Science 1993 259 5102 1769 1771 10.1126/science.8456305 8456305
    [Google Scholar]
  322. Kitatani K. Idkowiak-Baldys J. Hannun Y.A. The sphingolipid salvage pathway in ceramide metabolism and signaling. Cell. Signal. 2008 20 6 1010 1018 10.1016/j.cellsig.2007.12.006 18191382
    [Google Scholar]
  323. Alexandropoulou I. Grammatikopoulou M.G. Gkouskou K.K. Pritsa A.A. Vassilakou T. Rigopoulou E. Lindqvist H.M. Bogdanos D.P. Ceramides in autoimmune rheumatic diseases: Existing evidence and therapeutic considerations for diet as an anticeramide treatment. Nutrients 2023 15 1 229 10.3390/nu15010229 36615886
    [Google Scholar]
  324. Maula T. Al Sazzad M.A. Slotte J.P. Influence of hydroxylation, chain length, and chain unsaturation on bilayer properties of ceramides. Biophys. J. 2015 109 8 1639 1651 10.1016/j.bpj.2015.08.040 26488655
    [Google Scholar]
  325. Hannun Y.A. Obeid L.M. Many ceramides. J. Biol. Chem. 2011 286 32 27855 27862 10.1074/jbc.R111.254359 21693702
    [Google Scholar]
  326. Taniguchi M. Kitatani K. Kondo T. Hashimoto-Nishimura M. Asano S. Hayashi A. Mitsutake S. Igarashi Y. Umehara H. Takeya H. Kigawa J. Okazaki T. Regulation of autophagy and its associated cell death by “sphingolipid rheostat”: Reciprocal role of ceramide and sphingosine 1-phosphate in the mammalian target of rapamycin pathway. J. Biol. Chem. 2012 287 47 39898 39910 10.1074/jbc.M112.416552 23035115
    [Google Scholar]
  327. Newton J. Lima S. Maceyka M. Spiegel S. Revisiting the sphingolipid rheostat: Evolving concepts in cancer therapy. Exp. Cell Res. 2015 333 2 195 200 10.1016/j.yexcr.2015.02.025 25770011
    [Google Scholar]
  328. De Lira M.N. Raman S.J. Schulze A. Schneider-Schaulies S. Avota E. Neutral sphingomyelinase-2 (NSM 2) controls T cell metabolic homeostasis and reprogramming during activation. Front. Mol. Biosci. 2020 7 217 10.3389/fmolb.2020.00217 33088808
    [Google Scholar]
  329. Checa A. Idborg H. Zandian A. Sar D.G. Surowiec I. Trygg J. Svenungsson E. Jakobsson P-J. Nilsson P. Gunnarsson I. Wheelock C.E. Dysregulations in circulating sphingolipids associate with disease activity indices in female patients with systemic lupus erythematosus: A cross-sectional study. Lupus 2017 26 10 1023 1033 10.1177/0961203316686707 28134039
    [Google Scholar]
  330. Miller L.G. Young J.A. Ray S.K. Wang G. Purohit S. Banik N.L. Dasgupta S. Sphingosine toxicity in eae and ms: Evidence for ceramide generation via serine-palmitoyltransferase activation. Neurochem. Res. 2017 42 10 2755 2768 10.1007/s11064‑017‑2280‑2 28474276
    [Google Scholar]
  331. Vidaurre O.G. Haines J.D. Katz Sand I. Adula K.P. Huynh J.L. McGraw C.A. Zhang F. Varghese M. Sotirchos E. Bhargava P. Bandaru V.V.R. Pasinetti G. Zhang W. Inglese M. Calabresi P.A. Wu G. Miller A.E. Haughey N.J. Lublin F.D. Casaccia P. Cerebrospinal fluid ceramides from patients with multiple sclerosis impair neuronal bioenergetics. Brain 2014 137 8 2271 2286 10.1093/brain/awu139 24893707
    [Google Scholar]
  332. McGinley M.P. Cohen J.A. Sphingosine 1-phosphate receptor modulators in multiple sclerosis and other conditions. Lancet 2021 398 10306 1184 1194 10.1016/S0140‑6736(21)00244‑0 34175020
    [Google Scholar]
  333. Gil A. Martín-Montañez E. Valverde N. Lara E. Boraldi F. Claros S. Romero-Zerbo S.Y. Fernández O. Pavia J. Garcia-Fernandez M. Neuronal metabolism and neuroprotection: Neuroprotective effect of fingolimod on menadione-induced mitochondrial damage. Cells 2020 10 1 34 10.3390/cells10010034 33383658
    [Google Scholar]
  334. Bascuñana P. Möhle L. Brackhan M. Pahnke J. Fingolimod as a treatment in neurologic disorders beyond multiple sclerosis. Drugs R D. 2020 20 3 197 207 10.1007/s40268‑020‑00316‑1 32696271
    [Google Scholar]
  335. van Doorn R. Nijland P.G. Dekker N. Witte M.E. Lopes-Pinheiro M.A. van het Hof B. Kooij G. Reijerkerk A. Dijkstra C. van van der ValkP. van HorssenJ. de VriesH.E. Fingolimod attenuates ceramide-induced blood–brain barrier dysfunction in multiple sclerosis by targeting reactive astrocytes. Acta Neuropathol. 2012 124 3 397 410 10.1007/s00401‑012‑1014‑4 22810490
    [Google Scholar]
  336. Kappos L. Bar-Or A. Cree B.A.C. Fox R.J. Giovannoni G. Gold R. Vermersch P. Arnold D.L. Arnould S. Scherz T. Wolf C. Wallström E. Dahlke F. Achiron A. Achtnichts L. Agan K. Akman-Demir G. Allen A.B. Antel J.P. Antiguedad A.R. Apperson M. Applebee A.M. Ayuso G.I. Baba M. Bajenaru O. Balasa R. Balci B.P. Barnett M. Bass A. Becker V.U. Bejinariu M. Bergh F.T. Bergmann A. Bernitsas E. Berthele A. Bhan V. Bischof F. Bjork R.J. Blevins G. Boehringer M. Boerner T. Bonek R. Bowen J.D. Bowling A. Boyko A.N. Boz C. Bracknies V. Braune S. Brescia Morra V. Brochet B. Brola W. Brownstone P.K. Brozman M. Brunet D. Buraga I. Burnett M. Buttmann M. Butzkueven H. Cahill J. Calkwood J.C. Camu W. Cascione M. Castelnovo G. Centonze D. Cerqueira J. Chan A. Cimprichova A. Cohan S. Comi G. Conway J. Cooper J.A. Corboy J. Correale J. Costell B. Cottrell D.A. Coyle P.K. Craner M. Cui L. Cunha L. Czlonkowska A. da Silva A.M. de Sa J. de Seze J. Debouverie M. Debruyne J. Decoo D. Defer G. Derfuss T. Deri N.H. Dihenia B. Dioszeghy P. Donath V. Dubois B. Duddy M. Duquette P. Edan G. Efendi H. Elias S. Emrich P.J. Estruch B.C. Evdoshenko E.P. Faiss J. Fedyanin A.S. Feneberg W. Fermont J. Fernandez O.F. Ferrer F.C. Fink K. Ford H. Ford C. Francia A. Freedman M. Frishberg B. Galgani S. Garmany G.P. Gehring K. Gitt J. Gobbi C. Goldstick L.P. Gonzalez R.A. Grandmaison F. Grigoriadis N. Grigorova O. Grimaldi L.M.E. Gross J. Gross-Paju K. Gudesblatt M. Guillaume D. Haas J. Hancinova V. Hancu A. Hardiman O. Harmjanz A. Heidenreich F.R. Hengstman G.J.D. Herbert J. Herring M. Hodgkinson S. Hoffmann O.M. Hofmann W.E. Honeycutt W.D. Hua L.H. Huang D. Huang Y. Huang D.R. Hupperts R. Imre P. Jacobs A.K. Jakab G. Jasinska E. Kaida K. Kalnina J. Kaprelyan A. Karelis G. Karussis D. Katz A. Khabirov F.A. Khatri B. Kimura T. Kister I. Kizlaitiene R. Klimova E. Koehler J. Komatineni A. Kornhuber A. Kovacs K. Koves A. Kozubski W. Krastev G. Krupp L.B. Kurca E. Lassek C. Laureys G. Lee L. Lensch E. Leutmezer F. Li H. Linker R.A. Linnebank M. Liskova P. Llanera C. Lu J. Lutterotti A. Lycke J. Macdonell R. Maciejowski M. Maeurer M. Magzhanov R.V. Maida E-M. Malciene L. Mao-Draayer Y. Marfia G.A. Markowitz C. Mastorodimos V. Matyas K. Meca-Lallana J. Merino J.A.G. Mihetiu I.G. Milanov I. Miller A.E. Millers A. Mirabella M. Mizuno M. Montalban X. Montoya L. Mori M. Mueller S. Nakahara J. Nakatsuji Y. Newsome S. Nicholas R. Nielsen A.S. Nikfekr E. Nocentini U. Nohara C. Nomura K. Odinak M.M. Olsson T. van Oosten B.W. Oreja-Guevara C. Oschmann P. Overell J. Pachner A. Panczel G. Pandolfo M. Papeix C. Patrucco L. Pelletier J. Piedrabuena R. Pless M. Polzer U. Pozsegovits K. Rastenyte D. Rauer S. Reifschneider G. Rey R. Rizvi S.A. Robertson D. Rodriguez J.M. Rog D. Roshanisefat H. Rowe V. Rozsa C. Rubin S. Rusek S. Saccà F. Saida T. Salgado A.V. Sanchez V.E.F. Sanders K. Satori M. Sazonov D.V. Scarpini E.A. Schlegel E. Schluep M. Schmidt S. Scholz E. Schrijver H.M. Schwab M. Schwartz R. Scott J. Selmaj K. Shafer S. Sharrack B. Shchukin I.A. Shimizu Y. Shotekov P. Siever A. Sigel K-O. Silliman S. Simo M. Simu M. Sinay V. Siquier A.E. Siva A. Skoda O. Solomon A. Stangel M. Stefoski D. Steingo B. Stolyarov I.D. Stourac P. Strassburger-Krogias K. Strauss E. Stuve O. Tarnev I. Tavernarakis A. Tello C.R. Terzi M. Ticha V. Ticmeanu M. Tiel-Wilck K. Toomsoo T. Tubridy N. Tullman M.J. Tumani H. Turcani P. Turner B. Uccelli A. Urtaza F.J.O. Vachova M. Valikovics A. Walter S. Van Wijmeersch B. Vanopdenbosch L. Weber J.R. Weiss S. Weissert R. Vermersch P. West T. Wiendl H. Wiertlewski S. Wildemann B. Willekens B. Visser L.H. Vorobeychik G. Xu X. Yamamura T. Yang Y.N. Yelamos S.M. Yeung M. Zacharias A. Zelkowitz M. Zettl U. Zhang M. Zhou H. Zieman U. Ziemssen T. Siponimod versus placebo in secondary progressive multiple sclerosis (EXPAND): A double-blind, randomised, phase 3 study. Lancet 2018 391 10127 1263 1273 10.1016/S0140‑6736(18)30475‑6 29576505
    [Google Scholar]
  337. Kappos L. Fox R.J. Burcklen M. Freedman M.S. Havrdová E.K. Hennessy B. Hohlfeld R. Lublin F. Montalban X. Pozzilli C. Scherz T. D’Ambrosio D. Linscheid P. Vaclavkova A. Pirozek-Lawniczek M. Kracker H. Sprenger T. Ponesimod compared with teriflunomide in patients with relapsing multiple sclerosis in the active-comparator phase 3 OPTIMUM study. JAMA Neurol. 2021 78 5 558 567 10.1001/jamaneurol.2021.0405 33779698
    [Google Scholar]
  338. Juchnicka I. Kuźmicki M. Szamatowicz J. Ceramides and sphingosino-1-phosphate in obesity. Front. Endocrinol. 2021 12 635995 10.3389/fendo.2021.635995 34054722
    [Google Scholar]
  339. Wang D.D. Toledo E. Hruby A. Rosner B.A. Willett W.C. Sun Q. Razquin C. Zheng Y. Ruiz-Canela M. Guasch-Ferré M. Corella D. Gómez-Gracia E. Fiol M. Estruch R. Ros E. Lapetra J. Fito M. Aros F. Serra-Majem L. Lee C.H. Clish C.B. Liang L. Salas-Salvadó J. Martínez-González M.A. Hu F.B. Plasma ceramides, mediterranean diet, and incident cardiovascular disease in the predimed trial (prevención con dieta mediterránea). Circulation 2017 135 21 2028 2040 10.1161/CIRCULATIONAHA.116.024261 28280233
    [Google Scholar]
  340. Mathews A.T. Famodu O.A. Olfert M.D. Murray P.J. Cuff C.F. Downes M.T. Haughey N.J. Colby S.E. Chantler P.D. Olfert I.M. McFadden J.W. Efficacy of nutritional interventions to lower circulating ceramides in young adults: FRUVEDomic pilot study. Physiol. Rep. 2017 5 13 13329 10.14814/phy2.13329 28694327
    [Google Scholar]
  341. Walker M. Xanthakis V. Ma J. Quatromoni P.A. Moore L. Ramachandran V. Jacques P. A mediterranean style diet is favorably associated with concentrations of circulating ceramides and ceramide ratios in the framingham offspring cohort (P18-048-19). Curr. Dev. Nutr. 2019 3 nzz039.P18-048-19 10.1093/cdn/nzz039.P18‑048‑19
    [Google Scholar]
/content/journals/cn/10.2174/011570159X382929250719084728
Loading
/content/journals/cn/10.2174/011570159X382929250719084728
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test