Skip to content
2000
image of Mitochondria as a Therapeutic Target in Neurodegeneration: Strategies for Restoring Cellular Homeostasis

Abstract

Ageing is a complex biological process marked by a gradual decline in bodily functions at the cellular, tissue, and organ levels, resulting from molecular damage and environmental influences. It increases disease risk, particularly in older adults with neurodegenerative conditions characterized by progressive neuronal loss and neurological symptoms such as cognitive and motor impairments. Key mechanisms include abnormal protein accumulation, oxidative stress, neuroinflammation, and mitochondrial dysfunction. Disruption of cellular homeostasis prevents the maintenance of internal conditions such as pH and glucose levels. Mitochondria, known as the cell’s “powerhouses,” are essential for ATP production, DNA protection, and metabolic regulation, supporting cellular structures. Their dysfunction plays a crucial role in the progression of neurodegenerative diseases. Factors like chronic inflammation, ATP deficiency, excessive production of reactive oxygen species (ROS), and calcium imbalance leads to oxidative stress and neuronal damage, exacerbating neurodegeneration. Current therapies mainly focus on symptom relief, emphasizing the urgent need for new treatment strategies. Given the key role of mitochondrial dysfunction, therapies aiming to restore mitochondrial homeostasis are gaining increasing attention. Mitochondrial antioxidants such as MitoQ, MitoTEMPO, and SkQ1 have shown neuroprotective, anti-inflammatory, and antioxidant properties. Research into their therapeutic potential may lead to the development of effective drugs that restore mitochondrial function and improve quality of life of the patients.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X389970250727031306
2025-08-12
2025-10-18
Loading full text...

Full text loading...

References

  1. Hou Y. Dan X. Babbar M. Wei Y. Hasselbalch S.G. Croteau D.L. Bohr V.A. Ageing as a risk factor for neurodegenerative disease. Nat. Rev. Neurol. 2019 15 10 565 581 10.1038/s41582‑019‑0244‑7 31501588
    [Google Scholar]
  2. Franceschi C. Garagnani P. Morsiani C. Conte M. Santoro A. Grignolio A. Monti D. Capri M. Salvioli S. The continuum of aging and age-related diseases: Common mechanisms but different rates. Front. Med. 2018 5 61 10.3389/fmed.2018.00061 29662881
    [Google Scholar]
  3. Magalhaes S. Goodfellow B.J. Nunes A. Aging and proteins: What does proteostasis have to do with age? Curr. Mol. Med. 2018 18 3 178 189 10.2174/1566524018666180907162955 30198430
    [Google Scholar]
  4. Lemoine M. The evolution of the hallmarks of aging. Front. Genet. 2021 12 693071 10.3389/fgene.2021.693071 34512720
    [Google Scholar]
  5. Gladyshev V.N. Aging: Progressive decline in fitness due to the rising deleteriome adjusted by genetic, environmental, and stochastic processes. Aging Cell 2016 15 4 594 602 10.1111/acel.12480 27060562
    [Google Scholar]
  6. Miwa S. Kashyap S. Chini E. von Zglinicki T. Mitochondrial dysfunction in cell senescence and aging. J. Clin. Invest. 2022 132 13 158447 10.1172/JCI158447 35775483
    [Google Scholar]
  7. Veeman D. Dhamodharan D. Systematic review on nine hallmarks of neurodegenerative disease. Indian J. Biochem. Biophys. 2022 59 3 249 257
    [Google Scholar]
  8. Bajpai A. Li R. Chen W. The cellular mechanobiology of aging: From biology to mechanics. Ann. N. Y. Acad. Sci. 2021 1491 1 3 24 10.1111/nyas.14529 33231326
    [Google Scholar]
  9. Pomatto L.C.D. Davies K.J.A. The role of declining adaptive homeostasis in ageing. J. Physiol. 2017 595 24 7275 7309 10.1113/JP275072 29028112
    [Google Scholar]
  10. Qiao M. Guo J. Wang R. Chen C. Li J. Lyu J. Research progress on population aging and chronic diseases. MEDS Pub Health. Prev. Med. 2023 3 1 28 35 10.23977/phpm.2023.030105
    [Google Scholar]
  11. Hansson O. Biomarkers for neurodegenerative diseases. Nat. Med. 2021 27 6 954 963 10.1038/s41591‑021‑01382‑x 34083813
    [Google Scholar]
  12. Erkkinen M.G. Kim M.O. Geschwind M.D. Clinical neurology and epidemiology of the major neurodegenerative diseases. Cold Spring Harb. Perspect. Biol. 2018 10 4 a033118 10.1101/cshperspect.a033118 28716886
    [Google Scholar]
  13. Dugger B.N. Dickson D.W. Pathology of neurodegenerative diseases. Cold Spring Harb. Perspect. Biol. 2017 9 7 a028035 10.1101/cshperspect.a028035 28062563
    [Google Scholar]
  14. Spires-Jones T.L. Attems J. Thal D.R. Interactions of pathological proteins in neurodegenerative diseases. Acta Neuropathol. 2017 134 2 187 205 10.1007/s00401‑017‑1709‑7 28401333
    [Google Scholar]
  15. Wu Y. Chen M. Jiang J. Mitochondrial dysfunction in neurodegenerative diseases and drug targets via apoptotic signaling. Mitochondrion 2019 49 35 45 10.1016/j.mito.2019.07.003 31288090
    [Google Scholar]
  16. Michalska P. León R. When it comes to an end: Oxidative stress crosstalk with protein aggregation and neuroinflammation induce neurodegeneration. Antioxidants 2020 9 8 740 10.3390/antiox9080740 32806679
    [Google Scholar]
  17. Fakhoury M. Microglia and astrocytes in Alzheimer’s disease: Implications for therapy. Curr. Neuropharmacol. 2018 16 5 508 518 10.2174/1570159X15666170720095240 28730967
    [Google Scholar]
  18. Bigi A. Cascella R. Chiti F. Cecchi C. Amyloid fibrils act as a reservoir of soluble oligomers, the main culprits in protein deposition diseases. BioEssays 2022 44 11 2200086 10.1002/bies.202200086 36104212
    [Google Scholar]
  19. Penke B. Bogár F. Fülöp L. β-amyloid and the pathomechanisms of Alzheimer’s disease: A comprehensive view. Molecules 2017 22 10 1692 10.3390/molecules22101692 28994715
    [Google Scholar]
  20. Condello C. Lemmin T. Stöhr J. Nick M. Wu Y. Maxwell A.M. Watts J.C. Caro C.D. Oehler A. Keene C.D. Bird T.D. van Duinen S.G. Lannfelt L. Ingelsson M. Graff C. Giles K. DeGrado W.F. Prusiner S.B. Structural heterogeneity and intersubject variability of Aβ in familial and sporadic Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 2018 115 4 E782 E791 10.1073/pnas.1714966115 29311311
    [Google Scholar]
  21. Jankovska N. Olejar T. Matej R. Extracellular amyloid deposits in Alzheimer’s and Creutzfeldt-jakob disease: Similar behavior of different proteins? Int. J. Mol. Sci. 2020 22 1 7 10.3390/ijms22010007 33374972
    [Google Scholar]
  22. Kovacs G.G. Ghetti B. Goedert M. Classification of diseases with accumulation of Tau protein. Neuropathol. Appl. Neurobiol. 2022 48 3 12792 10.1111/nan.12792 35064600
    [Google Scholar]
  23. Ye H. Han Y. Li P. Su Z. Huang Y. The role of post-translational modifications on the structure and function of tau protein. J. Mol. Neurosci. 2022 72 8 1557 1571 10.1007/s12031‑022‑02002‑0 35325356
    [Google Scholar]
  24. Rawat P. Sehar U. Bisht J. Selman A. Culberson J. Reddy P.H. Phosphorylated tau in Alzheimer’s disease and other tauopathies. Int. J. Mol. Sci. 2022 23 21 12841 10.3390/ijms232112841 36361631
    [Google Scholar]
  25. Calabresi P. Mechelli A. Natale G. Volpicelli-Daley L. Di Lazzaro G. Ghiglieri V. Alpha-synuclein in Parkinson’s disease and other synucleinopathies: From overt neurodegeneration back to early synaptic dysfunction. Cell Death Dis. 2023 14 3 176 10.1038/s41419‑023‑05672‑9 36859484
    [Google Scholar]
  26. Menšíková K. Matěj R. Colosimo C. Rosales R. Tučková L. Ehrmann J. Hraboš D. Kolaříková K. Vodička R. Vrtěl R. Procházka M. Nevrlý M. Kaiserová M. Kurčová S. Otruba P. Kaňovský P. Lewy body disease or diseases with Lewy bodies? NPJ Parkinsons Dis. 2022 8 1 3 10.1038/s41531‑021‑00273‑9 35013341
    [Google Scholar]
  27. Litvinenko I.V. Lobzin V.Y. A new paradigm for the development of neurodegenerative diseases on the example of Alzheimer’s disease and Parkinson’s disease. Usp. Gerontol. 2022 35 2 263 273 10.34922/AE.2022.35.2.010 35727933
    [Google Scholar]
  28. Javaid S.F. Giebel C. Khan M.A.B. Hashim M.J. Epidemiology of Alzheimer’s disease and other dementias: Rising global burden and forecasted trends. F1000 Res. 2021 10 425 10.12688/f1000research.50786.1
    [Google Scholar]
  29. Shakir M.N. Dugger B.N. Advances in deep neuropathological phenotyping of Alzheimer disease: Past, present, and future. J. Neuropathol. Exp. Neurol. 2022 81 1 2 15 10.1093/jnen/nlab122 34981115
    [Google Scholar]
  30. Buccellato F.R. D’Anca M. Tartaglia G.M. Del Fabbro M. Scarpini E. Galimberti D. Treatment of Alzheimer’s disease: Beyond symptomatic therapies. Int. J. Mol. Sci. 2023 24 18 13900 10.3390/ijms241813900 37762203
    [Google Scholar]
  31. King A. Bodi I. Troakes C. The neuropathological diagnosis of Alzheimer’s disease—the challenges of pathological mimics and concomitant pathology. Brain Sci. 2020 10 8 479 10.3390/brainsci10080479 32722332
    [Google Scholar]
  32. Goel P. Chakrabarti S. Goel K. Bhutani K. Chopra T. Bali S. Neuronal cell death mechanisms in Alzheimer’s disease: An insight. Front. Mol. Neurosci. 2022 15 937133 10.3389/fnmol.2022.937133 36090249
    [Google Scholar]
  33. Pluta R. Ułamek-Kozioł M. Januszewski S. Czuczwar S.J. Participation of amyloid and tau protein in neuronal death and neurodegeneration after brain ischemia. Int. J. Mol. Sci. 2020 21 13 4599 10.3390/ijms21134599 32605320
    [Google Scholar]
  34. Wiatrak B. Piasny J. Kuźniarski A. Gąsiorowski K. Interactions of amyloid-β with membrane proteins. Int. J. Mol. Sci. 2021 22 11 6075 10.3390/ijms22116075 34199915
    [Google Scholar]
  35. Penke B. Szűcs M. Bogár F. Oligomerization and conformational change turn monomeric β-amyloid and tau proteins toxic: Their role in Alzheimer’s pathogenesis. Molecules 2020 25 7 1659 10.3390/molecules25071659 32260279
    [Google Scholar]
  36. Pawar A. Pardasani K.R. Simulation of disturbances in interdependent calcium and β-amyloid dynamics in the nerve cell. Eur. Phys. J. Plus 2022 137 8 960 10.1140/epjp/s13360‑022‑03164‑x
    [Google Scholar]
  37. Sorrentino V. Romani M. Mouchiroud L. Beck J.S. Zhang H. D’Amico D. Moullan N. Potenza F. Schmid A.W. Rietsch S. Counts S.E. Auwerx J. Enhancing mitochondrial proteostasis reduces amyloid-β proteotoxicity. Nature 2017 552 7684 187 193 10.1038/nature25143 29211722
    [Google Scholar]
  38. Han Y. Liu D. Cheng Y. Ji Q. Liu M. Zhang B. Zhou S. Maintenance of mitochondrial homeostasis for Alzheimer’s disease: Strategies and challenges. Redox Biol. 2023 63 102734 10.1016/j.redox.2023.102734 37159984
    [Google Scholar]
  39. Sita G. Hrelia P. Tarozzi A. Morroni F. P‐glycoprotein (ABCB1) and oxidative stress: Focus on Alzheimer’s disease. Oxid. Med. Cell. Longev. 2017 2017 1 7905486 10.1155/2017/7905486 29317984
    [Google Scholar]
  40. Vallée A. Lecarpentier Y. Guillevin R. Vallée J.N. Effects of cannabidiol interactions with Wnt/β-catenin pathway and PPARγ on oxidative stress and neuroinflammation in Alzheimer’s disease. Acta Biochim. Biophys. Sin. 2017 49 10 853 866 10.1093/abbs/gmx073 28981597
    [Google Scholar]
  41. Rea I.M. Gibson D.S. McGilligan V. McNerlan S.E. Alexander H.D. Ross O.A. Age and age-related diseases: Role of inflammation triggers and cytokines. Front. Immunol. 2018 9 586 10.3389/fimmu.2018.00586 29686666
    [Google Scholar]
  42. Twarowski B. Herbet M. Inflammatory processes in Alzheimer’s disease—pathomechanism, diagnosis and treatment: A review. Int. J. Mol. Sci. 2023 24 7 6518 10.3390/ijms24076518 37047492
    [Google Scholar]
  43. Abdulkhaleq L.A. Assi M.A. Abdullah R. Zamri-Saad M. Taufiq-Yap Y.H. Hezmee M.N.M. The crucial roles of inflammatory mediators in inflammation: A review. Vet. World 2018 11 5 627 635 10.14202/vetworld.2018.627‑635 29915501
    [Google Scholar]
  44. Subhramanyam C.S. Wang C. Hu Q. Dheen S.T. Microglia-mediated neuroinflammation in neurodegenerative diseases. Semin. Cell Dev. Biol. 2019 94 112 120 10.1016/j.semcdb.2019.05.004 31077796
    [Google Scholar]
  45. Sinha A. Kushwaha R. Molesworth K. Mychko O. Makarava N. Baskakov I.V. Phagocytic activities of reactive microglia and astrocytes associated with prion diseases are dysregulated in opposite directions. Cells 2021 10 7 1728 10.3390/cells10071728 34359897
    [Google Scholar]
  46. Shah A. Kishore U. Shastri A. Complement system in Alzheimer’s disease. Int. J. Mol. Sci. 2021 22 24 13647 10.3390/ijms222413647 34948444
    [Google Scholar]
  47. Park J.C. Han S.H. Mook-Jung I. Peripheral inflammatory biomarkers in Alzheimer’s disease: A brief review. BMB Rep. 2020 53 1 10 19 10.5483/BMBRep.2020.53.1.309 31865964
    [Google Scholar]
  48. Ghazanfari N. van Waarde A. Dierckx R.A.J.O. Doorduin J. de Vries E.F.J. Is cyclooxygenase‐1 involved in neuroinflammation? J. Neurosci. Res. 2021 99 11 2976 2998 10.1002/jnr.24934 34346520
    [Google Scholar]
  49. Benussi A. Cantoni V. Grassi M. Brechet L. Michel C.M. Datta A. Thomas C. Gazzina S. Cotelli M.S. Bianchi M. Premi E. Gadola Y. Cotelli M. Pengo M. Perrone F. Scolaro M. Archetti S. Solje E. Padovani A. Pascual-Leone A. Borroni B. Increasing brain gamma activity improves episodic memory and restores cholinergic dysfunction in Alzheimer’s disease. Ann. Neurol. 2022 92 2 322 334 10.1002/ana.26411 35607946
    [Google Scholar]
  50. Chen Z.R. Huang J.B. Yang S.L. Hong F.F. Role of cholinergic signaling in Alzheimer’s disease. Molecules 2022 27 6 1816 10.3390/molecules27061816 35335180
    [Google Scholar]
  51. Kopańska M. Łagowska A. Kuduk B. Banaś-Ząbczyk A. Acrylamide neurotoxicity as a possible factor responsible for inflammation in the cholinergic nervous system. Int. J. Mol. Sci. 2022 23 4 2030 10.3390/ijms23042030 35216144
    [Google Scholar]
  52. Pepeu G. Grazia G.M. The fate of the brain cholinergic neurons in neurodegenerative diseases. Brain Res. 2017 1670 173 184 10.1016/j.brainres.2017.06.023 28652219
    [Google Scholar]
  53. Bellenguez C. Grenier-Boley B. Lambert J.C. Genetics of Alzheimer’s disease: Where we are, and where we are going. Curr. Opin. Neurobiol. 2020 61 40 48 10.1016/j.conb.2019.11.024 31863938
    [Google Scholar]
  54. Xia Q. Yang X. Shi J. Liu Z. Peng Y. Wang W. Li B. Zhao Y. Xiao J. Huang L. Wang D. Gao X. The protective A673T mutation of amyloid precursor protein (APP) in Alzheimer’s disease. Mol. Neurobiol. 2021 58 8 4038 4050 10.1007/s12035‑021‑02385‑y 33914267
    [Google Scholar]
  55. Jabeen K. Rehman K. Akash M.S.H. Genetic mutations of APOEε4 carriers in cardiovascular patients lead to the development of insulin resistance and risk of Alzheimer’s disease. J. Biochem. Mol. Toxicol. 2022 36 2 22953 10.1002/jbt.22953 34757642
    [Google Scholar]
  56. Pan G. King A. Wu F. Simpson-Yap S. Woodhouse A. Phipps A. Vickers J.C. The potential roles of genetic factors in predicting ageing-related cognitive change and Alzheimer’s disease. Ageing Res. Rev. 2021 70 101402 10.1016/j.arr.2021.101402 34242808
    [Google Scholar]
  57. Atri A. Current and future treatments in Alzheimer’s disease. Semin. Neurol. 2019 39 2 227 240 10.1055/s‑0039‑1678581 30925615
    [Google Scholar]
  58. Fields M. Marcuzzi A. Gonelli A. Celeghini C. Maximova N. Rimondi E. Mitochondria-targeted antioxidants, an innovative class of antioxidant compounds for neurodegenerative diseases: Perspectives and limitations. Int. J. Mol. Sci. 2023 24 4 3739 10.3390/ijms24043739 36835150
    [Google Scholar]
  59. Kaur A. Anand C. Singh T.G. Dhiman S. Babbar R. Acetylcholinesterase inhibitors: A milestone to treat neurological disorders. Plant Arch. 2019 19 1347 1359
    [Google Scholar]
  60. Marucci G. Buccioni M. Ben D.D. Lambertucci C. Volpini R. Amenta F. Efficacy of acetylcholinesterase inhibitors in Alzheimer’s disease. Neuropharmacology 2021 190 108352 10.1016/j.neuropharm.2020.108352 33035532
    [Google Scholar]
  61. Bidzan L. Farmakologiczne leczenie choroby Alzheimera — współczesne możliwości. Psychiatria 2020 17 2 87 94 10.5603/PSYCH.2020.0016
    [Google Scholar]
  62. Villarejo-Galende A. González-Sánchez M. Blanco-Palmero V.A. Llamas-Velasco S. Benito-León J. Non-steroidal anti-inflammatory drugs as candidates for the prevention or treatment of Alzheimer’s disease: Do they still have a role? Curr. Alzheimer Res. 2021 17 11 1013 1022 10.2174/1567205017666201127163018 33245273
    [Google Scholar]
  63. Lozupone M. Solfrizzi V. D’Urso F. Di Gioia I. Sardone R. Dibello V. Stallone R. Liguori A. Ciritella C. Daniele A. Bellomo A. Seripa D. Panza F. Anti-amyloid-β protein agents for the treatment of Alzheimer’s disease: An update on emerging drugs. Expert Opin. Emerg. Drugs 2020 25 3 319 335 10.1080/14728214.2020.1808621 32772738
    [Google Scholar]
  64. Behl T. Kaur I. Fratila O. Brata R. Bungau S. Exploring the potential of therapeutic agents targeted towards mitigating the events associated with amyloid-β cascade in Alzheimer’s disease. Int. J. Mol. Sci. 2020 21 20 7443 10.3390/ijms21207443 33050199
    [Google Scholar]
  65. Khullar A. A review on flurbiprofen: Therapeutic challenges in emerging active metabolizing biphenyl. Bull Pure Appl. Sci. -. Chem 2020 39 2 77 89 10.5958/2320‑320X.2020.00007.2
    [Google Scholar]
  66. Hassan N.A. Alshamari A.K. Hassan A.A. Elharrif M.G. Alhajri A.M. Sattam M. Khattab R.R. Advances on therapeutic strategies for Alzheimer’s disease: From medicinal plant to nanotechnology. Molecules 2022 27 15 4839 10.3390/molecules27154839 35956796
    [Google Scholar]
  67. Moussa C. Hebron M. Huang X. Ahn J. Rissman R.A. Aisen P.S. Turner R.S. Resveratrol regulates neuro-inflammation and induces adaptive immunity in Alzheimer’s disease. J. Neuroinflammation 2017 14 1 1 10.1186/s12974‑016‑0779‑0 28086917
    [Google Scholar]
  68. Młynarczyk R. Bochon B. Piontek A. Kunert Ł. Sobiś J. Gorczyca P.W. Choroba Alzheimera—nowe strategie leczenia. Psychiatria 2016 13 4 210 214
    [Google Scholar]
  69. Qin C. Lu Y. Wang K. Bai L. Shi G. Huang Y. Li Y. Transplantation of bone marrow mesenchymal stem cells improves cognitive deficits and alleviates neuropathology in animal models of Alzheimer’s disease: A meta-analytic review on potential mechanisms. Transl. Neurodegener. 2020 9 1 20 10.1186/s40035‑020‑00199‑x 32460886
    [Google Scholar]
  70. Hassan M. Ismail H. Hammam O. Elsayed A. Othman O. Aly Hassan S. Natural inhibitors for acetylcholinesterase and autophagy modulators as effective antagonists for tau and β-amyloid in Alzheimer’s rat model. Biomarkers 2023 28 3 273 288 10.1080/1354750X.2022.2164617 36594248
    [Google Scholar]
  71. Parent A. A tribute to James Parkinson. Le J. Canad Ees Sci. Neurol. 2018 45 1 83 89 10.1017/cjn.2017.270
    [Google Scholar]
  72. Mavroeidi P. Xilouri M. Neurons and glia interplay in α-synucleinopathies. Int. J. Mol. Sci. 2021 22 9 4994 10.3390/ijms22094994 34066733
    [Google Scholar]
  73. Mei J. Desrosiers C. Frasnelli J. Machine learning for the diagnosis of Parkinson’s disease: A review of literature. Front. Aging Neurosci. 2021 13 633752 10.3389/fnagi.2021.633752 34025389
    [Google Scholar]
  74. Zhang F. Luo A. Liao S. Liu M. Zhang J. Xu Z. Progress of non‐motor symptoms in early‐onset Parkinson’s disease. Ibrain, 2024 ibra.12180 10.1002/ibra.12180
    [Google Scholar]
  75. Ubeda-Bañon I. Saiz-Sanchez D. Flores-Cuadrado A. Rioja-Corroto E. Gonzalez-Rodriguez M. Villar-Conde S. Astillero-Lopez V. Cabello-de la Rosa J.P. Gallardo-Alcañiz M.J. Vaamonde-Gamo J. Relea-Calatayud F. Gonzalez-Lopez L. Mohedano-Moriano A. Rabano A. Martinez-Marcos A. The human olfactory system in two proteinopathies: Alzheimer’s and Parkinson’s diseases. Transl. Neurodegener. 2020 9 1 22 10.1186/s40035‑020‑00200‑7 32493457
    [Google Scholar]
  76. Cehlar O. Njemoga S. Horvath M. Cizmazia E. Bednarikova Z. Barrera E.E. Structures of oligomeric states of tau protein, amyloid-β, α-synuclein and prion protein implicated in Alzheimer’s disease, Parkinson’s disease and prionopathies. Int. J. Mol. Sci. 2024 25 23 13049 10.3390/ijms252313049 39684761
    [Google Scholar]
  77. Thangaleela S. Sivamaruthi B.S. Kesika P. Bharathi M. Chaiyasut C. Nasal microbiota, olfactory health, neurological disorders and aging—a review. Microorganisms 2022 10 7 1405 10.3390/microorganisms10071405 35889124
    [Google Scholar]
  78. Moon H.E. Paek S.H. Mitochondrial dysfunction in Parkinson’s disease. Exp. Neurobiol. 2015 24 2 103 116 10.5607/en.2015.24.2.103 26113789
    [Google Scholar]
  79. Barodia S.K. Creed R.B. Goldberg M.S. Parkin and PINK1 functions in oxidative stress and neurodegeneration. Brain Res. Bull. 2017 133 51 59 10.1016/j.brainresbull.2016.12.004 28017782
    [Google Scholar]
  80. Li J. Yang D. Li Z. Zhao M. Wang D. Sun Z. Wen P. Dai Y. Gou F. Ji Y. Zhao D. Yang L. PINK1/Parkin-mediated mitophagy in neurodegenerative diseases. Ageing Res. Rev. 2023 84 101817 10.1016/j.arr.2022.101817 36503124
    [Google Scholar]
  81. Dolgacheva L.P. Berezhnov A.V. Fedotova E.I. Zinchenko V.P. Abramov A.Y. Role of DJ-1 in the mechanism of pathogenesis of Parkinson’s disease. J. Bioenerg. Biomembr. 2019 51 3 175 188 10.1007/s10863‑019‑09798‑4 31054074
    [Google Scholar]
  82. Tan Y.Y. Jenner P. Chen S.D. Monoamine oxidase-b inhibitors for the treatment of Parkinson’s disease: Past, present, and future. J. Parkinsons Dis. 2022 12 2 477 493 10.3233/JPD‑212976 34957948
    [Google Scholar]
  83. Rajan R. Saini A. Verma B. Choudhary N. Gupta A. Vishnu V.Y. Bhatia R. Singh M.B. Srivastava A.K. Srivastava M.V.P. Anticholinergics may carry significant cognitive and gait burden in Parkinson’s disease. Mov. Disord. Clin. Pract. 2020 7 7 803 809 10.1002/mdc3.13032 33043076
    [Google Scholar]
  84. Mak M.K. Wong-Yu I.S. Shen X. Chung C.L. Long-term effects of exercise and physical therapy in people with Parkinson disease. Nat. Rev. Neurol. 2017 13 11 689 703 10.1038/nrneurol.2017.128 29027544
    [Google Scholar]
  85. Agüera-Ortiz L. García-Ramos R. Grandas Pérez F.J. López-Álvarez J. Montes Rodríguez J.M. Olazarán Rodríguez F.J. Olivera Pueyo J. Pelegrín Valero C. Porta-Etessam J. Focus on depression in Parkinson’s disease: A delphi consensus of experts in psychiatry, neurology, and geriatrics. Parkinsons Dis. 2021 2021 1 11 10.1155/2021/6621991 33628415
    [Google Scholar]
  86. Robbins M.R. Pharmacology of Psychiatric and Neurologic Drugs. Contemporary Dental Pharmacology. Jeske A.H. Cham Springer 2024 10.1007/978‑3‑031‑53954‑1_7
    [Google Scholar]
  87. Koehler P.J. Lanska D.J. Neuropathological images in the great pathology atlases. J. Hist. Neurosci. 2022 31 2-3 279 311 10.1080/0964704X.2022.2046917 35427218
    [Google Scholar]
  88. Forsberg L. Spelman T. Klyve P. Manouchehrinia A. Ramanujam R. Mouresan E. Drahota J. Horakova D. Joensen H. Pontieri L. Magyari M. Ellenberger D. Stahmann A. Rodgers J. Witts J. Middleton R. Nicholas R. Bezlyak V. Adlard N. Hach T. Lines C. Vukusic S. Soilu-Hänninen M. van der Walt A. Butzkueven H. Iaffaldano P. Trojano M. Glaser A. Hillert J. Proportion and characteristics of secondary progressive multiple sclerosis in five European registries using objective classifiers. Mult. Scler. J. Exp. Transl. Clin. 2023 9 1 20552173231153557 10.1177/20552173231153557 36816812
    [Google Scholar]
  89. Zalc B. One hundred and fifty years ago Charcot reported multiple sclerosis as a new neurological disease. Brain 2018 141 12 3482 3488 10.1093/brain/awy287 30462211
    [Google Scholar]
  90. Simkins T.J. Duncan G.J. Bourdette D. Chronic demyelination and axonal degeneration in multiple sclerosis: Pathogenesis and therapeutic implications. Curr. Neurol. Neurosci. Rep. 2021 21 6 26 10.1007/s11910‑021‑01110‑5 33835275
    [Google Scholar]
  91. Kaymakamzade B. Kiliç A.K. Kurne A.T. Karabudak R. Progressive onset multiple Sclerosis: Demographic, clinical and laboratory characteristics of patients with and without relapses in the course. Noro Psikiyatri Arsivi 2017 56 1 23 26 10.5152/npa.2017.19269 30911233
    [Google Scholar]
  92. Agrawal A. Bhattacharyya S. Microorganisms in pathogenesis and management of acute disseminated encephalomyelitis (ADEM). Role of Microorganisms in Pathogenesis and Management of Autoimmune Diseases. Singapore Springer 2022 10.1007/978‑981‑19‑4800‑8_11
    [Google Scholar]
  93. Yousuf M.S. Noh M. Friedman T.N. Zubkow K. Johnson J.C. Tenorio G. Kurata H.T. Smith P.A. Kerr B.J. Sensory neurons of the dorsal root ganglia become hyperexcitable in a T-cell-mediated mog-eae model of multiple sclerosis. eNeuro 2019 6 2 ENEURO.0024-19.2019. 10.1523/ENEURO.0024‑19.2019 30957012
    [Google Scholar]
  94. Pérez-Cerdá F. Sánchez-Gómez M.V. Matute C. The link of inflammation and neurodegeneration in progressive multiple sclerosis. Mult. Scler. Demyelinating Disord. 2016 1 1 9 10.1186/s40893‑016‑0012‑0
    [Google Scholar]
  95. Deisenhammer F. Zetterberg H. Fitzner B. Zettl U.K. The cerebrospinal fluid in multiple sclerosis. Front. Immunol. 2019 10 726 10.3389/fimmu.2019.00726 31031747
    [Google Scholar]
  96. Alves C.A.P.F. Whitehead M.T. Advancing the neuroimaging diagnosis and understanding of mitochondrial disorders. Neurotherapeutics 2024 21 1 00324 10.1016/j.neurot.2024.e00324 38306952
    [Google Scholar]
  97. Cohan S.L. Hendin B.A. Reder A.T. Smoot K. Avila R. Mendoza J.P. Weinstock-Guttman B. Interferons and multiple sclerosis: Lessons from 25 years of clinical and real-world experience with intramuscular interferon beta-1a (Avonex). CNS Drugs 2021 35 7 743 767 10.1007/s40263‑021‑00822‑z 34228301
    [Google Scholar]
  98. Callegari I. Derfuss T. Galli E. Update on treatment in multiple sclerosis. Presse Med. 2021 50 2 104068 10.1016/j.lpm.2021.104068 34033862
    [Google Scholar]
  99. McGinley M.P. Goldschmidt C.H. Rae-Grant A.D. Diagnosis and treatment of multiple sclerosis. JAMA 2021 325 8 765 779 10.1001/jama.2020.26858 33620411
    [Google Scholar]
  100. Alston C.L. Rocha M.C. Lax N.Z. Turnbull D.M. Taylor R.W. The genetics and pathology of mitochondrial disease. J. Pathol. 2017 241 2 236 250 10.1002/path.4809 27659608
    [Google Scholar]
  101. Pérez-Carrión M.D. Posadas I. Dendrimers in neurodegenerative diseases. Processes 2023 11 2 319 10.3390/pr11020319
    [Google Scholar]
  102. Feldman E.L. Goutman S.A. Petri S. Mazzini L. Savelieff M.G. Shaw P.J. Sobue G. Amyotrophic lateral sclerosis. Lancet 2022 400 10360 1363 1380 10.1016/S0140‑6736(22)01272‑7 36116464
    [Google Scholar]
  103. Rubino V. La Rosa G. Pipicelli L. Carriero F. Damiano S. Santillo M. Terrazzano G. Ruggiero G. Mondola P. Insights on the multifaceted roles of wild-type and mutated superoxide dismutase 1 in amyotrophic lateral sclerosis pathogenesis. Antioxidants 2023 12 9 1747 10.3390/antiox12091747 37760050
    [Google Scholar]
  104. Trist B.G. Hilton J.B. Hare D.J. Crouch P.J. Double K.L. Superoxide dismutase 1 in health and disease: How a frontline antioxidant becomes neurotoxic. Angew. Chem. Int. Ed. 2021 60 17 9215 9246 10.1002/anie.202000451 32144830
    [Google Scholar]
  105. Funai A. Hayashi K. Kawata A. Nakayama Y. Matsuda C. Haraguchi M. Takahashi K. Komori T. An autopsy report of a long-survival case of familial amyotrophic lateral sclerosis with SOD1 G93S gene mutation: Lack of SOD1-positive inclusion in the remaining neurons. Neuropathology 2025 45 1 60 65 10.1111/neup.13004
    [Google Scholar]
  106. Biney R.P. Mpofana T. Kasanga E.A. Free radicals in oxidative stress, aging, and neurodegenerative disorders. Research Anthology on Supporting Healthy Aging in a Digital Society IGI Global 2022 225 252 10.4018/978‑1‑6684‑5295‑0.ch015
    [Google Scholar]
  107. Morgan S. Orrell R.W. Pathogenesis of amyotrophic lateral sclerosis. Br. Med. Bull. 2016 119 1 87 98 10.1093/bmb/ldw026 27450455
    [Google Scholar]
  108. Fang T. Al Khleifat A. Meurgey J.H. Jones A. Leigh P.N. Bensimon G. Al-Chalabi A. Stage at which riluzole treatment prolongs survival in patients with amyotrophic lateral sclerosis: A retrospective analysis of data from a dose-ranging study. Lancet Neurol. 2018 17 5 416 422 10.1016/S1474‑4422(18)30054‑1 29525492
    [Google Scholar]
  109. Cho H. Shukla S. Role of edaravone as a treatment option for patients with amyotrophic lateral sclerosis. Pharmaceuticals 2020 14 1 29 10.3390/ph14010029 33396271
    [Google Scholar]
  110. Okada M. Yamashita S. Ueyama H. Ishizaki M. Maeda Y. Ando Y. Long-term effects of edaravone on survival of patients with amyotrophic lateral sclerosis. eNeurologicalSci 2018 11 11 14 10.1016/j.ensci.2018.05.001 29928711
    [Google Scholar]
  111. Sykova E. Cizkova D. Kubinova S. Mesenchymal stem cells in treatment of spinal cord injury and amyotrophic lateral sclerosis. Front. Cell Dev. Biol. 2021 9 695900 10.3389/fcell.2021.695900 34295897
    [Google Scholar]
  112. Abati E. Bresolin N. Comi G. Corti S. Advances, challenges, and perspectives in translational stem cell therapy for amyotrophic lateral sclerosis. Mol. Neurobiol. 2019 56 10 6703 6715 10.1007/s12035‑019‑1554‑x 30911936
    [Google Scholar]
  113. Tang B.L. The use of mesenchymal stem cells (MSCs) for amyotrophic lateral sclerosis (ALS) therapy – a perspective on cell biological mechanisms. Rev. Neurosci. 2017 28 7 725 738 10.1515/revneuro‑2017‑0018 28599400
    [Google Scholar]
  114. Lo Furno D. Mannino G. Giuffrida R. Functional role of mesenchymal stem cells in the treatment of chronic neurodegenerative diseases. J. Cell. Physiol. 2018 233 5 3982 3999 10.1002/jcp.26192 28926091
    [Google Scholar]
  115. Zhukov A. Popov V. Eukaryotic cell membranes: Structure, composition, research methods and computational modelling. Int. J. Mol. Sci. 2023 24 13 11226 10.3390/ijms241311226 37446404
    [Google Scholar]
  116. Palmieri F. Monné M. Fiermonte G. Palmieri L. Mitochondrial transport and metabolism of the vitamin B‐derived cofactors thiamine pyrophosphate, coenzyme A, FAD and NAD +, and related diseases: A review. IUBMB Life 2022 74 7 592 617 10.1002/iub.2612 35304818
    [Google Scholar]
  117. Al Amir Dache Z. Otandault A. Tanos R. Pastor B. Meddeb R. Sanchez C. Arena G. Lasorsa L. Bennett A. Grange T. El Messaoudi S. Mazard T. Prevostel C. Thierry A.R. Blood contains circulating cell‐free respiratory competent mitochondria. FASEB J. 2020 34 3 3616 3630 10.1096/fj.201901917RR 31957088
    [Google Scholar]
  118. Green A. Hossain T. Eckmann D.M. Mitochondrial dynamics involves molecular and mechanical events in motility, fusion and fission. Front. Cell Dev. Biol. 2022 10 1010232 10.3389/fcell.2022.1010232 36340034
    [Google Scholar]
  119. Youle R.J. van der Bliek A.M. Mitochondrial fission, fusion, and stress. Science 2012 337 6098 1062 1065 10.1126/science.1219855 22936770
    [Google Scholar]
  120. Feng S.T. Wang Z.Z. Yuan Y.H. Wang X.L. Sun H.M. Chen N.H. Zhang Y. Dynamin-related protein 1: A protein critical for mitochondrial fission, mitophagy, and neuronal death in Parkinson’s disease. Pharmacol. Res. 2020 151 104553 10.1016/j.phrs.2019.104553 31760107
    [Google Scholar]
  121. Kandimalla R. Reddy P.H. Multiple faces of dynamin-related protein 1 and its role in Alzheimer’s disease pathogenesis. Biochim. Biophys. Acta Mol. Basis Dis. 2016 1862 4 814 828 10.1016/j.bbadis.2015.12.018 26708942
    [Google Scholar]
  122. Scarffe L.A. Stevens D.A. Dawson V.L. Dawson T.M. Parkin and PINK1: Much more than mitophagy. Trends Neurosci. 2014 37 6 315 324 10.1016/j.tins.2014.03.004 24735649
    [Google Scholar]
  123. de Oliveira L.G. Angelo Y.S. Iglesias A.H. Peron J.P.S. Unraveling the link between mitochondrial dynamics and neuroinflammation. Front. Immunol. 2021 12 624919 10.3389/fimmu.2021.624919 33796100
    [Google Scholar]
  124. Reddy P.H. Oliver D.M.A. Amyloid beta and phosphorylated tau-induced defective autophagy and mitophagy in Alzheimer’s disease. Cells 2019 8 5 488 10.3390/cells8050488 31121890
    [Google Scholar]
  125. Haider L. Inflammation, iron, energy failure, and oxidative stress in the pathogenesis of multiple sclerosis. Oxid. Med. Cell. Longev. 2015 2015 1 1 10 10.1155/2015/725370 26106458
    [Google Scholar]
  126. Boyman L. Karbowski M. Lederer W.J. Regulation of mitochondrial ATP production: Ca2+ signaling and quality control. Trends Mol. Med. 2020 26 1 21 39 10.1016/j.molmed.2019.10.007 31767352
    [Google Scholar]
  127. Nowinski S.M. Van Vranken J.G. Dove K.K. Rutter J. Impact of mitochondrial fatty acid synthesis on mitochondrial biogenesis. Curr. Biol. 2018 28 20 R1212 R1219 10.1016/j.cub.2018.08.022 30352195
    [Google Scholar]
  128. Datta S. Jaiswal M. Mitochondrial calcium at the synapse. Mitochondrion 2021 59 135 153 10.1016/j.mito.2021.04.006 33895346
    [Google Scholar]
  129. Manolis A.S. Manolis A.A. Manolis T.A. Apostolaki N.E. Apostolopoulos E.J. Melita H. Katsiki N. Mitochondrial dysfunction in cardiovascular disease: Current status of translational research/clinical and therapeutic implications. Med. Res. Rev. 2021 41 1 275 313 10.1002/med.21732 32959403
    [Google Scholar]
  130. Cenini G. Lloret A. Cascella R. Oxidative stress in neurodegenerative diseases: From a mitochondrial point of view. Oxid. Med. Cell. Longev. 2019 2019 1 18 10.1155/2019/2105607 31210837
    [Google Scholar]
  131. Kummer E. Ban N. Mechanisms and regulation of protein synthesis in mitochondria. Nat. Rev. Mol. Cell Biol. 2021 22 5 1 19 10.1038/s41580‑021‑00332‑2
    [Google Scholar]
  132. Veselov I.M. Vinogradova D.V. Maltsev A.V. Shevtsov P.N. Spirkova E.A. Bachurin S.O. Shevtsova E.F. Mitochondria and oxidative stress as a link between Alzheimer’s disease and diabetes mellitus. Int. J. Mol. Sci. 2023 24 19 14450 10.3390/ijms241914450 37833898
    [Google Scholar]
  133. Cassim S. Vučetić M. Ždralević M. Pouyssegur J. Warburg and beyond: The power of mitochondrial metabolism to collaborate or replace fermentative glycolysis in cancer. Cancers 2020 12 5 1119 10.3390/cancers12051119 32365833
    [Google Scholar]
  134. Cadonic C. Sabbir M.G. Albensi B.C. Mechanisms of mitochondrial dysfunction in Alzheimer’s disease. Mol. Neurobiol. 2016 53 9 6078 6090 10.1007/s12035‑015‑9515‑5 26537901
    [Google Scholar]
  135. Nitzan K. Benhamron S. Valitsky M. Kesner E.E. Lichtenstein M. Ben-Zvi A. Ella E. Segalstein Y. Saada A. Lorberboum-Galski H. Rosenmann H. Mitochondrial transfer ameliorates cognitive deficits, neuronal loss, and gliosis in Alzheimer’s disease mice. J. Alzheimers Dis. 2019 72 2 587 604 10.3233/JAD‑190853 31640104
    [Google Scholar]
  136. Novack G.V. Galeano P. Castaño E.M. Morelli L. Mitochondrial supercomplexes: Physiological organization and dysregulation in age-related neurodegenerative disorders. Front. Endocrinol. 2020 11 600 10.3389/fendo.2020.00600 33042002
    [Google Scholar]
  137. Vercellino I. Sazanov L.A. The assembly, regulation and function of the mitochondrial respiratory chain. Nat. Rev. Mol. Cell Biol. 2022 23 2 141 161 10.1038/s41580‑021‑00415‑0 34621061
    [Google Scholar]
  138. Teleanu D.M. Niculescu A.G. Lungu I.I. Radu C.I. Vladâcenco O. Roza E. Costăchescu B. Grumezescu A.M. Teleanu R.I. An overview of oxidative stress, neuroinflammation, and neurodegenerative diseases. Int. J. Mol. Sci. 2022 23 11 5938 10.3390/ijms23115938 35682615
    [Google Scholar]
  139. LaRocca T.J. Cavalier A.N. Roberts C.M. Lemieux M.R. Ramesh P. Garcia M.A. Link C.D. Amyloid beta acts synergistically as a pro-inflammatory cytokine. Neurobiol. Dis. 2021 159 105493 10.1016/j.nbd.2021.105493 34464705
    [Google Scholar]
  140. Michetti F. Di Sante G. Clementi M.E. Sampaolese B. Casalbore P. Volonté C. Romano Spica V. Parnigotto P.P. Di Liddo R. Amadio S. Ria F. Growing role of S100B protein as a putative therapeutic target for neurological- and nonneurological-disorders. Neurosci. Biobehav. Rev. 2021 127 446 458 10.1016/j.neubiorev.2021.04.035 33971224
    [Google Scholar]
  141. Ahmad M.H. Fatima M. Mondal A.C. Influence of microglia and astrocyte activation in the neuroinflammatory pathogenesis of Alzheimer’s disease: Rational insights for the therapeutic approaches. J. Clin. Neurosci. 2019 59 6 11 10.1016/j.jocn.2018.10.034 30385170
    [Google Scholar]
  142. Walker L.C. Aβ plaques. Free Neuropathol 2020 1 31 10.17879/freeneuropathology‑2020‑3025
    [Google Scholar]
  143. Schartz N.D. Tenner A.J. The good, the bad, and the opportunities of the complement system in neurodegenerative disease. J. Neuroinflammation 2020 17 1 354 10.1186/s12974‑020‑02024‑8 33239010
    [Google Scholar]
  144. Lee J.D. Coulthard L.G. Woodruff T.M. Complement dysregulation in the central nervous system during development and disease. Semin. Immunol. 2019 45 101340 10.1016/j.smim.2019.101340 31708347
    [Google Scholar]
  145. Misrani A. Tabassum S. Yang L. Mitochondrial dysfunction and oxidative stress in Alzheimer’s disease. Front. Aging Neurosci. 2021 13 617588 10.3389/fnagi.2021.617588 33679375
    [Google Scholar]
  146. Plascencia-Villa G. Perry G. Roles of oxidative stress in synaptic dysfunction and neuronal cell death in Alzheimer’s disease. Antioxidants 2023 12 8 1628 10.3390/antiox12081628 37627623
    [Google Scholar]
  147. Guan P.P. Cao L.L. Wang P. Elevating the levels of calcium ions exacerbate Alzheimer’s disease via inducing the production and aggregation of β-amyloid protein and phosphorylated tau. Int. J. Mol. Sci. 2021 22 11 5900 10.3390/ijms22115900 34072743
    [Google Scholar]
  148. Renganathan S. Pramanik S. Ekambaram R. Kutzner A. Kim P.S. Heese K. Identification of a chemotherapeutic lead molecule for the potential disruption of the fam72a-ung2 interaction to interfere with genome stability, centromere formation, and genome editing. Cancers 2021 13 22 5870 10.3390/cancers13225870 34831023
    [Google Scholar]
  149. Quan H. Koltai E. Suzuki K. Aguiar A.S. Pinho R. Boldogh I. Berkes I. Radak Z. Exercise, redox system and neurodegenerative diseases. Biochim. Biophys. Acta Mol. Basis Dis. 2020 1866 10 165778 10.1016/j.bbadis.2020.165778 32222542
    [Google Scholar]
  150. Jurcău M.C. Andronie-Cioara F.L. Jurcău A. Marcu F. Ţiț D.M. Pașcalău N. Nistor-Cseppentö D.C. The link between oxidative stress, mitochondrial dysfunction and neuroinflammation in the pathophysiology of Alzheimer’s disease: Therapeutic implications and future perspectives. Antioxidants 2022 11 11 2167 10.3390/antiox11112167 36358538
    [Google Scholar]
  151. Sharma C. Kim S.R. Linking oxidative stress and proteinopathy in Alzheimer’s disease. Antioxidants 2021 10 8 1231 10.3390/antiox10081231 34439479
    [Google Scholar]
  152. Xiong X. Li S. Han T.L. Zhou F. Zhang X. Tian M. Tang L. Li Y. Study of mitophagy and ATP-related metabolomics based on β-amyloid levels in Alzheimer’s disease. Exp. Cell Res. 2020 396 1 112266 10.1016/j.yexcr.2020.112266 32905804
    [Google Scholar]
  153. Perez Ortiz J.M. Swerdlow R.H. Mitochondrial dysfunction in Alzheimer’s disease: Role in pathogenesis and novel therapeutic opportunities. Br. J. Pharmacol. 2019 176 18 3489 3507 10.1111/bph.14585 30675901
    [Google Scholar]
  154. Quntanilla R.A. Tapia-Monsalves C. The role of mitochondrial impairment in Alzheimer’s disease neurodegeneration: The tau connection. Curr. Neuropharmacol. 2020 18 11 1076 1091 10.2174/1570159X18666200525020259 32448104
    [Google Scholar]
  155. Roy R.G. Mandal P.K. Maroon J.C. Oxidative stress occurs prior to amyloid aβ plaque formation and tau phosphorylation in Alzheimer’s disease: Role of glutathione and metal ions. ACS Chem. Neurosci. 2023 14 17 2944 2954 10.1021/acschemneuro.3c00486 37561556
    [Google Scholar]
  156. Ryan B.J. Hoek S. Fon E.A. Wade-Martins R. Mitochondrial dysfunction and mitophagy in Parkinson’s: From familial to sporadic disease. Trends Biochem. Sci. 2015 40 4 200 210 10.1016/j.tibs.2015.02.003 25757399
    [Google Scholar]
  157. Błaszczyk J.W. Energy metabolism decline in the aging brain—pathogenesis of neurodegenerative disorders. Metabolites 2020 10 11 450 10.3390/metabo10110450 33171879
    [Google Scholar]
  158. Sohrabi T. Mirzaei-Behbahani B. Zadali R. Pirhaghi M. Morozova-Roche L.A. Meratan A.A. Common mechanisms underlying α-synuclein-induced mitochondrial dysfunction in Parkinson’s disease. J. Mol. Biol. 2023 435 12 167992 10.1016/j.jmb.2023.167992 36736886
    [Google Scholar]
  159. Bernal-Conde L.D. Ramos-Acevedo R. Reyes-Hernández M.A. Balbuena-Olvera A.J. Morales-Moreno I.D. Argüero-Sánchez R. Schüle B. Guerra-Crespo M. Alpha-synuclein physiology and pathology: A perspective on cellular structures and organelles. Front. Neurosci. 2020 13 1399 10.3389/fnins.2019.01399 32038126
    [Google Scholar]
  160. Jamwal S. Blackburn J.K. Elsworth J.D. PPARγ/PGC1α signaling as a potential therapeutic target for mitochondrial biogenesis in neurodegenerative disorders. Pharmacol. Ther. 2021 219 107705 10.1016/j.pharmthera.2020.107705 33039420
    [Google Scholar]
  161. Perier C. Bové J. Vila M. Mitochondria and programmed cell death in Parkinson’s disease: Apoptosis and beyond. Antioxid. Redox Signal. 2012 16 9 883 895 10.1089/ars.2011.4074 21619488
    [Google Scholar]
  162. Dorszewska J. Kowalska M. Prendecki M. Piekut T. Kozłowska J. Kozubski W. Oxidative stress factors in Parkinson’s disease. Neural Regen. Res. 2021 16 7 1383 1391 10.4103/1673‑5374.300980 33318422
    [Google Scholar]
  163. Blagov A.V. Sukhorukov V.N. Orekhov A.N. Sazonova M.A. Melnichenko A.A. Significance of mitochondrial dysfunction in the progression of multiple sclerosis. Int. J. Mol. Sci. 2022 23 21 12725 10.3390/ijms232112725 36361513
    [Google Scholar]
  164. van den Berg R. Hoogenraad C.C. Hintzen R.Q. Axonal transport deficits in multiple sclerosis: Spiraling into the abyss. Acta Neuropathol. 2017 134 1 1 14 10.1007/s00401‑017‑1697‑7 28315956
    [Google Scholar]
  165. Lassmann H. van Horssen J. Oxidative stress and its impact on neurons and glia in multiple sclerosis lesions. Biochim. Biophys. Acta Mol. Basis Dis. 2016 1862 3 506 510 10.1016/j.bbadis.2015.09.018 26432481
    [Google Scholar]
  166. Dulamea A.O. Role of oligodendrocyte dysfunction in demyelination, remyelination and neurodegeneration in multiple sclerosis. Adv. Exp. Med. Biol. 2017 958 91 127 10.1007/978‑3‑319‑47861‑6_7 28093710
    [Google Scholar]
  167. Bagheri-Mohammadi S. Farjami M. Suha A.J. Zarch S.M.A. Najafi S. Esmaeili A. The mitochondrial calcium signaling, regulation, and cellular functions: A novel target for therapeutic medicine in neurological disorders. J. Cell. Biochem. 2023 124 5 635 655 10.1002/jcb.30414 37158125
    [Google Scholar]
  168. Pegoretti V. Swanson K.A. Bethea J.R. Probert L. Eisel U.L.M. Fischer R. Inflammation and oxidative stress in multiple sclerosis: Consequences for therapy development. Oxid. Med. Cell. Longev. 2020 2020 1 19 10.1155/2020/7191080 32454942
    [Google Scholar]
  169. Ramos-González E.J. Bitzer-Quintero O.K. Ortiz G. Hernández-Cruz J.J. Ramírez-Jirano L.J. Relationship between inflammation and oxidative stress and its effect on multiple sclerosis. Neurologia 2024 39 3 292 301 10.1016/j.nrleng.2021.10.010 38553104
    [Google Scholar]
  170. Prapas P. Anagnostouli M. Macrophages and HLA-class II alleles in multiple sclerosis: Insights in therapeutic dynamics. Int. J. Mol. Sci. 2024 25 13 7354 10.3390/ijms25137354 39000461
    [Google Scholar]
  171. Andalib S. Talebi M. Sakhinia E. Farhoudi M. Sadeghi-Bazargani H. Gjedde A. Mitochondrial DNA T4216C and A4917G variations in multiple sclerosis. J. Neurol. Sci. 2015 356 1-2 55 60 10.1016/j.jns.2015.04.050 26201854
    [Google Scholar]
  172. Zhao J. Wang X. Huo Z. Chen Y. Liu J. Zhao Z. Meng F. Su Q. Bao W. Zhang L. Wen S. Wang X. Liu H. Zhou S. The impact of mitochondrial dysfunction in amyotrophic lateral sclerosis. Cells 2022 11 13 2049 10.3390/cells11132049 35805131
    [Google Scholar]
  173. Narendra D.P. Youle R.J. The role of PINK1–Parkin in mitochondrial quality control. Nat. Cell Biol. 2024 26 10 1639 1651 10.1038/s41556‑024‑01513‑9 39358449
    [Google Scholar]
  174. Barazzuol L. Giamogante F. Brini M. Calì T. PINK1/Parkin mediated mitophagy, Ca2+ signalling, and ER–mitochondria contacts in Parkinson’s disease. Int. J. Mol. Sci. 2020 21 5 1772 10.3390/ijms21051772 32150829
    [Google Scholar]
  175. Obrador E. Salvador R. López-Blanch R. Jihad-Jebbar A. Vallés S.L. Estrela J.M. Oxidative stress, neuroinflammation and mitochondria in the pathophysiology of amyotrophic lateral sclerosis. Antioxidants 2020 9 9 901 10.3390/antiox9090901 32971909
    [Google Scholar]
  176. Cunha-Oliveira T. Montezinho L. Mendes C. Firuzi O. Saso L. Oliveira P.J. Silva F.S.G. Oxidative stress in amyotrophic lateral sclerosis: Pathophysiology and opportunities for pharmacological intervention. Oxid. Med. Cell. Longev. 2020 2020 1 29 10.1155/2020/5021694 33274002
    [Google Scholar]
  177. Poovaiah N. Davoudi Z. Peng H. Schlichtmann B. Mallapragada S. Narasimhan B. Wang Q. Treatment of neurodegenerative disorders through the blood–brain barrier using nanocarriers. Nanoscale 2018 10 36 16962 16983 10.1039/C8NR04073G 30182106
    [Google Scholar]
  178. Zhu Y. Shi R. Lu W. Shi S. Chen Y. Framework nucleic acids as promising reactive oxygen species scavengers for anti-inflammatory therapy. Nanoscale 2024 16 15 7363 7377 10.1039/D3NR05844A 38411498
    [Google Scholar]
  179. Chen P. Chen F. Lei J. Zhou B. Pomegranate polyphenol punicalagin improves learning memory deficits, redox homeostasis, and neuroinflammation in aging mice. Phytother. Res. 2023 37 9 3655 3674 10.1002/ptr.7848 37092799
    [Google Scholar]
  180. Cojocaru K.A. Luchian I. Goriuc A. Antoci L.M. Ciobanu C.G. Popescu R. Vlad C.E. Blaj M. Foia L.G. Mitochondrial dysfunction, oxidative stress, and therapeutic strategies in diabetes, obesity, and cardiovascular disease. Antioxidants 2023 12 3 658 10.3390/antiox12030658 36978905
    [Google Scholar]
  181. Pritam P. Deka R. Bhardwaj A. Srivastava R. Kumar D. Jha A.K. Jha N.K. Villa C. Jha S.K. Antioxidants in Alzheimer’s disease: Current therapeutic significance and future prospects. Biology 2022 11 2 212 10.3390/biology11020212 35205079
    [Google Scholar]
  182. Zielonka J. Joseph J. Sikora A. Hardy M. Ouari O. Vasquez-Vivar J. Cheng G. Lopez M. Kalyanaraman B. Mitochondria-targeted triphenylphosphonium-based compounds: Syntheses, mechanisms of action, and therapeutic and diagnostic applications. Chem. Rev. 2017 117 15 10043 10120 10.1021/acs.chemrev.7b00042 28654243
    [Google Scholar]
  183. Gong Y. Lin J. Ma Z. Yu M. Wang M. Lai D. Fu G. Mitochondria-associated membrane-modulated Ca2+ transfer: A potential treatment target in cardiac ischemia reperfusion injury and heart failure. Life Sci. 2021 278 119511 10.1016/j.lfs.2021.119511 33864818
    [Google Scholar]
  184. Sarıkaya B. Kolay E. Guney-Coskun M. Yiğit-Ziolkowski A. Aktaç Ş. The effect of black chokeberry (Aronia melanocarpa) on human inflammation biomarkers and antioxidant enzymes: A systematic review of randomized controlled trials. Nutr. Rev. 2024 nuae143 10.1093/nutrit/nuae143 39499790
    [Google Scholar]
  185. Jiang Q. Yin J. Chen J. Ma X. Wu M. Liu G. Yao K. Tan B. Yin Y. Mitochondria-targeted antioxidants: A step towards disease treatment. Oxid. Med. Cell. Longev. 2020 2020 1 18 10.1155/2020/8837893 33354280
    [Google Scholar]
  186. Williamson J. Hughes C.M. Cobley J.N. Davison G.W. The mitochondria-targeted antioxidant MitoQ, attenuates exercise-induced mitochondrial DNA damage. Redox Biol. 2020 36 101673 10.1016/j.redox.2020.101673 32810739
    [Google Scholar]
  187. Zhang L. Reyes A. Wang X. The role of mitochondria-targeted antioxidant MitoQ in neurodegenerative disease. Mol. Cell. Ther. Mech. 2023 6 1 50 58
    [Google Scholar]
  188. Suárez-Rivero J.M. Pastor-Maldonado C.J. Povea-Cabello S. Álvarez-Córdoba M. Villalón-García I. Munuera-Cabeza M. Suárez-Carrillo A. Talaverón-Rey M. Sánchez-Alcázar J.A. Coenzyme Q10 analogues: Benefits and challenges for therapeutics. Antioxidants 2021 10 2 236 10.3390/antiox10020236 33557229
    [Google Scholar]
  189. Yin M. O’Neill L.A.J. The role of the electron transport chain in immunity. FASEB J. 2021 35 12 21974 10.1096/fj.202101161R 34793601
    [Google Scholar]
  190. Maiti A.K. Spoorthi B.C. Saha N.C. Panigrahi A.K. Mitigating peroxynitrite mediated mitochondrial dysfunction in aged rat brain by mitochondria-targeted antioxidant MitoQ. Biogerontology 2018 19 3-4 271 286 10.1007/s10522‑018‑9756‑6 29774505
    [Google Scholar]
  191. Huot J.R. Baumfalk D. Resendiz A. Bonetto A. Smuder A.J. Penna F. Targeting mitochondria and oxidative stress in cancer-and chemotherapy-induced muscle wasting. Antioxid. Redox Signal 2022 38 4-6 ars.2022.0149 10.1089/ars.2022.0149 36310444
    [Google Scholar]
  192. Nabi S.U. Khan A. Siddiqui E.M. Rehman M.U. Alshahrani S. Arafah A. Mehan S. Alsaffar R.M. Alexiou A. Shen B. Mechanisms of mitochondrial malfunction in Alzheimer’s disease: New therapeutic hope. Oxid. Med. Cell. Longev. 2022 2022 1 28 10.1155/2022/4759963 35607703
    [Google Scholar]
  193. Chen W. Guo C. Jia Z. Wang J. Xia M. Li C. Li M. Yin Y. Tang X. Chen T. Hu R. Chen Y. Liu X. Feng H. Inhibition of mitochondrial ros by mitoq alleviates white matter injury and improves outcomes after intracerebral haemorrhage in mice. Oxid. Med. Cell. Longev. 2020 2020 1 12 10.1155/2020/8285065 31998445
    [Google Scholar]
  194. Maiti A.K. Saha N.C. More S.S. Panigrahi A.K. Paul G. Neuroprotective efficacy of mitochondrial antioxidant mitoq in suppressing peroxynitrite-mediated mitochondrial dysfunction inflicted by lead toxicity in the rat brain. Neurotox. Res. 2017 31 3 358 372 10.1007/s12640‑016‑9692‑7 28050775
    [Google Scholar]
  195. Buck A.C. Maarman G.J. Dube A. Bardien S. Mitochondria targeted nanoparticles for the treatment of mitochondrial dysfunction-associated brain disorders. Front. Bioeng. Biotechnol. 2025 13 1563701 10.3389/fbioe.2025.1563701 40144395
    [Google Scholar]
  196. Sulaimon L.A. Afolabi L.O. Adisa R.A. Ayankojo A.G. Afolabi M.O. Adewolu A.M. Wan X. Pharmacological significance of MitoQ in ameliorating mitochondria-related diseases. Adv. Redox Res. 2022 5 100037 10.1016/j.arres.2022.100037
    [Google Scholar]
  197. Moradi Vastegani S. Nasrolahi A. Ghaderi S. Belali R. Rashno M. Farzaneh M. Khoshnam S.E. Mitochondrial dysfunction and Parkinson’s disease: Pathogenesis and therapeutic strategies. Neurochem. Res. 2023 48 8 2285 2308 10.1007/s11064‑023‑03904‑0 36943668
    [Google Scholar]
  198. Lee D. Jo M.G. Kim S.Y. Chung C.G. Lee S.B. Dietary antioxidants and the mitochondrial quality control: Their potential roles in Parkinson’s disease treatment. Antioxidants 2020 9 11 1056 10.3390/antiox9111056 33126703
    [Google Scholar]
  199. Fetisova E. Chernyak B. Korshunova G. Muntyan M. Skulachev V. Mitochondria-targeted antioxidants as a prospective therapeutic strategy for multiple sclerosis. Curr. Med. Chem. 2017 24 19 2086 2114 10.2174/0929867324666170316114452 28302008
    [Google Scholar]
  200. Alifarsangi A. Khaksari M. Seifaddini R. Effect of exercise, mitoq, and their combination on inflammatory and gene expression in women with multiple sclerosis. Iran. J. Allergy Asthma Immunol. 2024 23 6 676 687 10.18502/ijaai.v23i6.17377 39985494
    [Google Scholar]
  201. Cunha-Oliveira T. Montezinho L. Simões R.F. Carvalho M. Ferreiro E. Silva F.S.G. Mitochondria: A promising convergent target for the treatment of amyotrophic lateral sclerosis. Cells 2024 13 3 248 10.3390/cells13030248 38334639
    [Google Scholar]
  202. Dorn G.W. Reversing dysdynamism to interrupt mitochondrial degeneration in amyotrophic lateral sclerosis. Cells 2023 12 8 1188 10.3390/cells12081188 37190097
    [Google Scholar]
  203. Amorim R. Benfeito S. Teixeira J. Cagide F. Oliveira P.J. Borges F. Targeting mitochondria: The road to mitochondriotropic antioxidants and beyond. Mitochondrial Biology and Experimental Therapeutics. Cham Springer 2018 10.1007/978‑3‑319‑73344‑9_16
    [Google Scholar]
  204. Vereshchagin A.A. Kalnin A.Y. Volkov A.I. Lukyanov D.A. Levin O.V. Key features of TEMPO-containing polymers for energy storage and catalytic systems. Energies 2022 15 7 2699 10.3390/en15072699
    [Google Scholar]
  205. Chen H. Teng Y. Liu Z. Geng F. Chen X. Jiang H. Yang J. Zheng M. Wang Z. Yang L. Molecular mechanism of platelet-derived growth factor (pdgf)-bb-mediated protection against MPP+ toxicity in SH-SY5Y cells. J. Mol. Neurosci. 2021 71 6 1131 1143 10.1007/s12031‑020‑01735‑0 33165739
    [Google Scholar]
  206. Yang N. Guan Q.W. Chen F.H. Xia Q.X. Yin X.X. Zhou H.H. Mao X.Y. Antioxidants targeting mitochondrial oxidative stress: Promising neuroprotectants for epilepsy. Oxid. Med. Cell. Longev. 2020 2020 1 14 10.1155/2020/6687185 33299529
    [Google Scholar]
  207. Du F. Yu Q. Yan S. Hu G. Lue L.F. Walker D.G. Wu L. Yan S.F. Tieu K. Yan S.S. PINK1 signalling rescues amyloid pathology and mitochondrial dysfunction in Alzheimer’s disease. Brain 2017 140 12 3233 3251 10.1093/brain/awx258 29077793
    [Google Scholar]
  208. Fang D.U. Yu Q. Chen D. Yan S.F. Yan S. Mitochondrial perturbation drives tau oligomers pathology in Alzheimer’s disease. Res. Square 2020 1 7 10.21203/rs.3.rs‑40746/v1
    [Google Scholar]
  209. Fu Y. Zhao D. Pan B. Wang J. Cui Y. Shi F. Wang C. Yin X. Zhou X. Yang L. Yang L. Proteomic analysis of protein expression throughout disease progression in a mouse model of Alzheimer’s disease. J. Alzheimers Dis. 2015 47 4 915 926 10.3233/JAD‑150312 26401771
    [Google Scholar]
  210. Harrington J.S. Ryter S.W. Plataki M. Price D.R. Choi A.M.K. Mitochondria in health, disease, and aging. Physiol. Rev. 2023 103 4 2349 2422 10.1152/physrev.00058.2021 37021870
    [Google Scholar]
  211. Deus C.M. Teixeira J. Raimundo N. Tucci P. Borges F. Saso L. Oliveira P.J. Modulation of cellular redox environment as a novel therapeutic strategy for Parkinson’s disease. Eur. J. Clin. Invest. 2022 52 10 13820 10.1111/eci.13820 35638352
    [Google Scholar]
  212. Shahid M. Siddiqui M.R. Sajid I. Ageing and oxidative stress. 2024 Available from:https://www.taylorfrancis.com/chapters/edit/10.1201/9781003392941-3/ageing-oxidative-stress-mohd-shahid-rizwan-siddiqui-ibrahim-sajid
    [Google Scholar]
  213. Junghans M. John F. Cihankaya H. Schliebs D. Winklhofer K.F. Bader V. Matschke J. Theiss C. Matschke V. ROS scavengers decrease γH2ax spots in motor neuronal nuclei of ALS model mice in vitro. Front. Cell. Neurosci. 2022 16 963169 10.3389/fncel.2022.963169 36119129
    [Google Scholar]
  214. Scarian E. Viola C. Dragoni F. Di Gerlando R. Rizzo B. Diamanti L. Gagliardi S. Bordoni M. Pansarasa O. New insights into oxidative stress and inflammatory response in neurodegenerative diseases. Int. J. Mol. Sci. 2024 25 5 2698 10.3390/ijms25052698 38473944
    [Google Scholar]
  215. Agarkov A.A. Popova T.N. Boltysheva Y.G. Influence of 10-(6-plastoquinonyl) decyltriphenylphosphonium on free-radical homeostasis in the heart and blood serum of rats with streptozotocin-induced hyperglycemia. World J. Diabetes 2019 10 12 546 559 10.4239/wjd.v10.i12.546 31915517
    [Google Scholar]
  216. Shinn L.J. Lagalwar S. Treating neurodegenerative disease with antioxidants: Efficacy of the bioactive phenol resveratrol and mitochondrial-targeted mitoq and SkQ. Antioxidants 2021 10 4 573 10.3390/antiox10040573 33917835
    [Google Scholar]
  217. Ježek J. Engstová H. Ježek P. Antioxidant mechanism of mitochondria-targeted plastoquinone SkQ1 is suppressed in aglycemic HepG2 cells dependent on oxidative phosphorylation. Biochim. Biophys. Acta Bioenerg. 2017 1858 9 750 762 10.1016/j.bbabio.2017.05.005 28554565
    [Google Scholar]
  218. Song J. Sheng J. Lei J. Gan W. Yang Y. Mitochondrial targeted antioxidant skq1 ameliorates acute kidney injury by inhibiting ferroptosis. Oxid. Med. Cell. Longev. 2022 2022 1 19 10.1155/2022/2223957 36193064
    [Google Scholar]
  219. Muraleva N.A. Zhdankina A.A. Fursova A.Z. Kolosova N.G. Retinoprotective effect of SkQ1, visomitin eye drops, is associated with suppression of p38 mapk and erk1/2 signaling pathways activity. Biochemistry 2024 89 2 201 211 10.1134/S0006297924020020 38622090
    [Google Scholar]
  220. Di Pietro V. Yakoub K.M. Caruso G. Lazzarino G. Signoretti S. Barbey A.K. Tavazzi B. Lazzarino G. Belli A. Amorini A.M. Antioxidant therapies in traumatic brain injury. Antioxidants 2020 9 3 260 10.3390/antiox9030260 32235799
    [Google Scholar]
  221. Mallah K. Couch C. Borucki D.M. Toutonji A. Alshareef M. Tomlinson S. Anti-inflammatory and neuroprotective agents in clinical trials for CNS disease and injury: Where do we go from here? Front. Immunol. 2020 11 2021 10.3389/fimmu.2020.02021 33013859
    [Google Scholar]
  222. Rekatsina M. Paladini A. Piroli A. Zis P. Pergolizzi J.V. Varrassi G. Pathophysiology and therapeutic perspectives of oxidative stress and neurodegenerative diseases: A narrative review. Adv. Ther. 2020 37 1 113 139 10.1007/s12325‑019‑01148‑5 31782132
    [Google Scholar]
  223. Wang W. Qu Y. Li S. Chu J. Yang H. Teng L. Wang D. Neuroprotective effects of curculigoside against Alzheimer’s disease via regulation oxidative stress mediated mitochondrial dysfunction in L-Glu-exposed HT22 cells and APP/PS1 mice. Food Sci. Hum. Wellness 2023 12 4 1265 1278 10.1016/j.fshw.2022.10.009
    [Google Scholar]
  224. Zhao J. Yang J. Ding L. Wang F. Lin L. A review of the pathogenesis and chinese medicine intervention of Alzheimer’s disease. J. Integr. Neurosci. 2023 22 1 2 10.31083/j.jin2201002 36722236
    [Google Scholar]
  225. dos Santos A. Teixeira F.C. da Silva D.S. Veleda T.A. de Mello J.E. Luduvico K.P. Tavares R.G. Stefanello F.M. Cunico W. Spanevello R.M. Thiazolidin-4-one prevents against memory deficits, increase in phosphorylated tau protein, oxidative damage and cholinergic dysfunction in Alzheimer disease model: Comparison with donepezil drug. Brain Res. Bull. 2023 193 1 10 10.1016/j.brainresbull.2022.11.015 36442692
    [Google Scholar]
  226. Khan Y. Khan S. Hussain R. Rehman W. Maalik A. Gulshan U. Attwa M.W. Darwish H.W. Ghabbour H.A. Ali N. Identification of indazole-based thiadiazole-bearing thiazolidinone hybrid derivatives: Theoretical and computational approaches to develop promising anti-Alzheimer’s candidates. Pharmaceuticals 2023 16 12 1667 10.3390/ph16121667 38139795
    [Google Scholar]
  227. das Neves A.M.; Berwaldt, G.A.; Avila, C.T.; Goulart, T.B.; Moreira, B.C.; Ferreira, T.P.; Soares, M.S.P.; Pedra, N.S.; Spohr, L.; dE Souza, A.A.A.; Spanevello, R.M.; Cunico, W. Synthesis of thiazolidin-4-ones and thiazinan-4-ones from 1-(2-aminoethyl)-pyrrolidine as acetylcholinesterase inhibitors. J. Enzyme Inhib. Med. Chem. 2020 35 1 31 41 10.1080/14756366.2019.1680659 31645149
    [Google Scholar]
  228. Rosselin M. Poeggeler B. Durand G. Nitrone derivatives as therapeutics: From chemical modification to specific-targeting. Curr. Top. Med. Chem. 2017 17 18 2006 2022 10.2174/1568026617666170303115324 28260508
    [Google Scholar]
  229. Blaner W.S. Shmarakov I.O. Traber M.G. Vitamin A and vitamin E: Will the real antioxidant please stand up? Annu. Rev. Nutr. 2021 41 1 105 131 10.1146/annurev‑nutr‑082018‑124228 34115520
    [Google Scholar]
  230. Pyrczak-Felczykowska A. Herman-Antosiewicz A. Modification in structures of active compounds in anticancer mitochondria-targeted therapy. Int. J. Mol. Sci. 2025 26 3 1376 10.3390/ijms26031376 39941144
    [Google Scholar]
  231. Liao S. Omage S.O. Börmel L. Kluge S. Schubert M. Wallert M. Lorkowski S. Vitamin E and metabolic health: Relevance of interactions with other micronutrients. Antioxidants 2022 11 9 1785 10.3390/antiox11091785 36139859
    [Google Scholar]
/content/journals/cn/10.2174/011570159X389970250727031306
Loading
/content/journals/cn/10.2174/011570159X389970250727031306
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test