Skip to content
2000
image of Delivery of Nerve Growth Factor via Exosome Attenuates Neuropathic Pain in a Rat Model of Chronic Constriction Injury

Abstract

Introduction

The nerve growth factor (NGF) is a crucial neurotrophic factor with the ability to induce neuronal differentiation. However, whether NGF-loaded exosomes (Exo-NGF) can alleviate neuropathic pain in chronic constriction injury (CCI) rats remains unclear.

Methods

A neuropathic pain model was established using CCI rats. The pain was assessed using the von Frey test and the hot plate test. Exo-NGF was collected from HEK293 cells transfected with an NGF plasmid. The diameter of Exo-NGF was determined using transmission electron microscopy. Protein levels of inflammatory factors, including IL-18, IL-1β, and TNF-α, were measured using enzyme-linked immunosorbent assay, and their mRNA levels were evaluated using qPCR. The NOD-like receptor family pyrin domain-containing protein 3 (NLRP3) protein levels were determined using immunostaining and Western blot.

Results

NGF protein and mRNA were highly expressed in Exo-NGF. The mRNA in Exo-NGF was successfully delivered into neural stem cells and promoted their differentiation. Injection of Exo-NGF into the spinal dorsal horn significantly alleviated mechanical allodynia and thermal hyperalgesia. Additionally, Exo-NGF reduced levels of IL-18, IL-1β, and TNF-α. NLRP3 and its key components, including apoptosis-associated speck-like protein and caspase-1, were also reduced by Exo-NGF treatment in CCI rats.

Discussion

Our findings highlight the therapeutic potential of exosome-based NGF delivery for treating chronic pain conditions.

Conclusion

Exo-NGF significantly alleviates neuropathic pain by suppressing inflammation and NLRP3 activation.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X352871250404101246
2025-10-08
2025-10-18
Loading full text...

Full text loading...

References

  1. Cohen S.P. Mao J. Neuropathic pain: Mechanisms and their clinical implications. BMJ 2014 348 (feb05 6), f7656 10.1136/bmj.f7656 24500412
    [Google Scholar]
  2. Colloca L. Ludman T. Bouhassira D. Baron R. Dickenson A.H. Yarnitsky D. Freeman R. Truini A. Attal N. Finnerup N.B. Eccleston C. Kalso E. Bennett D.L. Dworkin R.H. Raja S.N. Neuropathic pain. Nat. Rev. Dis. Primers 2017 3 1 17002 10.1038/nrdp.2017.2 28205574
    [Google Scholar]
  3. Safieh-Garabedian B. Nomikos M. Saadé N. Targeting inflammatory components in neuropathic pain: The analgesic effect of thymulin related peptide. Neurosci. Lett. 2019 702 61 65 10.1016/j.neulet.2018.11.041 30503917
    [Google Scholar]
  4. Bhagwani A. Chopra M. Kumar H. Spinal cord injury provoked neuropathic pain and spasticity, and their gabaergic connection. Neurospine 2022 19 3 646 668 10.14245/ns.2244368.184 36203291
    [Google Scholar]
  5. Gadot R. Smith D.N. Prablek M. Grochmal J.K. Fuentes A. Ropper A.E. Established and emerging therapies in acute spinal cord injury. Neurospine 2022 19 2 283 296 10.14245/ns.2244176.088 35793931
    [Google Scholar]
  6. Lewis N.E. Tabarestani T.Q. Cellini B.R. Zhang N. Marrotte E.J. Wang H. Laskowitz D.T. Abd-El-Barr M.M. Faw T.D. Effect of acute physical interventions on pathophysiology and recovery after spinal cord injury: A comprehensive review of the literature. Neurospine 2022 19 3 671 686 10.14245/ns.2244476.238 36203293
    [Google Scholar]
  7. Meacham K. Shepherd A. Mohapatra D.P. Haroutounian S. Neuropathic pain: Central vs. peripheral mechanisms. Curr. Pain Headache Rep. 2017 21 6 28 10.1007/s11916‑017‑0629‑5 28432601
    [Google Scholar]
  8. Jensen T.S. Finnerup N.B. Allodynia and hyperalgesia in neuropathic pain: Clinical manifestations and mechanisms. Lancet Neurol. 2014 13 9 924 935 10.1016/S1474‑4422(14)70102‑4 25142459
    [Google Scholar]
  9. Lamkanfi M. Dixit V.M. Mechanisms and functions of inflammasomes. Cell 2014 157 5 1013 1022 10.1016/j.cell.2014.04.007 24855941
    [Google Scholar]
  10. Hua T. Yang M. Song H. Kong E. Deng M. Li Y. Li J. Liu Z. Fu H. Wang Y. Yuan H. Huc-MSCs-derived exosomes attenuate inflammatory pain by regulating microglia pyroptosis and autophagy via the miR-146a-5p/TRAF6 axis. J. Nanobiotechnology 2022 20 1 324 10.1186/s12951‑022‑01522‑6 35836229
    [Google Scholar]
  11. Shi J. Zhao Y. Wang K. Shi X. Wang Y. Huang H. Zhuang Y. Cai T. Wang F. Shao F. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 2015 526 7575 660 665 10.1038/nature15514 26375003
    [Google Scholar]
  12. Nakahira M. Nakanishi K. Requirement of GATA-binding protein 3 for Il13 gene expression in IL-18-stimulated Th1 cells. Int. Immunol. 2011 23 12 761 772 10.1093/intimm/dxr087 22039015
    [Google Scholar]
  13. Walsh J.G. Reinke S.N. Mamik M.K. McKenzie B.A. Maingat F. Branton W.G. Broadhurst D.I. Power C. Rapid inflammasome activation in microglia contributes to brain disease in HIV/AIDS. Retrovirology 2014 11 1 35 10.1186/1742‑4690‑11‑35 24886384
    [Google Scholar]
  14. Zheng T. Wang Q. Bian F. Zhao Y. Ma W. Zhang Y. Lu W. Lei P. Zhang L. Hao X. Chen L. Salidroside alleviates diabetic neuropathic pain through regulation of the AMPK-NLRP3 inflammasome axis. Toxicol. Appl. Pharmacol. 2021 416 115468 10.1016/j.taap.2021.115468 33639149
    [Google Scholar]
  15. Cheng K.I. Chen S.L. Hsu J.H. Cheng Y.C. Chang Y.C. Lee C.H. Yeh J.L. Dai Z.K. Wu B.N. Loganin prevents CXCL12/] CXCR4-regulated neuropathic pain via the NLRP3 inflammasome axis in nerve-injured rats. Phytomedicine 2021 92 153734 10.1016/j.phymed.2021.153734 34536822
    [Google Scholar]
  16. Liu W. Wang Y. Gong F. Rong Y. Luo Y. Tang P. Zhou Z. Zhou Z. Xu T. Jiang T. Yang S. Yin G. Chen J. Fan J. Cai W. Exosomes derived from bone mesenchymal stem cells repair traumatic spinal cord injury by suppressing the activation of A1 neurotoxic reactive astrocytes. J. Neurotrauma 2019 36 3 469 484 10.1089/neu.2018.5835 29848167
    [Google Scholar]
  17. Osier N. Motamedi V. Edwards K. Puccio A. Diaz-Arrastia R. Kenney K. Gill J. Exosomes in acquired neurological disorders: New insights into pathophysiology and treatment. Mol. Neurobiol. 2018 55 12 9280 9293 10.1007/s12035‑018‑1054‑4 29663285
    [Google Scholar]
  18. Keefe K. Sheikh I. Smith G. Targeting neurotrophins to specific populations of neurons: NGF, BDNF, and NT-3 and their relevance for treatment of spinal cord injury. Int. J. Mol. Sci. 2017 18 3 548 10.3390/ijms18030548 28273811
    [Google Scholar]
  19. Han Z. Wang C.P. Cong N. Gu Y.Y. Ma R. Chi F.L. Therapeutic value of nerve growth factor in promoting neural stem cell survival and differentiation and protecting against neuronal hearing loss. Mol. Cell. Biochem. 2017 428 1-2 149 159 10.1007/s11010‑016‑2925‑5 28063006
    [Google Scholar]
  20. Song Z. Wang Z. Shen J. Xu S. Hu Z. Nerve growth factor delivery by ultrasound-mediated nanobubble destruction as a treatment for acute spinal cord injury in rats. Int. J. Nanomedicine 2017 12 1717 1729 10.2147/IJN.S128848 28280337
    [Google Scholar]
  21. Wang Y.Q. Wang J. Xia S. Gutstein H.B. Huang Y.H. Schlüter O.M. Cao J.L. Dong Y. Neuropathic pain generates silent synapses in thalamic projection to anterior cingulate cortex. Pain 2021 162 5 1322 1333 10.1097/j.pain.0000000000002149 33230002
    [Google Scholar]
  22. Sun K. Zhang H. Zhang T. Sun N. Hao J. Wang Z. Gao C. Spinal HDAC6 mediates nociceptive behaviors induced by chronic constriction injury via neuronal activation and neuroinflammation. Mol. Pain 2023 19 17448069231218352 10.1177/17448069231218352 37982151
    [Google Scholar]
  23. Chen S.H. Lin Y.W. Tseng W.L. Lin W.T. Lin S.C. Hsueh Y.Y. Ultrahigh frequency transcutaneous electrical nerve stimulation for neuropathic pain alleviation and neuromodulation. Neurotherapeutics 2024 21 3 e00336 10.1016/j.neurot.2024.e00336 38368171
    [Google Scholar]
  24. Xue C. Kui W. Huang A. Li Y. Li L. Gu Z. Xie L. Kong S. Yu J. Ruan H. Wang K. Electroacupuncture suppresses neuronal ferroptosis to relieve chronic neuropathic pain. J. Cell. Mol. Med. 2024 28 7 e18240 10.1111/jcmm.18240 38509741
    [Google Scholar]
  25. Fairbanks C.A. Spinal delivery of analgesics in experimental models of pain and analgesia. Adv. Drug Deliv. Rev. 2003 55 8 1007 1041 10.1016/S0169‑409X(03)00101‑7 12935942
    [Google Scholar]
  26. Wang J. Sun H. Guo R. Guo J. Tian X. Wang J. Sun S. Han Y. Wang Y. Exosomal miR-23b-3p from bone mesenchymal stem cells alleviates experimental autoimmune encephalomyelitis by inhibiting microglial pyroptosis. Exp. Neurol. 2023 363 114374 10.1016/j.expneurol.2023.114374 36907352
    [Google Scholar]
  27. Chen C. Smith M.T. The NLRP3 inflammasome: Role in the pathobiology of chronic pain. Inflammopharmacology 2023 31 4 1589 1603 10.1007/s10787‑023‑01235‑8 37106238
    [Google Scholar]
  28. Shiue S.J. Rau R.H. Shiue H.S. Hung Y.W. Li Z.X. Yang K.D. Cheng J.K. Mesenchymal stem cell exosomes as a cell-free therapy for nerve injury-induced pain in rats. Pain 2019 160 1 210 223 10.1097/j.pain.0000000000001395 30188455
    [Google Scholar]
  29. Minnone G. Benedetti D.F. Bracci-Laudiero L. NGF and its receptors in the regulation of inflammatory response. Int. J. Mol. Sci. 2017 18 5 1028 10.3390/ijms18051028 28492466
    [Google Scholar]
  30. Yang J. Wu S. Hou L. Zhu D. Yin S. Yang G. Wang Y. Therapeutic effects of simultaneous delivery of nerve growth factor mRNA and protein via exosomes on cerebral ischemia. Mol. Ther. Nucleic Acids 2020 21 512 522 10.1016/j.omtn.2020.06.013 32682291
    [Google Scholar]
  31. Chung J. Kubota H. Ozaki Y. Uda S. Kuroda S. Timing-dependent actions of NGF required for cell differentiation. PLoS One 2010 5 2 e9011 10.1371/journal.pone.0009011 20126402
    [Google Scholar]
  32. Mogil J.S. Chanda M.L. The case for the inclusion of female subjects in basic science studies of pain. Pain 2005 117 1 1 5 10.1016/j.pain.2005.06.020 16098670
    [Google Scholar]
  33. Coraggio V. Guida F. Boccella S. Scafuro M. Paino S. Romano D. Maione S. Luongo L. Neuroimmune-driven neuropathic pain establishment: A focus on gender differences. Int. J. Mol. Sci. 2018 19 1 281 10.3390/ijms19010281 29342105
    [Google Scholar]
  34. Sorge R.E. Mapplebeck J.C.S. Rosen S. Beggs S. Taves S. Alexander J.K. Martin L.J. Austin J.S. Sotocinal S.G. Chen D. Yang M. Shi X.Q. Huang H. Pillon N.J. Bilan P.J. Tu Y. Klip A. Ji R.R. Zhang J. Salter M.W. Mogil J.S. Different immune cells mediate mechanical pain hypersensitivity in male and female mice. Nat. Neurosci. 2015 18 8 1081 1083 10.1038/nn.4053 26120961
    [Google Scholar]
  35. Sorge R.E. Totsch S.K. Sex differences in pain. J. Neurosci. Res. 2017 95 6 1271 1281 10.1002/jnr.23841 27452349
    [Google Scholar]
  36. Boccella S. Guida F. Logu D.F. Gregorio D.D. Mazzitelli M. Belardo C. Iannotta M. Serra N. Nassini R. Novellis V. Geppetti P. Maione S. Luongo L. Ketones and pain: Unexplored role of hydroxyl carboxylic acid receptor type 2 in the pathophysiology of neuropathic pain. FASEB J. 2019 33 1 1062 1073 10.1096/fj.201801033R 30085883
    [Google Scholar]
  37. Datta-Mitra A. Kundu-Raychaudhuri S. Mitra A. Raychaudhuri S.P. Cross talk between neuroregulatory molecule and monocyte: Nerve growth factor activates the inflammasome. PLoS One 2015 10 4 e0121626 10.1371/journal.pone.0121626 25876154
    [Google Scholar]
  38. Wang Y. Li Y. Wang J. Zhao Q. Wen S. Wang S. Sun T. A novel mechanism of specialized proresolving lipid mediators mitigating radicular pain: The negative interaction with NLRP3 inflammasome. Neurochem. Res. 2020 45 8 1860 1869 10.1007/s11064‑020‑03050‑x 32410045
    [Google Scholar]
  39. Cowie A.M. Menzel A.D. O’Hara C. Lawlor M.W. Stucky C.L. NOD-like receptor protein 3 inflammasome drives postoperative mechanical pain in a sex-dependent manner. Pain 2019 160 8 1794 1816 10.1097/j.pain.0000000000001555 31335648
    [Google Scholar]
/content/journals/cn/10.2174/011570159X352871250404101246
Loading
/content/journals/cn/10.2174/011570159X352871250404101246
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keywords: Neuropathic pain ; inflammation ; neurotrophic factor ; exosome ; protein levels ; CCI rats ; von Frey test
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test