Skip to content
2000
image of Protein Kinases in Alzheimer’s Disease: Pioneering Insights into Pathogenesis and Therapeutic Breakthroughs

Abstract

Alzheimer's Disease (AD) is an exhausting neurodegenerative condition marked by the build-up of abnormal protein aggregates in the brain and a progressive loss of cognitive function. The complicated role that protein kinases play in the pathophysiology of AD has come to light more and more in recent years. The symptoms of AD include memory loss, cognitive impairment, and neuronal malfunction. Many cellular processes, including synaptic plasticity, neuronal survival, and protein homeostasis, have been linked to protein kinases, a class of enzymes that control phosphorylation. The etiology of AD has been closely related to the dysregulation of protein kinases, including those implicated in the phosphorylation of tau and the formation of amyloid-beta. GSK-3, also known as glycogen synthase kinase, is one of the most studied protein kinases in Alzheimer's disease. It is known that GSK-3 phosphorylates tau protein, causing it to clump together and create neurofibrillary tangles. Moreover, GSK-3 activation increases the development of amyloid-beta, which furthers the disease's progression. Additional protein kinases, including Cyclin-Dependent Kinase 5 (CDK5) and calcium/calmodulin-dependent protein kinase II (CaMKII), have also been connected to tau phosphorylation and synaptic dysfunction in AD. Protein kinases play a crucial role in the pathophysiology of AD, extending beyond tau phosphorylation. Research has shown that Amyloid Precursor Protein (APP) processing is regulated by Protein Kinases A (PKA) and C (PKC), which affects the production and clearance of amyloid-beta. Furthermore, AD etiology involves oxidative stress, neuroinflammation, and mitochondrial dysfunction, all of which are regulated by protein kinases. This study will cover the effects of protein kinases in AD, focusing on their role in tau phosphorylation, an attribute of the disease. We will also address the role of protein kinase in the development of amyloid-beta, synaptic malfunction, and neuroinflammation.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X379926250801062557
2025-10-08
2025-10-18
Loading full text...

Full text loading...

References

  1. Schepetkin I.A. Khlebnikov A.I. Potapov A.S. Kovrizhina A.R. Matveevskaya V.V. Belyanin M.L. Atochin D.N. Zanoza S.O. Gaidarzhy N.M. Lyakhov S.A. Kirpotina L.N. Quinn M.T. Synthesis, biological evaluation, and molecular modeling of 11H-indeno[1,2-b]quinoxalin-11-one derivatives and tryptanthrin-6-oxime as c-Jun N-terminal kinase inhibitors. Eur. J. Med. Chem. 2019 161 179 191 10.1016/j.ejmech.2018.10.023 30347329
    [Google Scholar]
  2. Kumar S. Lemere C.A. Walter J. Phosphorylated Aβ peptides in human Down syndrome brain and different Alzheimer’s-like mouse models. Acta Neuropathol. Commun. 2020 8 1 118 10.1186/s40478‑020‑00959‑w 32727580
    [Google Scholar]
  3. Maqbool M. Mobashir M. Hoda N. Pivotal role of glycogen synthase kinase-3: A therapeutic target for Alzheimer’s disease. Eur. J. Med. Chem. 2016 107 63 81 10.1016/j.ejmech.2015.10.018 26562543
    [Google Scholar]
  4. Martin L. Latypova X. Terro F. Post-translational modifications of tau protein: Implications for Alzheimer’s disease. Neurochem. Int. 2011 58 4 458 471 10.1016/j.neuint.2010.12.023 21215781
    [Google Scholar]
  5. Gupta R. Ambasta R.K. Kumar P. Pharmacological intervention of histone deacetylase enzymes in the neurodegenerative disorders. Life Sci. 2020 243 117278 10.1016/j.lfs.2020.117278 31926248
    [Google Scholar]
  6. Yoshimura T. Kawano Y. Arimura N. Kawabata S. Kikuchi A. Kaibuchi K. GSK-3beta regulates phosphorylation of CRMP-2 and neuronal polarity. Cell 2005 120 1 137 149 10.1016/j.cell.2004.11.012 15652488
    [Google Scholar]
  7. Ma Y. Wang J. Xu D. Chen Y. Han X. Chronic MC-LR exposure promoted Aβ and p-tau accumulation via regulating Akt/GSK-3β signal pathway. Sci. Total Environ. 2021 794 148732 10.1016/j.scitotenv.2021.148732 34323745
    [Google Scholar]
  8. Bhounsule A.S. Bhatt L.K. Prabhavalkar K.S. Oza M. Cyclin dependent kinase 5: A novel avenue for Alzheimer’s disease. Brain Res. Bull. 2017 132 28 38 10.1016/j.brainresbull.2017.05.006 28526617
    [Google Scholar]
  9. Snow W.M. Oikawa K. Djordjevic J. Albensi B.C. Strain differences in hippocampal synaptic dysfunction in the TgCRND8 mouse model of Alzheimer’s disease: Implications for improving translational capacity. Mol. Cell. Neurosci. 2019 94 11 22 10.1016/j.mcn.2018.10.005 30404024
    [Google Scholar]
  10. Maitra S. Vincent B. Cdk5-p25 as a key element linking amyloid and tau pathologies in Alzheimer’s disease: Mechanisms and possible therapeutic interventions. Life Sci. 2022 308 120986 10.1016/j.lfs.2022.120986 36152679
    [Google Scholar]
  11. Loya-López S. Sandoval A. González-Ramírez R. Calderón-Rivera A. Ávalos-Fuentes A. Rodríguez-Sánchez M. Caballero R. Tovar-Soto D. Felix R. Florán B. Cdk5 phosphorylates CaV1.3 channels and regulates GABAA-mediated miniature inhibitory post-synaptic currents in striato-nigral terminals. Biochem. Biophys. Res. Commun. 2020 524 1 255 261 10.1016/j.bbrc.2020.01.084 31983427
    [Google Scholar]
  12. Zhou H. Zhang J. Shi H. Li P. Sui X. Wang Y. Wang L. Downregulation of CDK5 signaling in the dorsal striatum alters striatal microcircuits implicating the association of pathologies with circadian behavior in mice. Mol. Brain 2022 15 1 53 10.1186/s13041‑022‑00939‑2 35701839
    [Google Scholar]
  13. Xiao N. Zhang F. Zhu B. Liu C. Lin Z. Wang H. Xie W.B. CDK5-mediated tau accumulation triggers methamphetamine-induced neuronal apoptosis via endoplasmic reticulum-associated degradation pathway. Toxicol. Lett. 2018 292 97 107 10.1016/j.toxlet.2018.04.027 29705343
    [Google Scholar]
  14. Balusu S. Horré K. Thrupp N. Craessaerts K. Snellinx A. Serneels L. T’Syen, D.; Chrysidou, I.; Arranz, A.M.; Sierksma, A.; Simrén, J.; Karikari, T.K.; Zetterberg, H.; Chen, W.T.; Thal, D.R.; Salta, E.; Fiers, M.; De Strooper, B. MEG3 activates necroptosis in human neuron xenografts modeling Alzheimer’s disease. Science 2023 381 6663 1176 1182 10.1126/science.abp9556 37708272
    [Google Scholar]
  15. Wang C. Cui Y. Xu T. Zhou Y. Yang R. Wang T. New insights into glycogen synthase kinase-3: A common target for neurodegenerative diseases. Biochem. Pharmacol. 2023 218 115923 10.1016/j.bcp.2023.115923 37981175
    [Google Scholar]
  16. Paul S Fatihi S Sharma S Kutum R Fields R Pant HC Cyclindependent kinase 5 regulates cPLA2 activity and neuroinflammation in Parkinson's disease. eNeuro 2022 9 6 ENEURO. 0180-22.2022. 10.1523/ENEURO.0180‑22.2022 36351818
    [Google Scholar]
  17. Banerjee T.D. Reihl K. Swain M. Torres M. Dagda R.K. Mitochondrial PKA is neuroprotective in a cell culture model of Alzheimer’s disease. Mol. Neurobiol. 2021 58 7 3071 3083 10.1007/s12035‑021‑02333‑w 33624140
    [Google Scholar]
  18. Kamat P.K. Kalani A. Rai S. Swarnkar S. Tota S. Nath C. Tyagi N. Mechanism of oxidative stress and synapse dysfunction in the pathogenesis of Alzheimer’s disease: Understanding the therapeutics strategies. Mol. Neurobiol. 2016 53 1 648 661 10.1007/s12035‑014‑9053‑6 25511446
    [Google Scholar]
  19. Moosavi F. Hosseini R. Saso L. Firuzi O. Modulation of neurotrophic signaling pathways by polyphenols. Drug Des. Devel. Ther. 2015 10 23 42 10.2147/DDDT.S96936 26730179
    [Google Scholar]
  20. Atsriku C. Hoffmann M. Ye Y. Kumar G. Surapaneni S. Metabolism and disposition of a potent and selective JNK inhibitor [14C]tanzisertib following oral administration to rats, dogs and humans. Xenobiotica 2015 45 5 428 441 10.3109/00498254.2014.990949 25482583
    [Google Scholar]
  21. Ly P.T.T. Wu Y. Zou H. Wang R. Zhou W. Kinoshita A. Zhang M. Yang Y. Cai F. Woodgett J. Song W. Inhibition of GSK3β-mediated BACE1 expression reduces Alzheimer-associated phenotypes. J. Clin. Invest. 2013 123 1 224 235 10.1172/JCI64516 23202730
    [Google Scholar]
  22. Phiel C.J. Wilson C.A. Lee V.M.Y. Klein P.S. GSK-3α regulates production of Alzheimer’s disease amyloid-β peptides. Nature 2003 423 6938 435 439 10.1038/nature01640 12761548
    [Google Scholar]
  23. Chen C.H. Zhou W. Liu S. Deng Y. Cai F. Tone M. Tone Y. Tong Y. Song W. Increased NF-κB signalling up-regulates BACE1 expression and its therapeutic potential in Alzheimer’s disease. Int. J. Neuropsychopharmacol. 2012 15 1 77 90 10.1017/S1461145711000149 21329555
    [Google Scholar]
  24. Jackson G.R. Wiedau-Pazos M. Sang T.K. Wagle N. Brown C.A. Massachi S. Geschwind D.H. Human wild-type tau interacts with wingless pathway components and produces neurofibrillary pathology in Drosophila. Neuron 2002 34 4 509 519 10.1016/S0896‑6273(02)00706‑7 12062036
    [Google Scholar]
  25. Hernández F. Gómez de Barreda E. Fuster-Matanzo A. Lucas J.J. Avila J. GSK3: A possible link between beta amyloid peptide and tau protein. Exp. Neurol. 2010 223 2 322 325 10.1016/j.expneurol.2009.09.011 19782073
    [Google Scholar]
  26. Pérez M. Hernández F. Gómez-Ramos A. Smith M. Perry G. Avila J. Formation of aberrant phosphotau fibrillar polymers in neural cultured cells. Eur. J. Biochem. 2002 269 5 1484 1489 10.1046/j.1432‑1033.2002.02794.x 11874463
    [Google Scholar]
  27. Avila J. Hernández F. GSK-3 inhibitors for Alzheimer’s disease. Expert Rev. Neurother. 2007 7 11 1527 1533 10.1586/14737175.7.11.1527 17997701
    [Google Scholar]
  28. Giau V.V. Bagyinszky E. Youn Y.C. An S.S.A. Kim S. APP, PSEN1, and PSEN2 mutations in asian patients with early-onset Alzheimer disease. Int. J. Mol. Sci. 2019 20 19 4757 10.3390/ijms20194757 31557888
    [Google Scholar]
  29. Bagaria J. Bagyinszky E. An S.S.A. Genetics, functions, and clinical impact of Presenilin-1 (PSEN1) gene. Int. J. Mol. Sci. 2022 23 18 10970 10.3390/ijms231810970 36142879
    [Google Scholar]
  30. Maesako M. Uemura K. Kubota M. Hiyoshi K. Ando K. Kuzuya A. Kihara T. Asada M. Akiyama H. Kinoshita A. Effect of glycogen synthase kinase 3 β-mediated presenilin 1 phosphorylation on amyloid β production is negatively regulated by insulin receptor cleavage. Neuroscience 2011 177 298 307 10.1016/j.neuroscience.2010.12.017 21238544
    [Google Scholar]
  31. Lopez-Toledo G. Silva-Lucero M.C. Herrera-Díaz J. García D.E. Arias-Montaño J.A. Cardenas-Aguayo M.C. Patient-derived fibroblasts with Presenilin-1 mutations, that model aspects of Alzheimer’s disease pathology, constitute a potential object for early diagnosis. Front. Aging Neurosci. 2022 14 921573 10.3389/fnagi.2022.921573 35847683
    [Google Scholar]
  32. Tönnies E. Trushina E. Oxidative stress, synaptic dysfunction, and Alzheimer’s disease. J. Alzheimers Dis. 2017 57 4 1105 1121 10.3233/JAD‑161088 28059794
    [Google Scholar]
  33. Warpechowski M. Warpechowski J. Kulczyńska-Przybik A. Mroczko B. Biomarkers of activity-dependent plasticity and persistent enhancement of synaptic transmission in Alzheimer disease: A review of the current status. Med. Sci. Monit. 2023 29 938826 10.12659/MSM.938826 36600577
    [Google Scholar]
  34. Vyklicky V. Korinek M. Smejkalova T. Balik A. Krausova B. Kaniakova M. Lichnerova K. Cerny J. Krusek J. Dittert I. Horak M. Vyklicky L. Structure, function, and pharmacology of NMDA receptor channels. Physiol. Res. 2014 63 S191 S203 10.33549/physiolres.932678 24564659
    [Google Scholar]
  35. Collingridge G.L. Monaghan D.T. The continually evolving role of NMDA receptors in neurobiology and disease. Neuropharmacology 2022 210 109042 10.1016/j.neuropharm.2022.109042 35307365
    [Google Scholar]
  36. Peineau S. Taghibiglou C. Bradley C. Wong T.P. Liu L. Lu J. Lo E. Wu D. Saule E. Bouschet T. Matthews P. Isaac J.T.R. Bortolotto Z.A. Wang Y.T. Collingridge G.L. LTP inhibits LTD in the hippocampus via regulation of GSK3beta. Neuron 2007 53 5 703 717 10.1016/j.neuron.2007.01.029 17329210
    [Google Scholar]
  37. Hooper C. Markevich V. Plattner F. Killick R. Schofield E. Engel T. Hernandez F. Anderton B. Rosenblum K. Bliss T. Cooke S.F. Avila J. Lucas J.J. Giese K.P. Stephenson J. Lovestone S. Glycogen synthase kinase‐3 inhibition is integral to long‐term potentiation. Eur. J. Neurosci. 2007 25 1 81 86 10.1111/j.1460‑9568.2006.05245.x 17241269
    [Google Scholar]
  38. Cortés N. Guzmán-Martínez L. Andrade V. González A. Maccioni R.B. CDK5: A unique CDK and its multiple roles in the nervous system. J. Alzheimers Dis. 2019 68 3 843 855 10.3233/JAD‑180792 30856110
    [Google Scholar]
  39. Saito T. Yano M. Kawai Y. Asada A. Wada M. Doi H. Hisanaga S. Structural basis for the different stability and activity between the Cdk5 complexes with p35 and p39 activators. J. Biol. Chem. 2013 288 45 32433 32439 10.1074/jbc.M113.512293 24085300
    [Google Scholar]
  40. Barucker C. Harmeier A. Weiske J. Fauler B. Albring K.F. Prokop S. Hildebrand P. Lurz R. Heppner F.L. Huber O. Multhaup G. Nuclear translocation uncovers the amyloid peptide Aβ42 as a regulator of gene transcription. J. Biol. Chem. 2014 289 29 20182 20191 10.1074/jbc.M114.564690 24878959
    [Google Scholar]
  41. Palop J.J. Mucke L. Amyloid-β-induced neuronal dysfunction in Alzheimer’s disease: From synapses toward neural networks. Nat. Neurosci. 2010 13 7 812 818 10.1038/nn.2583 20581818
    [Google Scholar]
  42. Nikolac Perkovic M. Videtic Paska A. Konjevod M. Kouter K. Svob Strac D. Nedic Erjavec G. Pivac N. Epigenetics of Alzheimer’s disease. Biomolecules 2021 11 2 195 10.3390/biom11020195 33573255
    [Google Scholar]
  43. Gupta K.K. Singh S.K. Cdk5: A main culprit in neurodegeneration. Int. J. Neurosci. 2019 129 12 1192 1197 10.1080/00207454.2019.1645142 31327290
    [Google Scholar]
  44. Liu F. Su Y. Li B. Zhou Y. Ryder J. Gonzalez-DeWhitt P. May P.C. Ni B. Regulation of amyloid precursor protein (APP) phosphorylation and processing by p35/Cdk5 and p25/Cdk5. FEBS Lett. 2003 547 1-3 193 196 10.1016/S0014‑5793(03)00714‑2 12860412
    [Google Scholar]
  45. Cruz J.C. Tseng H.C. Goldman J.A. Shih H. Tsai L.H. Aberrant Cdk5 activation by p25 triggers pathological events leading to neurodegeneration and neurofibrillary tangles. Neuron 2003 40 3 471 483 10.1016/S0896‑6273(03)00627‑5 14642273
    [Google Scholar]
  46. Kimura T. Ishiguro K. Hisanaga S. Physiological and pathological phosphorylation of tau by Cdk5. Front. Mol. Neurosci. 2014 7 65 10.3389/fnmol.2014.00065 25076872
    [Google Scholar]
  47. Matrone C. Marolda R. Ciafrè S. Ciotti M.T. Mercanti D. Calissano P. Tyrosine kinase nerve growth factor receptor switches from prosurvival to proapoptotic activity via Abeta-mediated phosphorylation. Proc. Natl. Acad. Sci. USA 2009 106 27 11358 11363 10.1073/pnas.0904998106 19549834
    [Google Scholar]
  48. Zempel H. Thies E. Mandelkow E. Mandelkow E.M. Abeta oligomers cause localized Ca(2+) elevation, missorting of endogenous Tau into dendrites, Tau phosphorylation, and destruction of microtubules and spines. J. Neurosci. 2010 30 36 11938 11950 10.1523/JNEUROSCI.2357‑10.2010 20826658
    [Google Scholar]
  49. Seo J. Kritskiy O. Watson L.A. Barker S.J. Dey D. Raja W.K. Lin Y.T. Ko T. Cho S. Penney J. Silva M.C. Sheridan S.D. Lucente D. Gusella J.F. Dickerson B.C. Haggarty S.J. Tsai L.H. Inhibition of p25/Cdk5 attenuates tauopathy in mouse and iPSC models of frontotemporal Dementia. J. Neurosci. 2017 37 41 9917 9924 10.1523/JNEUROSCI.0621‑17.2017 28912154
    [Google Scholar]
  50. Zeng L. Jiang H. Ashraf G.M. Liu J. Wang L. Zhao K. Liu M. Li Z. Liu R. Implications of miR-148a-3p/p35/PTEN signaling in tau hyperphosphorylation and autoregulatory feedforward of Akt/CREB in Alzheimer’s disease. Mol. Ther. Nucleic Acids 2022 27 256 275 10.1016/j.omtn.2021.11.019 35024240
    [Google Scholar]
  51. Zhao D. Zhou Y. Huo Y. Meng J. Xiao X. Han L. Zhang X. Luo H. Can D. Sun H. Huang T.Y. Wang X. Zhang J. Liu F. Xu H. Zhang Y. RPS23RG1 modulates tau phosphorylation and axon outgrowth through regulating p35 proteasomal degradation. Cell Death Differ. 2021 28 1 337 348 10.1038/s41418‑020‑00620‑y 32908202
    [Google Scholar]
  52. Saito T. Oba T. Shimizu S. Asada A. Iijima K.M. Ando K. Cdk5 increases MARK4 activity and augments pathological tau accumulation and toxicity through tau phosphorylation at Ser262. Hum. Mol. Genet. 2019 28 18 3062 3071 10.1093/hmg/ddz120 31174206
    [Google Scholar]
  53. Tanaka T. Ohashi S. Takashima A. Kobayashi S. Dendritic distribution of CDK5 mRNA and p35 mRNA, and a glutamate-responsive increase of CDK5/p25 complex contribute to tau hyperphosphorylation. Biochim. Biophys. Acta, Gen. Subj. 2022 1866 7 130135 10.1016/j.bbagen.2022.130135 35358667
    [Google Scholar]
  54. Wilkaniec A. Gąssowska-Dobrowolska M. Strawski M. Adamczyk A. Czapski G.A. Inhibition of cyclin-dependent kinase 5 affects early neuroinflammatory signalling in murine model of amyloid beta toxicity. J. Neuroinflammation 2018 15 1 1 10.1186/s12974‑017‑1027‑y 29301548
    [Google Scholar]
  55. Huang Y. Huang W. Huang Y. Song P. Zhang M. Zhang H.T. Pan S. Hu Y. Cdk5 inhibitory peptide prevents loss of neurons and alleviates behavioral changes in p25 Transgenic mice. J. Alzheimers Dis. 2020 74 4 1231 1242 10.3233/JAD‑191098 32144987
    [Google Scholar]
  56. Shen X.Y. Luo T. Li S. Ting O.Y. He F. Xu J. Wang H.Q. Quercetin inhibits okadaic acid-induced tau protein hyperphosphorylation through the Ca2+ calpain p25 CDK5 pathway in HT22 cells. Int. J. Mol. Med. 2018 41 2 1138 1146 10.3892/ijmm.2017.3281 29207020
    [Google Scholar]
  57. Park J. Choi H. Min J.S. Kim B. Lee S.R. Yun J.W. Choi M.S. Chang K.T. Lee D.S. Loss of mitofusin 2 links beta‐amyloid‐mediated mitochondrial fragmentation and Cdk5‐induced oxidative stress in neuron cells. J. Neurochem. 2015 132 6 687 702 10.1111/jnc.12984 25359615
    [Google Scholar]
  58. Cho B. Cho H.M. Kim H.J. Jeong J. Park S.K. Hwang E.M. Park J.Y. Kim W.R. Kim H. Sun W. CDK5-dependent inhibitory phosphorylation of Drp1 during neuronal maturation. Exp. Mol. Med. 2014 46 7 105 10.1038/emm.2014.36 25012575
    [Google Scholar]
  59. Westermann B. Mitochondrial fusion and fission in cell life and death. Nat. Rev. Mol. Cell Biol. 2010 11 12 872 884 10.1038/nrm3013 21102612
    [Google Scholar]
  60. Rong R. Xia X. Peng H. Li H. You M. Liang Z. Yao F. Yao X. Xiong K. Huang J. Zhou R. Ji D. Cdk5-mediated Drp1 phosphorylation drives mitochondrial defects and neuronal apoptosis in radiation-induced optic neuropathy. Cell Death Dis. 2020 11 9 720 10.1038/s41419‑020‑02922‑y 32883957
    [Google Scholar]
  61. Yang S.H. Huang C.Y. Hsieh C.Y. Chuang J.I. CDK4 and CDK5 inhibition have comparable mild hypothermia effects in preventing Drp1-dependent mitochondrial fission and neuron death induced by MPP+. Mol. Neurobiol. 2020 57 10 4090 4105 10.1007/s12035‑020‑02014‑0 32666227
    [Google Scholar]
  62. Musi C.A. Agrò G. Santarella F. Iervasi E. Borsello T. JNK3 as therapeutic target and biomarker in neurodegenerative and neurodevelopmental brain diseases. Cells 2020 9 10 2190 10.3390/cells9102190 32998477
    [Google Scholar]
  63. Killick R. Ribe E.M. Al-Shawi R. Malik B. Hooper C. Fernandes C. Dobson R. Nolan P.M. Lourdusamy A. Furney S. Lin K. Breen G. Wroe R. To A.W.M. Leroy K. Causevic M. Usardi A. Robinson M. Noble W. Williamson R. Lunnon K. Kellie S. Reynolds C.H. Bazenet C. Hodges A. Brion J-P. Stephenson J. Paul S.J. Lovestone S. Clusterin regulates β-amyloid toxicity via Dickkopf-1-driven induction of the wnt-PCP-JNK pathway. Mol. Psychiatry 2014 19 1 88 98 10.1038/mp.2012.163 23164821
    [Google Scholar]
  64. Gourmaud S. Paquet C. Dumurgier J. Pace C. Bouras C. Gray F. Laplanche J.L. Meurs E.F. Mouton-Liger F. Hugon J. Increased levels of cerebrospinal fluid JNK3 associated with amyloid pathology: Links to cognitive decline. J. Psychiatry Neurosci. 2015 40 3 151 161 10.1503/jpn.140062 25455349
    [Google Scholar]
  65. Xu N. Xiao Z. Zou T. Huang Z. Induction of GADD34 regulates the neurotoxicity of Amyloid β. Am. J. Alzheimers Dis. Other Demen. 2015 30 3 313 319 10.1177/1533317514545616 25204313
    [Google Scholar]
  66. Yoon S.O. Park D.J. Ryu J.C. Ozer H.G. Tep C. Shin Y.J. Lim T.H. Pastorino L. Kunwar A.J. Walton J.C. Nagahara A.H. Lu K.P. Nelson R.J. Tuszynski M.H. Huang K. JNK3 perpetuates metabolic stress induced by Aβ peptides. Neuron 2012 75 5 824 837 10.1016/j.neuron.2012.06.024 22958823
    [Google Scholar]
  67. Colombo A. Bastone A. Ploia C. Sclip A. Salmona M. Forloni G. Borsello T. JNK regulates APP cleavage and degradation in a model of Alzheimer’s disease. Neurobiol. Dis. 2009 33 3 518 525 10.1016/j.nbd.2008.12.014 19166938
    [Google Scholar]
  68. Savage M.J. Lin Y.G. Ciallella J.R. Flood D.G. Scott R.W. Activation of c-Jun N-terminal kinase and p38 in an Alzheimer’s disease model is associated with amyloid deposition. J. Neurosci. 2002 22 9 3376 3385 10.1523/JNEUROSCI.22‑09‑03376.2002 11978814
    [Google Scholar]
  69. Dhikav V. Anand K.S. Glucocorticoids may initiate Alzheimer’s disease: A potential therapeutic role for mifepristone (RU-486). Med. Hypotheses 2007 68 5 1088 1092 10.1016/j.mehy.2006.09.038 17107752
    [Google Scholar]
  70. Solas M. Aisa B. Tordera R.M. Mugueta M.C. Ramírez M.J. Stress contributes to the development of central insulin resistance during aging: Implications for Alzheimer’s disease. Biochim. Biophys. Acta Mol. Basis Dis. 2013 1832 12 2332 2339 10.1016/j.bbadis.2013.09.013 24090692
    [Google Scholar]
  71. Xiong H. Zheng C. Wang J. Song J. Zhao G. Shen H. Deng Y. The neuroprotection of liraglutide on Alzheimer-like learning and memory impairment by modulating the hyperphosphorylation of tau and neurofilament proteins and insulin signaling pathways in mice. J. Alzheimers Dis. 2013 37 3 623 635 10.3233/JAD‑130584 24008687
    [Google Scholar]
  72. Giuliani D. Ottani A. Zaffe D. Galantucci M. Strinati F. Lodi R. Guarini S. Hydrogen sulfide slows down progression of experimental Alzheimer’s disease by targeting multiple pathophysiological mechanisms. Neurobiol. Learn. Mem. 2013 104 82 91 10.1016/j.nlm.2013.05.006 23726868
    [Google Scholar]
  73. Martisova E. Aisa B. Guereñu G. Javier R.M. Effects of early maternal separation on biobehavioral and neuropathological markers of Alzheimer’s disease in adult male rats. Curr. Alzheimer Res. 2013 10 4 420 432 10.2174/1567205011310040007 23305081
    [Google Scholar]
  74. Sabio G. Das M. Mora A. Zhang Z. Jun J.Y. Ko H.J. Barrett T. Kim J.K. Davis R.J. A stress signaling pathway in adipose tissue regulates hepatic insulin resistance. Science 2008 322 5907 1539 1543 10.1126/science.1160794 19056984
    [Google Scholar]
  75. Pearson A.G. Byrne U.T.E. MacGibbon G.A. Faull R.L.M. Dragunow M. Activated c-Jun is present in neurofibrillary tangles in Alzheimer’s disease brains. Neurosci. Lett. 2006 398 3 246 250 10.1016/j.neulet.2006.01.031 16481106
    [Google Scholar]
  76. Lagalwar S. Guillozet-Bongaarts A.L. Berry R.W. Binder L.I. Formation of phospho-SAPK/JNK granules in the hippocampus is an early event in Alzheimer disease. J. Neuropathol. Exp. Neurol. 2006 65 5 455 464 10.1097/01.jnen.0000229236.98124.d8 16772869
    [Google Scholar]
  77. Vogel J. Anand V.S. Ludwig B. Nawoschik S. Dunlop J. Braithwaite S.P. The JNK pathway amplifies and drives subcellular changes in tau phosphorylation. Neuropharmacology 2009 57 5-6 539 550 10.1016/j.neuropharm.2009.07.021 19628001
    [Google Scholar]
  78. Kolarova M. García-Sierra F. Bartos A. Ricny J. Ripova D. Structure and pathology of tau protein in Alzheimer disease. Int. J. Alzheimers Dis. 2012 2012 1 13 10.1155/2012/731526 22690349
    [Google Scholar]
  79. Guillozet-Bongaarts A.L. Cahill M.E. Cryns V.L. Reynolds M.R. Berry R.W. Binder L.I. Pseudophosphorylation of tau at serine 422 inhibits caspase cleavage: in vitro evidence and implications for tangle formation in vivo. J. Neurochem. 2006 97 4 1005 1014 10.1111/j.1471‑4159.2006.03784.x 16606369
    [Google Scholar]
  80. Ardito F. Giuliani M. Perrone D. Troiano G. Muzio L.L. The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy. (Review) Int. J. Mol. Med. 2017 40 2 271 280 10.3892/ijmm.2017.3036 28656226
    [Google Scholar]
  81. Clark A.R. Ohlmeyer M. Protein phosphatase 2A as a therapeutic target in inflammation and neurodegeneration. Pharmacol. Ther. 2019 201 181 201 10.1016/j.pharmthera.2019.05.016 31158394
    [Google Scholar]
  82. Corcoran N.M. Martin D. Hutter-Paier B. Windisch M. Nguyen T. Nheu L. Sundstrom L.E. Costello A.J. Hovens C.M. Sodium selenate specifically activates PP2A phosphatase, dephosphorylates tau and reverses memory deficits in an Alzheimer’s disease model. J. Clin. Neurosci. 2010 17 8 1025 1033 10.1016/j.jocn.2010.04.020 20537899
    [Google Scholar]
  83. Neale D.A. Morris J.C. Verrills N.M. Ammit A.J. Understanding the regulatory landscape of protein phosphatase 2A (PP2A): Pharmacological modulators and potential therapeutics. Pharmacol. Ther. 2025 269 108834 10.1016/j.pharmthera.2025.108834 40023321
    [Google Scholar]
  84. Soeda Y. Takashima A. New insights into drug discovery targeting tau protein. Front. Mol. Neurosci. 2020 13 590896 10.3389/fnmol.2020.590896 33343298
    [Google Scholar]
  85. Sadleir K.R. Vassar R. Cdk5 protein inhibition and Aβ42 increase BACE1 protein level in primary neurons by a post-transcriptional mechanism: implications of CDK5 as a therapeutic target for Alzheimer disease. J. Biol. Chem. 2012 287 10 7224 7235 10.1074/jbc.M111.333914 22223639
    [Google Scholar]
  86. Munshi A. Ramesh R. Mitogen-activated protein kinases and their role in radiation response. Genes Cancer 2013 4 9-10 401 408 10.1177/1947601913485414 24349638
    [Google Scholar]
  87. Willeman M.N. Mennenga S.E. Siniard A.L. Corneveaux J.J. De Both M. Hewitt L.T. Tsang C.W.S. Caselli J. Braden B.B. Bimonte-Nelson H.A. Huentelman M.J. The PKC-β selective inhibitor, Enzastaurin, impairs memory in middle-aged rats. PLoS One 2018 13 6 0198256 10.1371/journal.pone.0198256 29870545
    [Google Scholar]
  88. Li S. Jakobs T.C. Secreted phosphoprotein 1 slows neurodegeneration and rescues visual function in mouse models of aging and glaucoma. Cell Rep. 2022 41 13 111880 10.1016/j.celrep.2022.111880 36577373
    [Google Scholar]
  89. Zhang W. Xiao D. Mao Q. Xia H. Role of neuroinflammation in neurodegeneration development. Signal Transduct. Target. Ther. 2023 8 1 267 10.1038/s41392‑023‑01486‑5 37433768
    [Google Scholar]
  90. Hou S.J. Zhang S.X. Li Y. Xu S.Y. Rapamycin responds to Alzheimer’s disease: A potential translational therapy. Clin. Interv. Aging 2023 18 1629 1639 10.2147/CIA.S429440 37810956
    [Google Scholar]
  91. Roth A. Gihring A. Göser F. Peifer C. Knippschild U. Bischof J. Assessing the inhibitory potential of kinase inhibitors in vitro: Major pitfalls and suggestions for improving comparability of data using CK1 inhibitors as an example. Molecules 2021 26 16 4898 10.3390/molecules26164898 34443486
    [Google Scholar]
  92. Paes D. Picking the best isoform: PDE4D isoforms as therapeutic targets in Alzheimer’s disease. Maastricht Maastricht University 2023 10.26481/dis.20231117dp
    [Google Scholar]
  93. Naert G. Ferré V. Meunier J. Keller E. Malmström S. Givalois L. Carreaux F. Bazureau J.P. Maurice T. Leucettine L41, a DYRK1A-preferential DYRKs/CLKs inhibitor, prevents memory impairments and neurotoxicity induced by oligomeric Aβ25-35 peptide administration in mice. Eur. Neuropsychopharmacol. 2015 25 11 2170 2182 10.1016/j.euroneuro.2015.03.018 26381812
    [Google Scholar]
  94. Pérez M. Hernández F. Lim F. Díaz-Nido J. Avila J. Chronic lithium treatment decreases mutant tau protein aggregation in a transgenic mouse model. J. Alzheimers Dis. 2003 5 4 301 308 10.3233/JAD‑2003‑5405 14624025
    [Google Scholar]
  95. Hu S. Begum A.N. Jones M.R. Oh M.S. Beech W.K. Beech B.H. Yang F. Chen P. Ubeda O.J. Kim P.C. Davies P. Ma Q. Cole G.M. Frautschy S.A. GSK3 inhibitors show benefits in an Alzheimer’s disease (AD) model of neurodegeneration but adverse effects in control animals. Neurobiol. Dis. 2009 33 2 193 206 10.1016/j.nbd.2008.10.007 19038340
    [Google Scholar]
  96. Congdon E.E. Sigurdsson E.M. Tau-targeting therapies for Alzheimer disease. Nat. Rev. Neurol. 2018 14 7 399 415 10.1038/s41582‑018‑0013‑z 29895964
    [Google Scholar]
  97. Medina M. Garrido J.J. Wandosell F.G. Modulation of GSK-3 as a therapeutic strategy on Tau pathologies. Front. Mol. Neurosci. 2011 4 24 10.3389/fnmol.2011.00024 22007157
    [Google Scholar]
  98. Bhat R.V. Andersson U. Andersson S. Knerr L. Bauer U. Sundgren-Andersson A.K. The conundrum of GSK3 inhibitors: Is it the dawn of a new beginning? J. Alzheimers Dis. 2018 64 s1 S547 S554 10.3233/JAD‑179934 29758944
    [Google Scholar]
  99. Höglinger G.U. Huppertz H.J. Wagenpfeil S. Andrés M.V. Belloch V. León T. del Ser T. Tideglusib reduces progression of brain atrophy in progressive supranuclear palsy in a randomized trial. Mov. Disord. 2014 29 4 479 487 10.1002/mds.25815 24488721
    [Google Scholar]
  100. Machado-Vieira R. Manji H.K. Zarate C.A. The role of lithium in the treatment of bipolar disorder: Convergent evidence for neurotrophic effects as a unifying hypothesis. Bipolar Disord. 2009 11 Suppl. 2 92 109 10.1111/j.1399‑5618.2009.00714.x 19538689
    [Google Scholar]
  101. Yang W. Xu Q.Q. Yuan Q. Xian Y.F. Lin Z.X. Sulforaphene, a CDK5 Inhibitor, attenuates cognitive deficits in a transgenic mouse model of Alzheimer’s disease via reducing Aβ Deposition, tau hyperphosphorylation and synaptic dysfunction. Int. Immunopharmacol. 2023 114 109504 10.1016/j.intimp.2022.109504 36508924
    [Google Scholar]
  102. Sundaram J.R. Poore C.P. Sulaimee N.H.B. Pareek T. Asad A.B.M.A. Rajkumar R. Cheong W.F. Wenk M.R. Dawe G.S. Chuang K.H. Pant H.C. Kesavapany S. Specific inhibition of p25/Cdk5 activity by the Cdk5 inhibitory peptide reduces neurodegeneration in vivo. J. Neurosci. 2013 33 1 334 343 10.1523/JNEUROSCI.3593‑12.2013 23283346
    [Google Scholar]
  103. Cicenas J. Kalyan K. Sorokinas A. Stankunas E. Levy J. Meskinyte I. Stankevicius V. Kaupinis A. Valius M. Roscovitine in cancer and other diseases. Ann. Transl. Med. 2015 3 10 135 26207228
    [Google Scholar]
  104. Pao P.C. Tsai L.H. Three decades of Cdk5. J. Biomed. Sci. 2021 28 1 79 10.1186/s12929‑021‑00774‑y 34814918
    [Google Scholar]
  105. Lu T.T. Wan C. Yang W. Cai Z. Role of Cdk5 in amyloid-beta pathology of Alzheimer’s disease. Curr. Alzheimer Res. 2020 16 13 1206 1215 10.2174/1567205016666191210094435 31820699
    [Google Scholar]
  106. Bain J. Plater L. Elliott M. Shpiro N. Hastie C.J. Mclauchlan H. Klevernic I. Arthur J.S.C. Alessi D.R. Cohen P. The selectivity of protein kinase inhibitors: A further update. Biochem. J. 2007 408 3 297 315 10.1042/BJ20070797 17850214
    [Google Scholar]
  107. Bonny C. Oberson A. Negri S. Sauser C. Schorderet D.F. Cell-permeable peptide inhibitors of JNK: Novel blockers of beta-cell death. Diabetes 2001 50 1 77 82 10.2337/diabetes.50.1.77 11147798
    [Google Scholar]
  108. Plantevin Krenitsky V. Nadolny L. Delgado M. Ayala L. Clareen S.S. Hilgraf R. Albers R. Hegde S. D’Sidocky N. Sapienza J. Wright J. McCarrick M. Bahmanyar S. Chamberlain P. Delker S.L. Muir J. Giegel D. Xu L. Celeridad M. Lachowitzer J. Bennett B. Moghaddam M. Khatsenko O. Katz J. Fan R. Bai A. Tang Y. Shirley M.A. Benish B. Bodine T. Blease K. Raymon H. Cathers B.E. Satoh Y. Discovery of CC-930, an orally active anti-fibrotic JNK inhibitor. Bioorg. Med. Chem. Lett. 2012 22 3 1433 1438 10.1016/j.bmcl.2011.12.027 22244937
    [Google Scholar]
  109. van der Velden J.L.J. Ye Y. Nolin J.D. Hoffman S.M. Chapman D.G. Lahue K.G. Abdalla S. Chen P. Liu Y. Bennett B. Khalil N. Sutherland D. Smith W. Horan G. Assaf M. Horowitz Z. Chopra R. Stevens R.M. Palmisano M. Janssen-Heininger Y.M.W. Schafer P.H. JNK inhibition reduces lung remodeling and pulmonary fibrotic systemic markers. Clin. Transl. Med. 2016 5 1 36 10.1186/s40169‑016‑0117‑2 27590145
    [Google Scholar]
  110. Li Z. Yin B. Zhang S. Lan Z. Zhang L. Targeting protein kinases for the treatment of Alzheimer’s disease: Recent progress and future perspectives. Eur. J. Med. Chem. 2023 261 115817 10.1016/j.ejmech.2023.115817 37722288
    [Google Scholar]
  111. Lovestone S. Boada M. Dubois B. Hüll M. Rinne J.O. Huppertz H.J. Calero M. Andrés M.V. Gómez-Carrillo B. León T. del Ser T. A phase II trial of tideglusib in Alzheimer’s disease. J. Alzheimers Dis. 2015 45 1 75 88 10.3233/JAD‑141959 25537011
    [Google Scholar]
  112. Meijer L. Borgne A. Mulner O. Chong J.P.J. Blow J.J. Inagaki N. Inagaki M. Delcros J.G. Moulinoux J.P. Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5. Eur. J. Biochem. 1997 243 1-2 527 536 10.1111/j.1432‑1033.1997.t01‑2‑00527.x 9030781
    [Google Scholar]
  113. Donadio G. Mensitieri F. Santoro V. Parisi V. Bellone M.L. De Tommasi N. Izzo V. Dal Piaz F. Interactions with microbial proteins driving the antibacterial activity of flavonoids. Pharmaceutics 2021 13 5 660 10.3390/pharmaceutics13050660 34062983
    [Google Scholar]
/content/journals/cn/10.2174/011570159X379926250801062557
Loading
/content/journals/cn/10.2174/011570159X379926250801062557
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test