Skip to content
2000
image of MicroRNAs as Potential Biomarkers and Therapeutic Targets in Ischemic Stroke from the Perspective of Inflammation

Abstract

Ischemic stroke, triggered by the interruption of cerebral blood flow, initiates a complex inflammatory process involving both brain-resident and peripheral immune cells. Microglia, the primary brain-resident immune cells of high heterogeneity, regulate central nervous system inflammation upon activation. Activated microglia are commonly classified into two predominant phenotypes (pro-inflammatory M1 and anti-inflammatory M2), which exert dual effects through the secretion of distinct cytokine profiles. Peripheral immune cells, including monocytes, macrophages, and neutrophils, contribute to stroke pathogenesis and progression diverse inflammatory mechanisms. Multiple microRNAs regulate the inflammatory dynamics of ischemic stroke across all phases by modulating both brain-resident and peripheral immune cells. MicroRNAs play a pivotal role in the activation and polarization of microglia, as well as cytokine release. Furthermore, microRNAs modulate the activation and extravasation processes of peripheral leukocytes by enhancing or attenuating signaling pathways. These mechanisms suggest that microRNA alterations could be biomarkers for predicting, diagnosing, and prognosticating ischemic stroke. Additionally, microRNA modulation offers potential as a therapeutic strategy for the treatment of ischemic stroke.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X380644250707075513
2025-07-30
2025-10-18
Loading full text...

Full text loading...

References

  1. Johnson C.O. Nguyen M. Roth G.A. Nichols E. Alam T. Abate D. Abd-Allah F. Abdelalim A. Abraha H.N. Abu-Rmeileh N.M.E. Adebayo O.M. Adeoye A.M. Agarwal G. Agrawal S. Aichour A.N. Aichour I. Aichour M.T.E. Alahdab F. Ali R. Alvis-Guzman N. Anber N.H. Anjomshoa M. Arabloo J. Arauz A. Ärnlöv J. Arora A. Awasthi A. Banach M. Barboza M.A. Barker-Collo S.L. Bärnighausen T.W. Basu S. Belachew A.B. Belayneh Y.M. Bennett D.A. Bensenor I.M. Bhattacharyya K. Biadgo B. Bijani A. Bikbov B. Bin Sayeed M.S. Butt Z.A. Cahuana-Hurtado L. Carrero J.J. Carvalho F. Castañeda-Orjuela C.A. Castro F. Catalá-López F. Chaiah Y. Chiang P.P-C. Choi J-Y.J. Christensen H. Chu D-T. Cortinovis M. Damasceno A.A.M. Dandona L. Dandona R. Daryani A. Davletov K. de Courten B. De la Cruz-Góngora V. Degefa M.G. Dharmaratne S.D. Diaz D. Dubey M. Duken E.E. Edessa D. Endres M. Faraon E.J.A. Farzadfar F. Fernandes E. Fischer F. Flor L.S. Ganji M. Gebre A.K. Gebremichael T.G. Geta B. Gezae K.E. Gill P.S. Gnedovskaya E.V. Gómez-Dantés H. Goulart A.C. Grosso G. Guo Y. Gupta R. Haj-Mirzaian A. Haj-Mirzaian A. Hamidi S. Hankey G.J. Hassen H.Y. Hay S.I. Hegazy M.I. Heidari B. Herial N.A. Hosseini M.A. Hostiuc S. Irvani S.S.N. Islam S.M.S. Jahanmehr N. Javanbakht M. Jha R.P. Jonas J.B. Jozwiak J.J. Jürisson M. Kahsay A. Kalani R. Kalkonde Y. Kamil T.A. Kanchan T. Karch A. Karimi N. Karimi-Sari H. Kasaeian A. Kassa T.D. Kazemeini H. Kefale A.T. Khader Y.S. Khalil I.A. Khan E.A. Khang Y-H. Khubchandani J. Kim D. Kim Y.J. Kisa A. Kivimäki M. Koyanagi A. Krishnamurthi R.K. Kumar G.A. Lafranconi A. Lewington S. Li S. Lo W.D. Lopez A.D. Lorkowski S. Lotufo P.A. Mackay M.T. Majdan M. Majdzadeh R. Majeed A. Malekzadeh R. Manafi N. Mansournia M.A. Mehndiratta M.M. Mehta V. Mengistu G. Meretoja A. Meretoja T.J. Miazgowski B. Miazgowski T. Miller T.R. Mirrakhimov E.M. Mohajer B. Mohammad Y. Mohammadoo-khorasani M. Mohammed S. Mohebi F. Mokdad A.H. Mokhayeri Y. Moradi G. Morawska L. Moreno Velásquez I. Mousavi S.M. Muhammed O.S.S. Muruet W. Naderi M. Naghavi M. Naik G. Nascimento B.R. Negoi R.I. Nguyen C.T. Nguyen L.H. Nirayo Y.L. Norrving B. Noubiap J.J. Ofori-Asenso R. Ogbo F.A. Olagunju A.T. Olagunju T.O. Owolabi M.O. Pandian J.D. Patel S. Perico N. Piradov M.A. Polinder S. Postma M.J. Poustchi H. Prakash V. Qorbani M. Rafiei A. Rahim F. Rahimi K. Rahimi-Movaghar V. Rahman M. Rahman M.A. Reis C. Remuzzi G. Renzaho A.M.N. Ricci S. Roberts N.L.S. Robinson S.R. Roever L. Roshandel G. Sabbagh P. Safari H. Safari S. Safiri S. Sahebkar A. Salehi Zahabi S. Samy A.M. Santalucia P. Santos I.S. Santos J.V. Santric Milicevic M.M. Sartorius B. Sawant A.R. Schutte A.E. Sepanlou S.G. Shafieesabet A. Shaikh M.A. Shams-Beyranvand M. Sheikh A. Sheth K.N. Shibuya K. Shigematsu M. Shin M-J. Shiue I. Siabani S. Sobaih B.H. Sposato L.A. Sutradhar I. Sylaja P.N. Szoeke C.E.I. Te Ao B.J. Temsah M-H. Temsah O. Thrift A.G. Tonelli M. Topor-Madry R. Tran B.X. Tran K.B. Truelsen T.C. Tsadik A.G. Ullah I. Uthman O.A. Vaduganathan M. Valdez P.R. Vasankari T.J. Vasanthan R. Venketasubramanian N. Vosoughi K. Vu G.T. Waheed Y. Weiderpass E. Weldegwergs K.G. Westerman R. Wolfe C.D.A. Wondafrash D.Z. Xu G. Yadollahpour A. Yamada T. Yatsuya H. Yimer E.M. Yonemoto N. Yousefifard M. Yu C. Zaidi Z. Zamani M. Zarghi A. Zhang Y. Zodpey S. Feigin V.L. Vos T. Murray C.J.L. Global, regional, and national burden of stroke, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019 18 5 439 458 10.1016/S1474‑4422(19)30034‑1 30871944
    [Google Scholar]
  2. Feske S.K. Ischemic stroke. Am. J. Med. 2021 134 12 1457 1464 10.1016/j.amjmed.2021.07.027 34454905
    [Google Scholar]
  3. Dufouil C. Beiser A. McLure L.A. Wolf P.A. Tzourio C. Howard V.J. Westwood A.J. Himali J.J. Sullivan L. Aparicio H.J. Kelly-Hayes M. Ritchie K. Kase C.S. Pikula A. Romero J.R. D’Agostino R.B. Samieri C. Vasan R.S. Chêne G. Howard G. Seshadri S. Revised framingham stroke risk profile to reflect temporal trends. Circulation 2017 135 12 1145 1159 10.1161/CIRCULATIONAHA.115.021275 28159800
    [Google Scholar]
  4. McClure L.A. Kleindorfer D.O. Kissela B.M. Cushman M. Soliman E.Z. Howard G. Assessing the performance of the Framingham Stroke Risk Score in the reasons for geographic and racial differences in stroke cohort. Stroke 2014 45 6 1716 1720 10.1161/STROKEAHA.114.004915 24736237
    [Google Scholar]
  5. Fullerton J.L. Thomas J.M. Gonzalez-Trueba L. Trivett C. van Kralingen J.C. Allan S.M. Quinn T.J. Work L.M. Systematic review: Association between circulating microRNA expression & stroke. J. Cereb. Blood Flow Metab. 2022 42 6 935 951 10.1177/0271678X221085090 35240874
    [Google Scholar]
  6. Kadir R.R.A. Alwjwaj M. Bayraktutan U. MicroRNA: An emerging predictive, diagnostic, prognostic and therapeutic strategy in ischaemic stroke. Cell. Mol. Neurobiol. 2022 42 5 1301 1319 10.1007/s10571‑020‑01028‑5 33368054
    [Google Scholar]
  7. Hopyan J. Ciarallo A. Dowlatshahi D. Howard P. John V. Yeung R. Zhang L. Kim J. MacFarlane G. Lee T.Y. Aviv R.I. Certainty of stroke diagnosis: Incremental benefit with CT perfusion over noncontrast CT and CT angiography. Radiology 2010 255 1 142 153 10.1148/radiol.09091021 20308452
    [Google Scholar]
  8. Hand P.J. Wardlaw J.M. Rivers C.S. Armitage P.A. Bastin M.E. Lindley R.I. Dennis M.S. MR diffusion-weighted imaging and outcome prediction after ischemic stroke. Neurology 2006 66 8 1159 1163 10.1212/01.wnl.0000202524.43850.81 16525124
    [Google Scholar]
  9. Venkat A. Cappelen-Smith C. Askar S. Thomas P.R. Bhaskar S. Tam A. McDougall A.J. Hodgkinson S.J. Cordato D.J. Factors associated with stroke misdiagnosis in the emergency department: A retrospective case-control study. Neuroepidemiology 2018 51 3-4 123 127 10.1159/000491635 30092562
    [Google Scholar]
  10. Liberman A.L. Skillings J. Greenberg P. Newman-Toker D.E. Siegal D. Breakdowns in the initial patient-provider encounter are a frequent source of diagnostic error among ischemic stroke cases included in a large medical malpractice claims database. Diagnosis (Berl.) 2020 7 1 37 43 10.1515/dx‑2019‑0031 31535831
    [Google Scholar]
  11. Powers W.J. Rabinstein A.A. Ackerson T. Adeoye O.M. Bambakidis N.C. Becker K. Biller J. Brown M. Demaerschalk B.M. Hoh B. Jauch E.C. Kidwell C.S. Leslie-Mazwi T.M. Ovbiagele B. Scott P.A. Sheth K.N. Southerland A.M. Summers D.V. Tirschwell D.L. 2018 guidelines for the early management of patients with acute ischemic stroke: A Guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2018 49 3 e46 e110 10.1161/STR.0000000000000158 29367334
    [Google Scholar]
  12. Turc G. Bhogal P. Fischer U. Khatri P. Lobotesis K. Mazighi M. Schellinger P.D. Toni D. de Vries J. White P. Fiehler J. European Stroke Organisation (ESO) - European Society for Minimally Invasive Neurological Therapy (ESMINT) guidelines on mechanical thrombectomy in acute ischemic stroke. J. Neurointerv. Surg. 2023 15 8 e8 10.1136/neurintsurg‑2018‑014569 30808653
    [Google Scholar]
  13. Thiebaut A.M. Gauberti M. Ali C. Martinez De Lizarrondo S. Vivien D. Yepes M. Roussel B.D. The role of plasminogen activators in stroke treatment: Fibrinolysis and beyond. Lancet Neurol. 2018 17 12 1121 1132 10.1016/S1474‑4422(18)30323‑5 30507392
    [Google Scholar]
  14. Ozaki T. Nakamura H. Kishima H. Therapeutic strategy against ischemic stroke with the concept of neurovascular unit. Neurochem. Int. 2019 126 246 251 10.1016/j.neuint.2019.03.022 30946849
    [Google Scholar]
  15. Rinaldo L. Rabinstein A.A. Cloft H. Knudsen J.M. Castilla L.R. Brinjikji W. Racial and ethnic disparities in the utilization of thrombectomy for acute stroke. Stroke 2019 50 9 2428 2432 10.1161/STROKEAHA.118.024651 31366313
    [Google Scholar]
  16. Tao T. Liu M. Chen M. Luo Y. Wang C. Xu T. Jiang Y. Guo Y. Zhang J.H. Natural medicine in neuroprotection for ischemic stroke: Challenges and prospective. Pharmacol. Ther. 2020 216 107695 10.1016/j.pharmthera.2020.107695 32998014
    [Google Scholar]
  17. Puig J. Shankar J. Liebeskind D. Terceño M. Nael K. Demchuk A.M. Menon B. Dowlatshahi D. Leiva-Salinas C. Wintermark M. Thomalla G. Silva Y. Serena J. Pedraza S. Essig M. From “Time is Brain” to “Imaging is Brain”: A paradigm shift in the management of acute ischemic stroke. J. Neuroimaging 2020 30 5 562 571 10.1111/jon.12693 32037629
    [Google Scholar]
  18. Perez-de-Puig I. Miró-Mur F. Ferrer-Ferrer M. Gelpi E. Pedragosa J. Justicia C. Urra X. Chamorro A. Planas A.M. Neutrophil recruitment to the brain in mouse and human ischemic stroke. Acta Neuropathol. 2015 129 2 239 257 10.1007/s00401‑014‑1381‑0 25548073
    [Google Scholar]
  19. Iadecola C. Buckwalter M.S. Anrather J. Immune responses to stroke: Mechanisms, modulation, and therapeutic potential. J. Clin. Invest. 2020 130 6 2777 2788 10.1172/JCI135530 32391806
    [Google Scholar]
  20. Zhang X. Cai Y. Sit B.H.M. Jian R.X. Malki Y. Zhang Y. Ong C.C.Y. Li Q. Lam R.P.K. Rainer T.H. Cell-free nucleic acids for early diagnosis of acute ischemic stroke: A systematic review and meta-analysis. Int. J. Mol. Sci. 2025 26 4 1530 10.3390/ijms26041530 40003998
    [Google Scholar]
  21. Elhorany M. El-Horany H.E. Abd-Ellatif R.N. Dawood L.M. Watany M.M. Basiouny M.A. Hegab I.I. Alsheikh M.Y. Kabel A.M. Atef M.M. The expression and significance of long noncoding RNA XIST/microRNA-340-5p axis and metabolic reprogramming biomarkers in acute cerebrovascular stroke patients: A cross-sectional study. Medicine (Baltimore) 2024 103 52 e41092 10.1097/MD.0000000000041092 39969331
    [Google Scholar]
  22. Mainali S. Nepal G. Shumilov K. Webb A. Fadda P. Mirebrahimi D. Hamed M. Nana-Sinkam P. Worrall B.B. Woo D. Johnson N. MicroRNA expression profile in acute ischemic stroke. Int. J. Mol. Sci. 2025 26 2 747 10.3390/ijms26020747 39859461
    [Google Scholar]
  23. Yang Y. Wang G. Tang Y. Correlation of miRNAs with infarct volume in patients with acute ischemic stroke: A systematic review. Medicine (Baltimore) 2024 103 50 e40728 10.1097/MD.0000000000040728 39686477
    [Google Scholar]
  24. Carthew R.W. Sontheimer E.J. Origins and Mechanisms of miRNAs and siRNAs. Cell 2009 136 4 642 655 10.1016/j.cell.2009.01.035 19239886
    [Google Scholar]
  25. Jiang Q. Li Y. Wu Q. Huang L. Xu J. Zeng Q. Pathogenic role of microRNAs in atherosclerotic ischemic stroke: Implications for diagnosis and therapy. Genes Dis. 2022 9 3 682 696 10.1016/j.gendis.2021.01.001 35782982
    [Google Scholar]
  26. Mehta S.L. Pandi G. Vemuganti R. Circular RNA expression profiles alter significantly in mouse brain after transient focal ischemia. Stroke 2017 48 9 2541 2548 10.1161/STROKEAHA.117.017469 28701578
    [Google Scholar]
  27. Li G. Morris-Blanco K.C. Lopez M.S. Yang T. Zhao H. Vemuganti R. Luo Y. Impact of microRNAs on ischemic stroke: From pre- to post-disease. Prog. Neurobiol. 2018 163-164 59 78 10.1016/j.pneurobio.2017.08.002 28842356
    [Google Scholar]
  28. Mirzaei H. Momeni F. Saadatpour L. Sahebkar A. Goodarzi M. Masoudifar A. Kouhpayeh S. Salehi H. Mirzaei H.R. Jaafari M.R. MicroRNA: Relevance to stroke diagnosis, prognosis, and therapy. J. Cell. Physiol. 2018 233 2 856 865 10.1002/jcp.25787 28067403
    [Google Scholar]
  29. Yang K. Zeng L. Ge A. Wang S. Zeng J. Yuan X. Mei Z. Wang G. Ge J. A systematic review of the research progress of non-coding RNA in neuroinflammation and immune regulation in cerebral infarction/ischemia-reperfusion injury. Front. Immunol. 2022 13 930171 10.3389/fimmu.2022.930171 36275741
    [Google Scholar]
  30. Iadecola C. Anrather J. The immunology of stroke: From mechanisms to translation. Nat. Med. 2011 17 7 796 808 10.1038/nm.2399 21738161
    [Google Scholar]
  31. Jin R. Liu L. Zhang S. Nanda A. Li G. Role of inflammation and its mediators in acute ischemic stroke. J. Cardiovasc. Transl. Res. 2013 6 5 834 851 10.1007/s12265‑013‑9508‑6 24006091
    [Google Scholar]
  32. Holtman I.R. Skola D. Glass C.K. Transcriptional control of microglia phenotypes in health and disease. J. Clin. Invest. 2017 127 9 3220 3229 10.1172/JCI90604 28758903
    [Google Scholar]
  33. Wolf S.A. Boddeke H.W.G.M. Kettenmann H. Microglia in physiology and disease. Annu. Rev. Physiol. 2017 79 1 619 643 10.1146/annurev‑physiol‑022516‑034406 27959620
    [Google Scholar]
  34. del Águila Á. Zhang R. Yu X. Dang L. Xu F. Zhang J. Jain V. Tian J. Zhong X.P. Sheng H. Yang W. Microglial heterogeneity in the ischemic stroke mouse brain of both sexes. Genome Med. 2024 16 1 95 10.1186/s13073‑024‑01368‑7 39095897
    [Google Scholar]
  35. Frost J.L. Schafer D.P. Microglia: Architects of the developing nervous system. Trends Cell Biol. 2016 26 8 587 597 10.1016/j.tcb.2016.02.006 27004698
    [Google Scholar]
  36. Hagemeyer N. Hanft K.M. Akriditou M.A. Unger N. Park E.S. Stanley E.R. Staszewski O. Dimou L. Prinz M. Microglia contribute to normal myelinogenesis and to oligodendrocyte progenitor maintenance during adulthood. Acta Neuropathol. 2017 134 3 441 458 10.1007/s00401‑017‑1747‑1 28685323
    [Google Scholar]
  37. Matcovitch-Natan O. Winter D.R. Giladi A. Vargas Aguilar S. Spinrad A. Sarrazin S. Ben-Yehuda H. David E. Zelada González F. Perrin P. Keren-Shaul H. Gury M. Lara-Astaiso D. Thaiss C.A. Cohen M. Bahar Halpern K. Baruch K. Deczkowska A. Lorenzo-Vivas E. Itzkovitz S. Elinav E. Sieweke M.H. Schwartz M. Amit I. Microglia development follows a stepwise program to regulate brain homeostasis. Science 2016 353 6301 aad8670 10.1126/science.aad8670 27338705
    [Google Scholar]
  38. Hambardzumyan D. Gutmann D.H. Kettenmann H. The role of microglia and macrophages in glioma maintenance and progression. Nat. Neurosci. 2016 19 1 20 27 10.1038/nn.4185 26713745
    [Google Scholar]
  39. Lian L. Zhang Y. Liu L. Yang L. Cai Y. Zhang J. Xu S. Neuroinflammation in ischemic stroke: Focus on MicroRNA-mediated polarization of microglia. Front. Mol. Neurosci. 2021 13 612439 10.3389/fnmol.2020.612439 33488360
    [Google Scholar]
  40. Clausen B.H. Lambertsen K.L. Babcock A.A. Holm T.H. Dagnaes-Hansen F. Finsen B. Interleukin-1beta and tumor necrosis factor-alpha are expressed by different subsets of microglia and macrophages after ischemic stroke in mice. J. Neuroinflammation 2008 5 1 46 10.1186/1742‑2094‑5‑46 18947400
    [Google Scholar]
  41. Perego C. Fumagalli S. De Simoni M.G. Temporal pattern of expression and colocalization of microglia/macrophage phenotype markers following brain ischemic injury in mice. J. Neuroinflammation 2011 8 1 174 10.1186/1742‑2094‑8‑174 22152337
    [Google Scholar]
  42. Neumann H. Kotter M.R. Franklin R.J.M. Debris clearance by microglia: An essential link between degeneration and regeneration. Brain 2008 132 2 288 295 10.1093/brain/awn109 18567623
    [Google Scholar]
  43. Neher J.J. Emmrich J.V. Fricker M. Mander P.K. Théry C. Brown G.C. Phagocytosis executes delayed neuronal death after focal brain ischemia. Proc. Natl. Acad. Sci. USA 2013 110 43 E4098 E4107 10.1073/pnas.1308679110 24101459
    [Google Scholar]
  44. Klein R.S. Garber C. Howard N. Infectious immunity in the central nervous system and brain function. Nat. Immunol. 2017 18 2 132 141 10.1038/ni.3656 28092376
    [Google Scholar]
  45. DiSabato D.J. Quan N. Godbout J.P. Neuroinflammation: The devil is in the details. J. Neurochem. 2016 139 136 10.1111/jnc.13607
    [Google Scholar]
  46. Kempuraj D. Thangavel R. Natteru P.A. Selvakumar G.P. Saeed D. Zahoor H. Zaheer S. Iyer S.S. Zaheer A. Neuroinflammation induces neurodegeneration. Neurol. Neurosurg. Spine 2016 1 1 1003 [PMID: 28127589
    [Google Scholar]
  47. Jiang C.T. Wu W.F. Deng Y.H. Ge J.W. Modulators of microglia activation and polarization in ischemic stroke. (Review) Mol. Med. Rep. 2020 21 5 2006 2018 10.3892/mmr.2020.11003 32323760
    [Google Scholar]
  48. Shu Z.M. Shu X.D. Li H.Q. Sun Y. Shan H. Sun X.Y. Du R.H. Lu M. Xiao M. Ding J.H. Hu G. Ginkgolide B. Ginkgolide B protects against ischemic stroke via modulating microglia polarization in mice. CNS Neurosci. Ther. 2016 22 9 729 739 10.1111/cns.12577 27306494
    [Google Scholar]
  49. Wan T. Huang Y. Gao X. Wu W. Guo W. Microglia polarization: A novel target of exosome for stroke treatment. Front. Cell Dev. Biol. 2022 10 842320 10.3389/fcell.2022.842320 35356292
    [Google Scholar]
  50. Liu X. Liu J. Zhao S. Zhang H. Cai W. Cai M. Ji X. Leak R.K. Gao Y. Chen J. Hu X. Interleukin-4 is essential for Microglia/Macrophage M2 polarization and long-term recovery after cerebral ischemia. Stroke 2016 47 2 498 504 10.1161/STROKEAHA.115.012079 26732561
    [Google Scholar]
  51. Kumar A. Bhatia H.S. de Oliveira A.C.P. Fiebich B.L. microRNA‐26a modulates inflammatory response induced by toll‐like receptor 4 stimulation in microglia. J. Neurochem. 2015 135 6 1189 1202 10.1111/jnc.13364 26376347
    [Google Scholar]
  52. Tobin M.K. Bonds J.A. Minshall R.D. Pelligrino D.A. Testai F.D. Lazarov O. Neurogenesis and inflammation after ischemic stroke: What is known and where we go from here. J. Cereb. Blood Flow Metab. 2014 34 10 1573 1584 10.1038/jcbfm.2014.130 25074747
    [Google Scholar]
  53. Yong H.Y.F. Rawji K.S. Ghorbani S. Xue M. Yong V.W. The benefits of neuroinflammation for the repair of the injured central nervous system. Cell. Mol. Immunol. 2019 16 6 540 546 10.1038/s41423‑019‑0223‑3 30874626
    [Google Scholar]
  54. Barakat R. Redzic Z. The role of activated microglia and resident macrophages in the neurovascular unit during cerebral ischemia: Is the jury still out? Med. Princ. Pract. 2016 25 1 3 10.1159/000435858
    [Google Scholar]
  55. Gaire B.P. Bae Y.J. Choi J.W. S1P 1 regulates M1/M2 polarization toward brain injury after transient focal cerebral ischemia. Biomol. Ther. (Seoul) 2019 27 6 522 529 10.4062/biomolther.2019.005 31181588
    [Google Scholar]
  56. wang, J.; xing, H.; wan, L.; jiang, X.; wang, C.; wu, Y. Treatment targets for M2 microglia polarization in ischemic stroke. Biomed. Pharmacother. 2018 105 518 525 10.1016/j.biopha.2018.05.143 29883947
    [Google Scholar]
  57. Wan S. Cheng Y. Jin H. Guo D. Hua Y. Keep R.F. Xi G. Microglia activation and polarization after intracerebral hemorrhage in mice: The role of protease-activated receptor-1. Transl. Stroke Res. 2016 7 6 478 487 10.1007/s12975‑016‑0472‑8 27206851
    [Google Scholar]
  58. Orecchioni M. Ghosheh Y. Pramod A.B. Ley K. Macrophage polarization: Different Gene Signatures in M1(LPS+) vs. Classically and M2(LPS–) vs. alternatively activated macrophages. Front. Immunol. 2019 10 1084 10.3389/fimmu.2019.01084 31178859
    [Google Scholar]
  59. Niu X. Schulert G.S. Functional regulation of macrophage phenotypes by MicroRNAs in inflammatory arthritis. Front. Immunol. 2019 10 2217 10.3389/fimmu.2019.02217 31572403
    [Google Scholar]
  60. Lange M.C. Ribas G. Scavasine V. Ducci R.D.P. Mendes D.C. Zétola V.H.F. Cabral N. Rundek T. Stroke recurrence in the different subtypes of ischemic stroke. The importance of the intracranial disease. Arq. Neuropsiquiatr. 2018 76 10 649 653 10.1590/0004‑282x20180095 30427503
    [Google Scholar]
  61. Wang Y. Zhao X. Liu L. Soo Y.O.Y. Pu Y. Pan Y. Wang Y. Zou X. Leung T.W.H. Cai Y. Bai Q. Wu Y. Wang C. Pan X. Luo B. Wong K.S.L. Zhang X. Sun X. Yu L. Guo M. Ma Q. Xiao B. Zhang L. Zhang Z. Xu A. Li J. Lin J. Xing C. Xu Y. Zheng R. Han Z. Yuan X. Cui W. Zou Y. Yan H. Prevalence and outcomes of symptomatic intracranial large artery stenoses and occlusions in China: the Chinese Intracranial Atherosclerosis (CICAS) Study. Stroke 2014 45 3 663 669 10.1161/STROKEAHA.113.003508 24481975
    [Google Scholar]
  62. Hilgendorf I. Swirski F.K. Robbins C.S. Monocyte fate in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2015 35 2 272 279 10.1161/ATVBAHA.114.303565 25538208
    [Google Scholar]
  63. Falcione S. Kamtchum-Tatuene J. Sykes G. Jickling G.C. RNA expression studies in stroke: What can they tell us about stroke mechanism? Curr. Opin. Neurol. 2020 33 1 24 29 10.1097/WCO.0000000000000786 31809333
    [Google Scholar]
  64. Garcia-Bonilla L. Faraco G. Moore J. Murphy M. Racchumi G. Srinivasan J. Brea D. Iadecola C. Anrather J. Spatio-temporal profile, phenotypic diversity, and fate of recruited monocytes into the post-ischemic brain. J. Neuroinflammation 2016 13 1 285 10.1186/s12974‑016‑0750‑0 27814740
    [Google Scholar]
  65. Wattananit S. Tornero D. Graubardt N. Memanishvili T. Monni E. Tatarishvili J. Miskinyte G. Ge R. Ahlenius H. Lindvall O. Schwartz M. Kokaia Z. Monocyte-derived macrophages contribute to spontaneous long-term functional recovery after stroke in mice. J. Neurosci. 2016 36 15 4182 4195 10.1523/JNEUROSCI.4317‑15.2016 27076418
    [Google Scholar]
  66. Miró-Mur F. Pérez-de-Puig I. Ferrer-Ferrer M. Urra X. Justicia C. Chamorro A. Planas A.M. Immature monocytes recruited to the ischemic mouse brain differentiate into macrophages with features of alternative activation. Brain Behav. Immun. 2016 53 18 33 10.1016/j.bbi.2015.08.010 26275369
    [Google Scholar]
  67. Chu H.X. Broughton B.R.S. Ah Kim H. Lee S. Drummond G.R. Sobey C.G. Evidence That Ly6C hi monocytes are protective in acute ischemic stroke by promoting M2 macrophage polarization. Stroke 2015 46 7 1929 1937 10.1161/STROKEAHA.115.009426 25999385
    [Google Scholar]
  68. Jickling G.C. Liu D. Ander B.P. Stamova B. Zhan X. Sharp F.R. Targeting neutrophils in ischemic stroke: Translational insights from experimental studies. J. Cereb. Blood Flow Metab. 2015 35 6 888 901 10.1038/jcbfm.2015.45 25806703
    [Google Scholar]
  69. Slota J.A. Booth S.A. MicroRNAs in neuroinflammation: Implications in disease pathogenesis, biomarker discovery and therapeutic applications. Noncoding RNA 2019 5 2 35 10.3390/ncrna5020035 31022830
    [Google Scholar]
  70. Cuartero M.I. Ballesteros I. Moraga A. Nombela F. Vivancos J. Hamilton J.A. Corbí Á.L. Lizasoain I. Moro M.A. N2 neutrophils, novel players in brain inflammation after stroke: Modulation by the PPARγ agonist rosiglitazone. Stroke 2013 44 12 3498 3508 10.1161/STROKEAHA.113.002470 24135932
    [Google Scholar]
  71. Gelderblom M. Gallizioli M. Ludewig P. Thom V. Arunachalam P. Rissiek B. Bernreuther C. Glatzel M. Korn T. Arumugam T.V. Sedlacik J. Gerloff C. Tolosa E. Planas A.M. Magnus T. IL-23 (Interleukin-23)–Producing conventional dendritic cells control the detrimental IL-17 (Interleukin-17) response in stroke. Stroke 2018 49 1 155 164 10.1161/STROKEAHA.117.019101 29212740
    [Google Scholar]
  72. Gan Y. Liu Q. Wu W. Yin J.X. Bai X.F. Shen R. Wang Y. Chen J. La Cava A. Poursine-Laurent J. Yokoyama W. Shi F.D. Ischemic neurons recruit natural killer cells that accelerate brain infarction. Proc. Natl. Acad. Sci. USA 2014 111 7 2704 2709 10.1073/pnas.1315943111 24550298
    [Google Scholar]
  73. Gelderblom M. Weymar A. Bernreuther C. Velden J. Arunachalam P. Steinbach K. Orthey E. Arumugam T.V. Leypoldt F. Simova O. Thom V. Friese M.A. Prinz I. Hölscher C. Glatzel M. Korn T. Gerloff C. Tolosa E. Magnus T. Neutralization of the IL-17 axis diminishes neutrophil invasion and protects from ischemic stroke. Blood 2012 120 18 3793 3802 10.1182/blood‑2012‑02‑412726 22976954
    [Google Scholar]
  74. Zhao H. Wang J. Gao L. Wang R. Liu X. Gao Z. Tao Z. Xu C. Song J. Ji X. Luo Y. MiRNA-424 protects against permanent focal cerebral ischemia injury in mice involving suppressing microglia activation. Stroke 2013 44 6 1706 1713 10.1161/STROKEAHA.111.000504 23613494
    [Google Scholar]
  75. Liu P. Zhao H. Wang R. Wang P. Tao Z. Gao L. Yan F. Liu X. Yu S. Ji X. Luo Y. MicroRNA-424 protects against focal cerebral ischemia and reperfusion injury in mice by suppressing oxidative stress. Stroke 2015 46 2 513 519 10.1161/STROKEAHA.114.007482 25523055
    [Google Scholar]
  76. Ni J. Wang X. Chen S. Liu H. Wang Y. Xu X. Cheng J. Jia J. Zhen X. MicroRNA let-7c-5p protects against cerebral ischemia injury via mechanisms involving the inhibition of microglia activation. Brain Behav. Immun. 2015 49 75 85 10.1016/j.bbi.2015.04.014 25934573
    [Google Scholar]
  77. Pena-Philippides J.C. Caballero-Garrido E. Lordkipanidze T. Roitbak T. In vivo inhibition of miR-155 significantly alters post-stroke inflammatory response. J. Neuroinflammation 2016 13 1 287 10.1186/s12974‑016‑0753‑x 27829437
    [Google Scholar]
  78. Caballero-Garrido E. Pena-Philippides J.C. Lordkipanidze T. Bragin D. Yang Y. Erhardt E.B. Roitbak T. In vivo inhibition of miR-155 promotes recovery after experimental mouse stroke. J. Neurosci. 2015 35 36 12446 12464 10.1523/JNEUROSCI.1641‑15.2015 26354913
    [Google Scholar]
  79. Zhang M. Gillaspy A.F. Gipson J.R. Cassidy B.R. Nave J.L. Brewer M.F. Stoner J.A. Chen J. Drevets D.A. Neuroinvasive Listeria monocytogenes infection triggers IFN-activation of microglia and upregulates microglial miR-155. Front. Immunol. 2018 9 2751 10.3389/fimmu.2018.02751 30538705
    [Google Scholar]
  80. Huang L. Ma Q. Li Y. Li B. Zhang L. Inhibition of microRNA-210 suppresses pro-inflammatory response and reduces acute brain injury of ischemic stroke in mice. Exp. Neurol. 2018 300 41 50 10.1016/j.expneurol.2017.10.024 29111308
    [Google Scholar]
  81. Bernardo-Castro S. Sousa J.A. Brás A. Cecília C. Rodrigues B. Almendra L. Machado C. Santo G. Silva F. Ferreira L. Santana I. Sargento-Freitas J. Pathophysiology of blood–brain barrier permeability throughout the different stages of ischemic stroke and its implication on hemorrhagic transformation and recovery. Front. Neurol. 2020 11 594672 10.3389/fneur.2020.594672 33362697
    [Google Scholar]
  82. Zhang L. Li Y.J. Wu X.Y. Hong Z. Wei W.S. Micro RNA -181c negatively regulates the inflammatory response in oxygen-glucose-deprived microglia by targeting Toll-like receptor 4. J. Neurochem. 2015 132 6 713 723 10.1111/jnc.13021 25545945
    [Google Scholar]
  83. Duan S. Wang F. Cao J. Wang C. Exosomes derived from MicroRNA-146a-5p-enriched bone marrow mesenchymal stem cells alleviate intracerebral hemorrhage by inhibiting neuronal apoptosis and microglial M1 polarization. Drug Des. Devel. Ther. 2020 14 3143 3158 10.2147/DDDT.S255828 32821084
    [Google Scholar]
  84. Freilich R.W. Woodbury M.E. Ikezu T. Integrated expression profiles of mRNA and miRNA in polarized primary murine microglia. PLoS One 2013 8 11 e79416 10.1371/journal.pone.0079416 24244499
    [Google Scholar]
  85. Aloi M.S. Su W. Garden G.A. The p53 transcriptional network influences microglia behavior and neuroinflammation. Crit. Rev. Immunol. 2015 35 5 401 415 10.1615/CritRevImmunol.v35.i5.40 26853851
    [Google Scholar]
  86. Hamzei Taj S. Kho W. Aswendt M. Collmann F.M. Green C. Adamczak J. Tennstaedt A. Hoehn M. Dynamic modulation of Microglia/Macrophage polarization by miR-124 after focal cerebral ischemia. J. Neuroimmune Pharmacol. 2016 11 4 733 748 10.1007/s11481‑016‑9700‑y 27539642
    [Google Scholar]
  87. Song Y. Li Z. He T. Qu M. Jiang L. Li W. Shi X. Pan J. Zhang L. Wang Y. Zhang Z. Tang Y. Yang G.Y. M2 microglia-derived exosomes protect the mouse brain from ischemia-reperfusion injury via exosomal miR-124. Theranostics 2019 9 10 2910 2923 10.7150/thno.30879 31244932
    [Google Scholar]
  88. Das A. Ganesh K. Khanna S. Sen C.K. Roy S. Engulfment of apoptotic cells by macrophages: A role of microRNA-21 in the resolution of wound inflammation. J. Immunol. 2014 192 3 1120 1129 10.4049/jimmunol.1300613 24391209
    [Google Scholar]
  89. Ti D. Hao H. Tong C. Liu J. Dong L. Zheng J. Zhao Y. Liu H. Fu X. Han W. LPS-preconditioned mesenchymal stromal cells modify macrophage polarization for resolution of chronic inflammation via exosome-shuttled let-7b. J. Transl. Med. 2015 13 1 308 10.1186/s12967‑015‑0642‑6 26386558
    [Google Scholar]
  90. Eirin A. Zhu X.Y. Puranik A.S. Woollard J.R. Tang H. Dasari S. Lerman A. van Wijnen A.J. Lerman L.O. Integrated transcriptomic and proteomic analysis of the molecular cargo of extracellular vesicles derived from porcine adipose tissue-derived mesenchymal stem cells. PLoS One 2017 12 3 e0174303 10.1371/journal.pone.0174303 28333993
    [Google Scholar]
  91. Thomi G. Surbek D. Haesler V. Joerger-Messerli M. Schoeberlein A. Exosomes derived from umbilical cord mesenchymal stem cells reduce microglia-mediated neuroinflammation in perinatal brain injury. Stem Cell Res. Ther. 2019 10 1 105 10.1186/s13287‑019‑1207‑z 30898154
    [Google Scholar]
  92. Liu W. Rong Y. Wang J. Zhou Z. Ge X. Ji C. Jiang D. Gong F. Li L. Chen J. Zhao S. Kong F. Gu C. Fan J. Cai W. Exosome-shuttled miR-216a-5p from hypoxic preconditioned mesenchymal stem cells repair traumatic spinal cord injury by shifting microglial M1/M2 polarization. J. Neuroinflammation 2020 17 1 47 10.1186/s12974‑020‑1726‑7 32019561
    [Google Scholar]
  93. Jickling G.C. Ander B.P. Shroff N. Orantia M. Stamova B. Dykstra-Aiello C. Hull H. Zhan X. Liu D. Sharp F.R. Leukocyte response is regulated by microRNA let7i in patients with acute ischemic stroke. Neurology 2016 87 21 2198 2205 10.1212/WNL.0000000000003354 27784773
    [Google Scholar]
  94. Jickling G.C. Ander B.P. Zhan X. Noblett D. Stamova B. Liu D. microRNA expression in peripheral blood cells following acute ischemic stroke and their predicted gene targets. PLoS One 2014 9 6 e99283 10.1371/journal.pone.0099283 24911610
    [Google Scholar]
  95. Liu X. Zhan Z. Xu L. Ma F. Li D. Guo Z. Li N. Cao X. MicroRNA-148/152 impair innate response and antigen presentation of TLR-triggered dendritic cells by targeting CaMKIIα. J. Immunol. 2010 185 12 7244 7251 10.4049/jimmunol.1001573 21068402
    [Google Scholar]
  96. Pan W. Zhu S. Yuan M. Cui H. Wang L. Luo X. Li J. Zhou H. Tang Y. Shen N. MicroRNA-21 and microRNA-148a contribute to DNA hypomethylation in lupus CD4+ T cells by directly and indirectly targeting DNA methyltransferase 1. J. Immunol. 2010 184 12 6773 6781 10.4049/jimmunol.0904060 20483747
    [Google Scholar]
  97. Philippe L. Alsaleh G. Suffert G. Meyer A. Georgel P. Sibilia J. Wachsmann D. Pfeffer S. TLR2 expression is regulated by microRNA miR-19 in rheumatoid fibroblast-like synoviocytes. J. Immunol. 2012 188 1 454 461 10.4049/jimmunol.1102348 22105995
    [Google Scholar]
  98. Ma X. Yun H.J. Elkin K. Guo Y. Ding Y. Li G. MicroRNA-29b suppresses inflammation and protects blood-brain barrier integrity in Ischemic Stroke. Mediators Inflamm. 2022 2022 1 11 10.1155/2022/1755416 36052307
    [Google Scholar]
  99. Lou Y.L. Guo F. Liu F. Gao F.L. Zhang P.Q. Niu X. Guo S.C. Yin J.H. Wang Y. Deng Z.F. miR-210 activates notch signaling pathway in angiogenesis induced by cerebral ischemia. Mol. Cell. Biochem. 2012 370 1-2 45 51 10.1007/s11010‑012‑1396‑6 22833359
    [Google Scholar]
  100. Yang G-Y. Liu J. Wang Y. Wang L. Weng S. Tang Y. Zheng C. Cheng Q. Chen S. Yang G.Y. MicroRNA-210 as a novel blood biomarker in acute cerebral ischemia. Front. Biosci. (Elite Ed.) 2011 E3 4 1265 1272 10.2741/e330 21622133
    [Google Scholar]
  101. Zhang H. Wu J. Wu J. Fan Q. Zhou J. Wu J. Liu S. Zang J. Ye J. Xiao M. Tian T. Gao J. Exosome-mediated targeted delivery of miR-210 for angiogenic therapy after cerebral ischemia in mice. J. Nanobiotechnology 2019 17 1 29 10.1186/s12951‑019‑0461‑7 30782171
    [Google Scholar]
  102. Juknat A. Gao F. Coppola G. Vogel Z. Kozela E. miRNA expression profiles and molecular networks in resting and LPS-activated BV-2 microglia—Effect of cannabinoids. PLoS One 2019 14 2 e0212039 10.1371/journal.pone.0212039 30742662
    [Google Scholar]
  103. Chu B. Zhou Y. Zhai H. Li L. Sun L. Li Y. The role of microRNA-146a in regulating the expression of IRAK1 in cerebral ischemia–reperfusion injury. Can. J. Physiol. Pharmacol. 2018 96 6 611 617 10.1139/cjpp‑2017‑0586 29505740
    [Google Scholar]
  104. Tian Y. Zhu P. Liu S. Jin Z. Li D. Zhao H. Zhu X. Shu C. Yan D. Dong Z. IL-4-polarized BV2 microglia cells promote angiogenesis by secreting exosomes. Adv. Clin. Exp. Med. 2019 28 4 421 430 10.17219/acem/91826 30684318
    [Google Scholar]
  105. Wang G. Zhang J. Hu X. Zhang L. Mao L. Jiang X. Liou A.K.F. Leak R.K. Gao Y. Chen J. Microglia/macrophage polarization dynamics in white matter after traumatic brain injury. J. Cereb. Blood Flow Metab. 2013 33 12 1864 1874 10.1038/jcbfm.2013.146 23942366
    [Google Scholar]
  106. Kumar A. Alvarez-Croda D.M. Stoica B.A. Faden A.I. Loane D.J. Microglial/Macrophage polarization dynamics following traumatic brain injury. J. Neurotrauma 2016 33 19 1732 1750 10.1089/neu.2015.4268 26486881
    [Google Scholar]
  107. Jickling G.C. Zhan X. Stamova B. Ander B.P. Tian Y. Liu D. Sison S.M. Verro P. Johnston S.C. Sharp F.R. Ischemic transient neurological events identified by immune response to cerebral ischemia. Stroke 2012 43 4 1006 1012 10.1161/STROKEAHA.111.638577 22308247
    [Google Scholar]
  108. Tang Y. Dong M.H. Pang X.W. Zhang H. Chu Y.H. Zhou L.Q. Yang S. Zhang L.Y. You Y.F. Zhu L.F. Wang W. Qin C. Tian D.S. Macrophage exosomal miR-30c-2-3p in atherosclerotic plaques aggravates microglial neuroinflammation during large-artery atherosclerotic stroke via TGF-β/SMAD2 pathway. J. Neuroinflammation 2024 21 1 292 10.1186/s12974‑024‑03281‑7 39511683
    [Google Scholar]
  109. Zhong Q. Nong Q. Mao B. Pan X. Meng L. Association of impaired vascular endothelial function with increased cardiovascular risk in asymptomatic adults. BioMed Res. Int. 2018 2018 1 9 10.1155/2018/3104945 30386792
    [Google Scholar]
  110. Vijayan M. Reddy P.H. Non-Coding RNAs based molecular links in type 2 diabetes, ischemic stroke, and vascular dementia. J. Alzheimers Dis. 2020 75 2 353 383 10.3233/JAD‑200070 32310177
    [Google Scholar]
  111. Rink C. Khanna S. MicroRNA in ischemic stroke etiology and pathology. Physiol. Genomics 2011 43 10 521 528 10.1152/physiolgenomics.00158.2010 20841499
    [Google Scholar]
  112. Sonoda T. Matsuzaki J. Yamamoto Y. Sakurai T. Aoki Y. Takizawa S. Niida S. Ochiya T. Serum microRNA-based risk prediction for stroke. Stroke 2019 50 6 1510 1518 10.1161/STROKEAHA.118.023648 31136284
    [Google Scholar]
  113. Jickling G.C. Sharp F.R. Biomarker panels in ischemic stroke. Stroke 2015 46 3 915 920 10.1161/STROKEAHA.114.005604 25657186
    [Google Scholar]
  114. Li W.A. Efendizade A. Ding Y. The role of microRNA in neuronal inflammation and survival in the post ischemic brain: A review. Neurol. Res. 2023 45 9 1 9 10.1080/01616412.2017.1327505 28552032
    [Google Scholar]
  115. Badacz R. Przewłocki T. Gacoń J. Stępień E. Enguita F.J. Karch I. Żmudka K. Kabłak-Ziembicka A. Circulating miRNA levels differ with respect to carotid plaque characteristics and symptom occurrence in patients with carotid artery stenosis and provide information on future cardiovascular events. Postepy Kardiol. Interwencyjnej 2018 14 1 75 84 10.5114/aic.2018.74358 29743907
    [Google Scholar]
  116. Tiedt S. Prestel M. Malik R. Schieferdecker N. Duering M. Kautzky V. Stoycheva I. Böck J. Northoff B.H. Klein M. Dorn F. Krohn K. Teupser D. Liesz A. Plesnila N. Holdt L.M. Dichgans M. RNA-Seq identifies circulating miR-125a-5p, miR-125b-5p, and miR-143-3p as potential biomarkers for acute ischemic stroke. Circ. Res. 2017 121 8 970 980 10.1161/CIRCRESAHA.117.311572 28724745
    [Google Scholar]
  117. Wang Y. Ma Z. Kan P. Zhang B. The diagnostic value of serum miRNA-221-3p, miRNA-382-5p, and miRNA-4271 in Ischemic stroke. J. Stroke Cerebrovasc. Dis. 2017 26 5 1055 1060 10.1016/j.jstrokecerebrovasdis.2016.12.019 28111007
    [Google Scholar]
  118. Zhou X. Qi L. miR-124 Is downregulated in serum of acute cerebral infarct patients and shows diagnostic and prognostic value. Clin. Appl. Thromb. Hemost. 2021 27 10760296211035446 10.1177/10760296211035446 34702084
    [Google Scholar]
  119. Long G. Wang F. Li H. Yin Z. Sandip C. Lou Y. Wang Y. Chen C. Wang D.W. Circulating miR-30a, miR-126 and let-7b as biomarker for ischemic stroke in humans. BMC Neurol. 2013 13 1 178 10.1186/1471‑2377‑13‑178 24237608
    [Google Scholar]
  120. Xie Q. Zhang X. Peng S. Sun J. Chen X. Deng Y. Yi L. Identification of novel biomarkers in ischemic stroke: A genome-wide integrated analysis. BMC Med. Genet. 2020 21 1 66 10.1186/s12881‑020‑00994‑3 32228489
    [Google Scholar]
  121. Weng R. Jiang Z. Gu Y. Noncoding RNA as diagnostic and prognostic biomarkers in cerebrovascular disease. Oxid. Med. Cell. Longev. 2022 2022 1 12 10.1155/2022/8149701 35498129
    [Google Scholar]
  122. van Kralingen J.C. McFall A. Ord E.N.J. Coyle T.F. Bissett M. McClure J.D. McCabe C. Macrae I.M. Dawson J. Work L.M. Altered extracellular vesicle MicroRNA expression in ischemic stroke and small vessel disease. Transl. Stroke Res. 2019 10 5 495 508 10.1007/s12975‑018‑0682‑3 30617992
    [Google Scholar]
  123. Gui Y. Xu Z. Jin T. Zhang L. Chen L. Hong B. Xie F. Lv W. Hu X. Using extracellular circulating microRNAs to classify the etiological subtypes of Ischemic stroke. Transl. Stroke Res. 2019 10 4 352 361 10.1007/s12975‑018‑0659‑2 30178428
    [Google Scholar]
  124. Leung L.Y. Chan C.P.Y. Leung Y.K. Jiang H.L. Abrigo J.M. Wang D.F. Chung J.S.H. Rainer T.H. Graham C.A. Comparison of miR-124-3p and miR-16 for early diagnosis of hemorrhagic and ischemic stroke. Clin. Chim. Acta 2014 433 139 144 10.1016/j.cca.2014.03.007 24650689
    [Google Scholar]
  125. Wang Y. Huang J. Ma Y. Tang G. Liu Y. Chen X. Zhang Z. Zeng L. Wang Y. Ouyang Y.B. Yang G.Y. MicroRNA-29b is a therapeutic target in cerebral ischemia associated with aquaporin 4. J. Cereb. Blood Flow Metab. 2015 35 12 1977 1984 10.1038/jcbfm.2015.156 26126866
    [Google Scholar]
  126. He X.W. Shi Y.H. Zhao R. Liu Y.S. Li G.F. Hu Y. Chen W. Cui G.H. Su J.J. Liu J.R. Plasma levels of miR-125b-5p and miR-206 in acute ischemic stroke patients after recanalization treatment: a prospective observational study. J. Stroke Cerebrovasc. Dis. 2019 28 6 1654 1661 10.1016/j.jstrokecerebrovasdis.2019.02.026 30878364
    [Google Scholar]
  127. He X.W. Shi Y.H. Liu Y.S. Li G.F. Zhao R. Hu Y. Lin C.C. Zhuang M.T. Su J.J. Liu J.R. Increased plasma levels of miR-124-3p, miR-125b-5p and miR-192-5p are associated with outcomes in acute ischaemic stroke patients receiving thrombolysis. Atherosclerosis 2019 289 36 43 10.1016/j.atherosclerosis.2019.08.002 31450012
    [Google Scholar]
  128. Rainer T.H. Leung L.Y. Chan C.P.Y. Leung Y.K. Abrigo J.M. Wang D. Graham C.A. Plasma miR-124-3p and miR-16 concentrations as prognostic markers in acute stroke. Clin. Biochem. 2016 49 9 663 668 10.1016/j.clinbiochem.2016.02.016 26968104
    [Google Scholar]
  129. Zheng L. Xiong Y. Liu J. Yang X. Wang L. Zhang S. Liu M. Wang D. MMP-9-Related microRNAs as prognostic markers for hemorrhagic transformation in cardioembolic stroke patients. Front. Neurol. 2019 10 945 10.3389/fneur.2019.00945 31555200
    [Google Scholar]
  130. Kim J.M. Jung K.H. Chu K. Lee S.T. Ban J. Moon J. Kim M. Lee S.K. Roh J.K. Atherosclerosis-related circulating MicroRNAs as a predictor of stroke recurrence. Transl. Stroke Res. 2015 6 3 191 197 10.1007/s12975‑015‑0390‑1 25697638
    [Google Scholar]
  131. Stary C.M. Xu L. Sun X. Ouyang Y.B. White R.E. Leong J. Li J. Xiong X. Giffard R.G. MicroRNA-200c contributes to injury from transient focal cerebral ischemia by targeting Reelin. Stroke 2015 46 2 551 556 10.1161/STROKEAHA.114.007041 25604249
    [Google Scholar]
  132. Fan Y. Ding S. Sun Y. Zhao B. Pan Y. Wan J. MiR-377 regulates inflammation and angiogenesis in rats after cerebral ischemic injury. J. Cell. Biochem. 2018 119 1 327 337 10.1002/jcb.26181 28569430
    [Google Scholar]
  133. Khoshnam S.E. Winlow W. Farbood Y. Moghaddam H.F. Farzaneh M. Emerging roles of microRNAs in Ischemic stroke: As possible therapeutic agents. J. Stroke 2017 19 2 166 187 10.5853/jos.2016.01368 28480877
    [Google Scholar]
  134. Li J.J. Wang B. Kodali M.C. Chen C. Kim E. Patters B.J. Lan L. Kumar S. Wang X. Yue J. Liao F.F. In vivo evidence for the contribution of peripheral circulating inflammatory exosomes to neuroinflammation. J. Neuroinflammation 2018 15 1 8 10.1186/s12974‑017‑1038‑8 29310666
    [Google Scholar]
  135. Jiang M. Wang H. Jin M. Yang X. Ji H. Jiang Y. Zhang H. Wu F. Wu G. Lai X. Cai L. Hu R. Xu L. Li L. Exosomes from MiR-30d-5p-ADSCs reverse acute ischemic stroke-induced, autophagy-mediated brain injury by promoting M2 Microglial/Macrophage polarization. Cell. Physiol. Biochem. 2018 47 2 864 878 10.1159/000490078 29807362
    [Google Scholar]
  136. Qi Z. Zhao Y. Su Y. Cao B. Yang J.J. Xing Q. Serum extracellular vesicle–derived mir-124-3p as a diagnostic and predictive marker for early-stage acute ischemic stroke. Front. Mol. Biosci. 2021 8 685088 10.3389/fmolb.2021.685088 34277703
    [Google Scholar]
  137. Yin X. Zhang C. Circulating miR-574–5p shows diagnostic and prognostic significance and regulates oxygen-glucose deprivation (OGD)-induced inflammatory activation of microglia by targeting ATP2B2. Mol. Cell. Probes 2025 79 102016 10.1016/j.mcp.2025.102016 39880338
    [Google Scholar]
  138. Chang H. Yi B. Ma R. Zhang X. Zhao H. Xi Y. CRISPR/cas9, a novel genomic tool to knock down microRNA in vitro and in vivo. Sci. Rep. 2016 6 1 22312 10.1038/srep22312 26924382
    [Google Scholar]
  139. Mai H. Fan W. Wang Y. Cai Y. Li X. Chen F. Chen X. Yang J. Tang P. Chen H. Zou T. Hong T. Wan C. Zhao B. Cui L. Intranasal administration of miR-146a Agomir rescued the pathological process and cognitive impairment in an AD mouse model. Mol. Ther. Nucleic Acids 2019 18 681 695 10.1016/j.omtn.2019.10.002 31707205
    [Google Scholar]
  140. Ling H. Non-coding RNAs: Therapeutic strategies and delivery systems. Adv. Exp. Med. Biol. 2016 937 229 237 10.1007/978‑3‑319‑42059‑2_12 27573903
    [Google Scholar]
  141. Scheideler M. Vidakovic I. Prassl R. Lipid nanocarriers for microRNA delivery. Chem. Phys. Lipids 2020 226 104837 10.1016/j.chemphyslip.2019.104837 31689410
    [Google Scholar]
  142. Du G. Yao Y. Chen W. Lin Y. He Y. Zhou M. Cai X. Tetrahedral framework nucleic acid-based delivery system for miRNA-124 and stroke-homing peptide: Targeted therapy for acute ischemic stroke. ACS Appl. Mater. Interfaces 2025 17 8 11925 11936 10.1021/acsami.5c00507 39939157
    [Google Scholar]
  143. Su J. Liu T. Wang M. Xu W. Liu J. Lan J. Chen Y. Xu H. Guo D. Lai Z. Enhanced stability of hairpin-functionalized DNA tetrahedral nanostructures for miRNA detection in plasma from ischemic stroke patients. Anal. Chim. Acta 2025 1334 343419 10.1016/j.aca.2024.343419 39638466
    [Google Scholar]
/content/journals/cn/10.2174/011570159X380644250707075513
Loading
/content/journals/cn/10.2174/011570159X380644250707075513
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: immune cells ; Ischemic stroke ; inflammation ; microRNAs ; microglia ; peripheral immune cells
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test