Skip to content
2000
image of Exogenous Melatonin as a Sleep-promoting Agent beyond its Chronobiotic Properties: A Scoping Review of its Effects on Key Sleep-wake Neurotransmitters

Abstract

Introduction

Exogenous melatonin (exo-MLT) is a sleep-promoting agent that modulates key sleep-wake neurotransmitters.

Methods

This scoping review analyzed 623 studies retrieved from PubMed/MEDLINE and ISI/Web of Science, applying PRISMA methodology to ensure rigorous inclusion criteria. After screening, 58 original research papers were analyzed for exo-MLT's effects on gamma-aminobutyric acid (GABA), serotonin, dopamine, glutamine, norepinephrine, epinephrine, orexin, acetylcholine, adenosine, glycine, galanin, and histamine.

Results

We identified 20 studies on the GABAergic system, showing that exo-MLT enhances GABA activity through different mechanisms, promoting non-REM sleep and reducing stress-related hyperarousal. On serotonin, 16 studies revealed limited and variable effects depending on the dose and physiological conditions. Total 13 dopamine studies suggested that exo-MLT does not alter physiological dopamine turnover, restoring dopaminergic balance in pathological states. On the glutamatergic system, seven studies showed a compensatory role of exo-MLT on glutamate excitotoxicity. Six studies on norepinephrine highlighted exo-MLT's ability to regulate sympathetic activity. The orexinergic system was the focus of five studies, indicating exo-MLT's inhibitory action on orexinergic neurons, enhancing sleep quality and consolidation. Five studies investigated exo-MLT on the cholinergic system, revealing an enhancing effect on acetylcholine activity in physiological and pathophysiological conditions. Lastly, four studies exploring adenosine and glycine were inconclusive of the exo-MLT effect, while we could not find any data on histamine and galanin.

Discussion

This review underscores exo-MLT's mechanisms beyond circadian regulation, offering therapeutic promise in sleep disorders associated with other neuropsychiatric conditions.

Conclusion

Exo-MLT’s interactions provide insights into its safety and non-addictive characteristics, supporting its integration into personalized sleep medicine.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X379708250702084616
2025-07-22
2025-09-18
Loading full text...

Full text loading...

References

  1. Le Bon O. Relationships between REM and NREM in the NREM-REM sleep cycle: A review on competing concepts. Sleep Med. 2020 70 6 16 10.1016/j.sleep.2020.02.004 32179430
    [Google Scholar]
  2. Robbins R Quan S. Sleep Health. NEJM Evid. 2024 3 8 EVIDra2300269 10.1056/EVIDra2300269.
    [Google Scholar]
  3. Cruz-Sanabria F. Carmassi C. Bruno S. Bazzani A. Carli M. Scarselli M. Faraguna U. Melatonin as a chronobiotic with sleep-promoting properties. Curr. Neuropharmacol. 2023 21 4 951 987 10.2174/1570159X20666220217152617 35176989
    [Google Scholar]
  4. Matsumoto M. Sack R.L. Blood M.L. Lewy A.J. The amplitude of endogenous melatonin production is not affected by melatonin treatment in humans. J. Pineal Res. 1997 22 1 42 44 10.1111/j.1600‑079X.1997.tb00301.x 9062869
    [Google Scholar]
  5. Bothorel B. Barassin S. Saboureau M. Perreau S. Vivien-Roels B. Malan A. Pévet P. In the rat, exogenous melatonin increases the amplitude of pineal melatonin secretion by a direct action on the circadian clock. Eur. J. Neurosci. 2002 16 6 1090 1098 10.1046/j.1460‑9568.2002.02176.x 12383238
    [Google Scholar]
  6. Zisapel N. Tarrasch R. Laudon M. The relationship between melatonin and cortisol rhythms: Clinical implications of melatonin therapy. Drug Dev. Res. 2005 65 3 119 125 10.1002/ddr.20014
    [Google Scholar]
  7. Mannino G. Pernici C. Serio G. Gentile C. Bertea C.M. Melatonin and phytomelatonin: Chemistry, biosynthesis, metabolism, distribution and bioactivity in plants and animals: An overview. Int. J. Mol. Sci. 2021 22 18 9996 10.3390/ijms22189996 34576159
    [Google Scholar]
  8. Gobbi G. Comai S. Differential function of melatonin MT1 and MT2 receptors in REM and NREM Sleep. Front. Endocrinol. (Lausanne) 2019 10 87 10.3389/fendo.2019.00087 30881340
    [Google Scholar]
  9. Pandiperumal S. Trakht I. Srinivasan V. Spence D. Maestroni G. Zisapel N. Cardinali D. Physiological effects of melatonin: Role of melatonin receptors and signal transduction pathways. Prog. Neurobiol. 2008 85 3 335 353 10.1016/j.pneurobio.2008.04.001 18571301
    [Google Scholar]
  10. Klosen P. Lapmanee S. Schuster C. Guardiola B. Hicks D. Pevet P. Felder-Schmittbuhl M.P. MT1 and MT2 melatonin receptors are expressed in nonoverlapping neuronal populations. J. Pineal Res. 2019 67 1 e12575 10.1111/jpi.12575 30937953
    [Google Scholar]
  11. Comai S. Ochoa-Sanchez R. Gobbi G. Sleep–wake characterization of double MT1/MT2 receptor knockout mice and comparison with MT1 and MT2 receptor knockout mice. Behav. Brain Res. 2013 243 231 238 10.1016/j.bbr.2013.01.008 23333399
    [Google Scholar]
  12. Liu J. Clough S.J. Hutchinson A.J. Adamah-Biassi E.B. Popovska-Gorevski M. Dubocovich M.L. MT 1 and MT 2 melatonin receptors: A therapeutic perspective. Annu. Rev. Pharmacol. Toxicol. 2016 56 1 361 383 10.1146/annurev‑pharmtox‑010814‑124742 26514204
    [Google Scholar]
  13. Dubocovich M.L. Hudson R.L. Sumaya I.C. Masana M.I. Manna E. Effect of MT 1 melatonin receptor deletion on melatonin‐mediated phase shift of circadian rhythms in the C57BL/6 mouse. J. Pineal Res. 2005 39 2 113 120 10.1111/j.1600‑079X.2005.00230.x 16098087
    [Google Scholar]
  14. Falup-Pecurariu C. Diaconu Ștefania, Țînț D, Falup-Pecurariu O. Neurobiology of sleep. Exp. Ther. Med. 2021 21 3 272 [Review]. 33603879
    [Google Scholar]
  15. Vanini G. Torterolo P. Sleep-Wake neurobiology. Adv Exp Med Biol. 2021 1297 65 82 10.1007/978‑3‑030‑61663‑2_5
    [Google Scholar]
  16. Reichert C.F. Deboer T. Landolt H.P. Adenosine, caffeine, and sleep–wake regulation: state of the science and perspectives. J. Sleep Res. 2022 31 4 e13597 10.1111/jsr.13597 35575450
    [Google Scholar]
  17. Chaturvedi R. Emery P. Fly into tranquility: GABA’s role in Drosophila sleep. Curr. Opin. Insect Sci. 2024 64 101219 10.1016/j.cois.2024.101219 38848811
    [Google Scholar]
  18. Takahashi J.S. Finding new clock components: Past and future. J. Biol. Rhythms 2004 19 5 339 347 10.1177/0748730404269151 15536063
    [Google Scholar]
  19. Torrealba F. Yanagisawa M. Saper C.B. Colocalization of orexin a and glutamate immunoreactivity in axon terminals in the tuberomammillary nucleus in rats. Neuroscience 2003 119 4 1033 1044 10.1016/S0306‑4522(03)00238‑0 12831862
    [Google Scholar]
  20. Vanini G. Bassana M. Mast M. Mondino A. Cerda I. Phyle M. Chen V. Colmenero A.V. Hambrecht-Wiedbusch V.S. Mashour G.A. Activation of preoptic GABAergic or glutamatergic neurons modulates sleep-wake architecture, but not anesthetic state transitions. Curr. Biol. 2020 30 5 779 787.e4 10.1016/j.cub.2019.12.063 32084397
    [Google Scholar]
  21. Rosenstein R.E. Cardinali D.P. Melatonin increases in vivo GABA accumulation in rat hypothalamus, cerebellum, cerebral cortex and pineal gland. Brain Res. 1986 398 2 403 406 10.1016/0006‑8993(86)91505‑2 3801913
    [Google Scholar]
  22. Monnet F.P. Melatonin modulates [3h]serotonin release in the rat hippocampus: Effects of circadian rhythm. J. Neuroendocrinol. 2002 14 3 194 199 10.1046/j.0007‑1331.2001.00761.x 11999718
    [Google Scholar]
  23. Sharma R. Sahota P. Thakkar M.M. Melatonin promotes sleep in mice by inhibiting orexin neurons in the perifornical lateral hypothalamus. J. Pineal Res. 2018 65 2 e12498 10.1111/jpi.12498 29654707
    [Google Scholar]
  24. Holbrook A. Crowther R. Lotter A. Endeshaw Y. The role of benzodiazepines in the treatment of insomnia: meta-analysis of benzodiazepine use in the treatment of insomnia. J. Am. Geriatr. Soc. 2001 49 6 824 826 10.1046/j.1532‑5415.2001.49161.x 11454123
    [Google Scholar]
  25. Mi P. Gao Q. Feng Z.Y. Zhang J.W. Zhao X. Chen D.Y. Feng X.Z. Melatonin attenuates 17β-trenbolone induced insomnia-like phenotype and movement deficiency in zebrafish. Chemosphere 2020 253 126762 10.1016/j.chemosphere.2020.126762 32302915
    [Google Scholar]
  26. Robinson C.L. Supra R. Downs E. Kataria S. Parker K. Kaye A.D. Viswanath O. Urits I. Daridorexant for the treatment of insomnia. Health Psychol. Res. 2022 10 3 37400 10.52965/001c.37400 36045942
    [Google Scholar]
  27. Ozdemir P.G. Karadag A.S. Selvi Y. Boysan M. Bilgili S.G. Aydin A. Onder S. Assessment of the effects of antihistamine drugs on mood, sleep quality, sleepiness, and dream anxiety. Int. J. Psychiatry Clin. Pract. 2014 18 3 161 168 10.3109/13651501.2014.907919 24673474
    [Google Scholar]
  28. Brzezinski A. Vangel M.G. Wurtman R.J. Norrie G. Zhdanova I. Ben-Shushan A. Ford I. Effects of exogenous melatonin on sleep: A meta-analysis. Sleep Med. Rev. 2005 9 1 41 50 10.1016/j.smrv.2004.06.004 15649737
    [Google Scholar]
  29. Ferracioli-Oda E. Qawasmi A. Bloch M.H. Meta-analysis: Melatonin for the treatment of primary sleep disorders. PLoS One 2013 8 5 e63773 10.1371/journal.pone.0063773 23691095
    [Google Scholar]
  30. Auld F. Maschauer E.L. Morrison I. Skene D.J. Riha R.L. Evidence for the efficacy of melatonin in the treatment of primary adult sleep disorders. Sleep Med. Rev. 2017 34 10 22 10.1016/j.smrv.2016.06.005 28648359
    [Google Scholar]
  31. Cruz-Sanabria F. Bruno S. Crippa A. Frumento P. Scarselli M. Skene D.J. Faraguna U. Optimizing the time and dose of melatonin as a sleep‐promoting drug: A systematic review of randomized controlled trials and dose−response meta‐analysis. J. Pineal Res. 2024 76 5 e12985 10.1111/jpi.12985 38888087
    [Google Scholar]
  32. Cruz-Aguilar M.A. Ramírez-Salado I. Guevara M.A. Hernández-González M. Benitez-King G. Melatonin effects on EEG activity during sleep onset in mild-to-moderate alzheimer’s disease: A pilot study. J. Alzheimers Dis. Rep. 2018 2 1 55 65 10.3233/ADR‑170019 30480249
    [Google Scholar]
  33. Ma H. Yan J. Sun W. Jiang M. Zhang Y. Melatonin treatment for sleep disorders in parkinson’s disease: A meta-analysis and systematic review. Front. Aging Neurosci. 2022 14 784314 10.3389/fnagi.2022.784314 35185525
    [Google Scholar]
  34. Wang L. Pan Y. Ye C. Guo L. Luo S. Dai S. Chen N. Wang E. A network meta-analysis of the long- and short-term efficacy of sleep medicines in adults and older adults. Neurosci. Biobehav. Rev. 2021 131 489 496 10.1016/j.neubiorev.2021.09.035 34560134
    [Google Scholar]
  35. De Crescenzo F. D’Alò G.L. Ostinelli E.G. Ciabattini M. Di Franco V. Watanabe N. Kurtulmus A. Tomlinson A. Mitrova Z. Foti F. Del Giovane C. Quested D.J. Cowen P.J. Barbui C. Amato L. Efthimiou O. Cipriani A. Comparative effects of pharmacological interventions for the acute and long-term management of insomnia disorder in adults: A systematic review and network meta-analysis. Lancet 2022 400 10347 170 184 10.1016/S0140‑6736(22)00878‑9 35843245
    [Google Scholar]
  36. Vigo D.E. Cardinali D.P. Melatonin and Benzodiazepine/Z-Drug Abuse. Psychiatry and Neuroscience Update. Cham Springer International Publishing 2019 427 451 10.1007/978‑3‑319‑95360‑1_34
    [Google Scholar]
  37. Cardinali D.P. Golombek D.A. Rosenstein R.E. Brusco L.I. Vigo D.E. Assessing the efficacy of melatonin to curtail benzodiazepine/Z drug abuse. Pharmacol. Res. 2016 109 12 23 10.1016/j.phrs.2015.08.016 26438969
    [Google Scholar]
  38. Iftikhar S. Sameer H.M. Zainab Significant potential of melatonin therapy in Parkinson’s disease: A meta-analysis of randomized controlled trials. Front. Neurol. 2023 14 1265789 10.3389/fneur.2023.1265789 37881313
    [Google Scholar]
  39. Barbosa-Méndez S. Pérez-Sánchez G. Becerril-Villanueva E. Salazar-Juárez A. Melatonin decreases cocaine-induced locomotor sensitization and cocaine-conditioned place preference in rats. J. Psychiatr. Res. 2021 132 97 110 10.1016/j.jpsychires.2020.09.027 33080430
    [Google Scholar]
  40. Kastner M. Tricco A.C. Soobiah C. Lillie E. Perrier L. Horsley T. Welch V. Cogo E. Antony J. Straus S.E. What is the most appropriate knowledge synthesis method to conduct a review? Protocol for a scoping review. BMC Med. Res. Methodol. 2012 12 1 114 10.1186/1471‑2288‑12‑114 22862833
    [Google Scholar]
  41. Arksey H. O’Malley L. Scoping studies: Towards a methodological framework. Int. J. Soc. Res. Methodol. 2005 8 1 19 32 10.1080/1364557032000119616
    [Google Scholar]
  42. Levac D. Colquhoun H. O’Brien K.K. Scoping studies: Advancing the methodology. Implement. Sci. 2010 5 1 69 10.1186/1748‑5908‑5‑69 20854677
    [Google Scholar]
  43. Colquhoun H.L. Levac D. O’Brien K.K. Straus S. Tricco A.C. Perrier L. Kastner M. Moher D. Scoping reviews: Time for clarity in definition, methods, and reporting. J. Clin. Epidemiol. 2014 67 12 1291 1294 10.1016/j.jclinepi.2014.03.013 25034198
    [Google Scholar]
  44. Peters m. Godfrey Q.M. Mcinerney P. Scoping reviews. JBI Manual for Evidence Synthesis Adelaide, Australia JBI 2020
    [Google Scholar]
  45. Tricco A.C. Lillie E. Zarin W. O’Brien K.K. Colquhoun H. Levac D. Moher D. Peters M.D.J. Horsley T. Weeks L. Hempel S. Akl E.A. Chang C. McGowan J. Stewart L. Hartling L. Aldcroft A. Wilson M.G. Garritty C. Lewin S. Godfrey C.M. Macdonald M.T. Langlois E.V. Soares-Weiser K. Moriarty J. Clifford T. Tunçalp Ö. Straus S.E. PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Ann. Intern. Med. 2018 169 7 467 473 10.7326/M18‑0850 30178033
    [Google Scholar]
  46. Lowenstein P.R. Rosenstein R. Cardinali D.P. Melatonin reverses pinealectomy-induced decrease of benzodiazepine binding in rat cerebral cortex. Neurochem. Int. 1985 7 4 675 681 10.1016/0197‑0186(85)90065‑8 20492974
    [Google Scholar]
  47. Yang H.J. Kim M.J. Kim S.S. Cho Y.W. Melatonin modulates nitric oxide-regulated WNK-SPAK/OSR1-NKCC1 signaling in dorsal raphe nucleus of rats. Korean J. Physiol. Pharmacol. 2021 25 5 449 457 10.4196/kjpp.2021.25.5.449 34448462
    [Google Scholar]
  48. Cheng X.P. Sun H. Ye Z.Y. Zhou J.N. Melatonin modulates the GABAergic response in cultured rat hippocampal neurons. J. Pharmacol. Sci. 2012 119 2 177 185 10.1254/jphs.11183FP 22673185
    [Google Scholar]
  49. Castroviejo A. Rosenstein R.E. Romeo H.E. Cardinali D.P. Changes in gamma-aminobutyric acid high affinity binding to cerebral cortex membranes after pinealectomy or melatonin administration to rats. Neuroendocrinology 1986 43 1 24 31 10.1159/000124504 3713987
    [Google Scholar]
  50. Hong S.I. Kwon S.H. Hwang J.Y. Ma S.X. Seo J.Y. Ko Y.H. Kim H.C. Lee S.Y. Jang C.G. Quinpirole increases melatonin-augmented pentobarbital sleep via cortical ERK, p38 MAPK, and PKC in mice. Biomol. Ther. (Seoul) 2016 24 2 115 122 10.4062/biomolther.2015.097 26902082
    [Google Scholar]
  51. Huang Y. Li Y. Leng Z. Melatonin inhibits GABAergic neurons in the hypothalamus consistent with a reduction in wakefulness. Neuroreport 2020 31 2 92 98 10.1097/WNR.0000000000001374 31876681
    [Google Scholar]
  52. Ochoa-Sanchez R. Comai S. Lacoste B. Bambico F.R. Dominguez-Lopez S. Spadoni G. Rivara S. Bedini A. Angeloni D. Fraschini F. Mor M. Tarzia G. Descarries L. Gobbi G. Promotion of non-rapid eye movement sleep and activation of reticular thalamic neurons by a novel MT2 melatonin receptor ligand. J. Neurosci. 2011 31 50 18439 18452 10.1523/JNEUROSCI.2676‑11.2011 22171046
    [Google Scholar]
  53. Kumar A. Singh A. Possible involvement of GABAergic mechanism in protective effect of melatonin against sleep deprivation–induced behaviour modification and oxidative damage in mice. Fundam. Clin. Pharmacol. 2009 23 4 439 448 10.1111/j.1472‑8206.2009.00737.x 19709322
    [Google Scholar]
  54. Langebartels A. Mathias S. Lancel M. Acute effects of melatonin on spontaneous and picrotoxin‐evoked sleep–wake behaviour in the rat. J. Sleep Res. 2001 10 3 211 217 10.1046/j.1365‑2869.2001.00257.x 11696074
    [Google Scholar]
  55. Levesque T.R. Locke K.W. Discriminative stimulus effects of melatonin in the rat. Psychopharmacology (Berl.) 1994 116 2 167 172 10.1007/BF02245059 7862946
    [Google Scholar]
  56. Wang F. Li J. Wu C. Yang J. Xu F. Zhao Q. The GABAA receptor mediates the hypnotic activity of melatonin in rats. Pharmacol. Biochem. Behav. 2003 74 3 573 578 10.1016/S0091‑3057(02)01045‑6 12543221
    [Google Scholar]
  57. Kolker D.E. Losee Olson S. Dutton-Boilek J. Bennett K.M. Wallen E.P. Horton T.H. Turek F.W. Feeding melatonin enhances the phase shifting response to triazolam in both young and old golden hamsters. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2002 282 5 R1382 R1388 10.1152/ajpregu.00362.2001 11959680
    [Google Scholar]
  58. Borsani E. Bonomini F. Bonini S.A. Premoli M. Maccarinelli G. Giugno L. Mastinu A. Aria F. Memo M. Rezzani R. Role of melatonin in autism spectrum disorders in a male murine transgenic model: Study in the prefrontal cortex. J. Neurosci. Res. 2022 100 3 780 797 10.1002/jnr.24997 35043490
    [Google Scholar]
  59. Matsuta Y. Yusup A. Tanase K. Ishida H. Akino H. Yokoyama O. Melatonin increases bladder capacity via GABAergic system and decreases urine volume in rats. J. Urol. 2010 184 1 386 391 10.1016/j.juro.2010.03.002 20488476
    [Google Scholar]
  60. Xu Z. Li W. Sun Y. Jin W. Yu L. Yang J. Wang Q. Melatonin alleviates PTSD-like behaviors and restores serum GABA and cortisol levels in mice. Psychopharmacology (Berl.) 2023 240 2 259 269 10.1007/s00213‑023‑06312‑y 36642730
    [Google Scholar]
  61. Zhang L. Guo H.L. Zhang H.Q. Xu T.Q. He B. Wang Z.H. Yang Y.P. Tang X.D. Zhang P. Liu F.E. Melatonin prevents sleep deprivation-associated anxiety-like behavior in rats: Role of oxidative stress and balance between GABAergic and glutamatergic transmission. Am. J. Transl. Res. 2017 9 5 2231 2242 28559974
    [Google Scholar]
  62. Ferini-Strambi L. Zucconi M. Biella G. Stankov B. Fraschini F. Oldani A. Smirne S. Effect of melatonin on sleep microstructure: Preliminary results in healthy subjects. Sleep 1993 16 8 744 747 10.1093/sleep/16.8.744 8165389
    [Google Scholar]
  63. Djeridane Y. Touitou Y. Effects of diazepam and its metabolites on nocturnal melatonin secretion in the rat pineal and Harderian glands. A comparative in vivo and in vitro study. Chronobiol. Int. 2003 20 2 285 297 10.1081/CBI‑120018579 12723886
    [Google Scholar]
  64. Noguchi H. Kitazumi K. Mori M. Shiobara Y. Shiba T. Effect of zaleplon, a non-benzodiazepine hypnotic, on melatonin secretion in rabbits. J. Pharmacol. Sci. 2003 93 2 204 209 10.1254/jphs.93.204 14578589
    [Google Scholar]
  65. Mann K. Bauer H. Hiemke C. Röschke J. Wetzel H. Benkert O. Acute, subchronic and discontinuation effects of zopiclone on sleep EEG and nocturnal melatonin secretion. Eur. Neuropsychopharmacol. 1996 6 3 163 168 10.1016/0924‑977X(96)00014‑4 8880074
    [Google Scholar]
  66. Hajak G. Rodenbeck A. Bandelow B. Friedrichs S. Huether G. Rüther E. Nocturnal plasma melatonin levels after flunitrazepam administration in healthy subjects. Eur. Neuropsychopharmacol. 1996 6 2 149 153 10.1016/0924‑977X(96)00005‑3 8791041
    [Google Scholar]
  67. Morera A.L. Abreu-Gonzalez P. Henry M. Zaleplon increases nocturnal melatonin secretion in humans. Prog. Neuropsychopharmacol. Biol. Psychiatry 2009 33 6 1013 1016 10.1016/j.pnpbp.2009.05.011 19463883
    [Google Scholar]
  68. Atsmon J. Oaknin S. Laudon M. Laschiner S. Gavish M. Dagan Y. Zisapel N. Reciprocal effects of chronic diazepam and melatonin on brain melatonin and benzodiazepine binding sites. J. Pineal Res. 1996 20 2 65 71 10.1111/j.1600‑079X.1996.tb00241.x 8815189
    [Google Scholar]
  69. Bassani T.B. Gradowski R.W. Zaminelli T. Barbiero J.K. Santiago R.M. Boschen S.L. da Cunha C. Lima M.M.S. Andreatini R. Vital M.A.B.F. Neuroprotective and antidepressant-like effects of melatonin in a rotenone-induced Parkinson’s disease model in rats. Brain Res. 2014 1593 95 105 10.1016/j.brainres.2014.09.068 25301688
    [Google Scholar]
  70. Muneoka K. Ogawa T. Takigawa M. Effects of neonatal melatonin administration on the extra-hypothalamic regions in rat brains: Effects on the serotonergic system. Neurochem. Res. 2000 25 6 817 822 10.1023/A:1007517524179 10944000
    [Google Scholar]
  71. Pazo D. Cardinali D.P. Cano P. Reyes Toso C.A. Esquifino A.I. Age-related changes in 24-hour rhythms of norepinephrine content and serotonin turnover in rat pineal gland: effect of melatonin treatment. Neurosignals 2002 11 2 81 87 10.1159/000058544 12077481
    [Google Scholar]
  72. Iyengar B. Indoleamines and the UV-light-sensitive photoperiodic responses of the melanocyte network: A biological calendar? Experientia 1994 50 8 733 736 10.1007/BF01919373 8070534
    [Google Scholar]
  73. Chenu F. Shim S. El Mansari M. Blier P. Role of melatonin, serotonin 2B, and serotonin 2C receptors in modulating the firing activity of rat dopamine neurons. J. Psychopharmacol. 2014 28 2 162 167 10.1177/0269881113510071 24189440
    [Google Scholar]
  74. Oxenkrug G.F. Requintina P.J. Melatonin and jet lag syndrome: Experimental model and clinical implications. CNS Spectr. 2003 8 2 139 148 10.1017/S109285290001837X 12612500
    [Google Scholar]
  75. Paredes S.D. Terrón M.P. Valero V. Barriga C. Reiter R.J. Rodríguez A.B. Orally administered melatonin improves nocturnal rest in young and old ringdoves (Streptopelia risoria). Basic Clin. Pharmacol. Toxicol. 2007 100 4 258 268 10.1111/j.1742‑7843.2006.00032.x 17371530
    [Google Scholar]
  76. Paredes S.D. Marchena A.M. Bejarano I. Espino J. Barriga C. Rial R.V. Reiter R.J. Rodríguez A.B. Melatonin and tryptophan affect the activity-rest rhythm, core and peripheral temperatures, and interleukin levels in the ringdove: Changes with age. J. Gerontol. A Biol. Sci. Med. Sci. 2009 64A 3 340 350 10.1093/gerona/gln054 19211547
    [Google Scholar]
  77. Haduch A. Bromek E. Wójcikowski J. Gołembiowska K. Daniel W.A. Melatonin supports CYP2D-mediated serotonin synthesis in the brain. Drug Metab. Dispos. 2016 44 3 445 452 10.1124/dmd.115.067413 26884482
    [Google Scholar]
  78. Dugovic C. Leysen J.E. Wauquier A. Melatonin modulates the sensitivity of 5-hydroxytryptamine-2 receptor-mediated sleep—wakefulness regulation in the rat. Neurosci. Lett. 1989 104 3 320 325 10.1016/0304‑3940(89)90596‑X 2510097
    [Google Scholar]
  79. Jagota A. Kalyani D. Effect of melatonin on age induced changes in daily serotonin rhythms in suprachiasmatic nucleus of male Wistar rat. Biogerontology 2010 11 3 299 308 10.1007/s10522‑009‑9248‑9 19774481
    [Google Scholar]
  80. Poceviciute I. Buisas R. Ruksenas O. Vengeliene V. Melatonin reduces alcohol drinking in rats with disrupted function of the serotonergic system. J. Pers. Med. 2022 12 3 355 10.3390/jpm12030355 35330355
    [Google Scholar]
  81. Wang Y. Wang X. Chen J. Li S. Zhai H. Wang Z. Melatonin pretreatment attenuates acute methamphetamine-induced aggression in male ICR mice. Brain Res. 2019 1715 196 202 10.1016/j.brainres.2019.04.002 30953606
    [Google Scholar]
  82. Schiller E.D. Champney T.H. Reiter C.K. Dohrman D.P. Melatonin inhibition of nicotine-stimulated dopamine release in PC12 cells. Brain Res. 2003 966 1 95 102 10.1016/S0006‑8993(02)04200‑2 12646312
    [Google Scholar]
  83. Holmes S.W. Sugden D. Effects of melatonin on sleep and neurochemistry in the rat. Br. J. Pharmacol. 1982 76 1 95 101 10.1111/j.1476‑5381.1982.tb09194.x 7082909
    [Google Scholar]
  84. Matsumoto T. Ducsay C.A. Maternal plasma catecholamines in the rhesus macaque during late gestation: Effect of photoperiod and timed melatonin infusion. Biol. Reprod. 1992 47 4 582 587 10.1095/biolreprod47.4.582 1391345
    [Google Scholar]
  85. Zhdanova I.V. Giorgetti M. Melatonin alters behavior and cAMP levels in nucleus accumbens induced by cocaine treatment. Brain Res. 2002 956 2 323 331 10.1016/S0006‑8993(02)03565‑5 12445702
    [Google Scholar]
  86. Aranda-Martínez P. Fernández-Martínez J. Ramírez-Casas Y. Rodríguez-Santana C. Rusanova I. Escames G. Acuña-Castroviejo D. Chronodisruption and loss of melatonin rhythm, associated with alterations in daily motor activity and mitochondrial dynamics in parkinsonian zebrafish, are corrected by melatonin treatment. Antioxidants 2023 12 4 954 10.3390/antiox12040954 37107331
    [Google Scholar]
  87. Sumaya I.C. Dubocovich M.L. Melatonin-mediated attenuation of fluphenazine-induced hypokinesia in C57BL/6 mice is dependent on the light/dark phase. Behav. Brain Res. 2022 425 113827 10.1016/j.bbr.2022.113827 35248650
    [Google Scholar]
  88. Hussain S. Villarreal S. Ramirez N. Hussain A. Sumaya I.C. Haloperidol-induced hypokinesia in rats is differentially affected by the light/dark phase, age, and melatonin. Behav. Brain Res. 2020 379 112313 10.1016/j.bbr.2019.112313 31715211
    [Google Scholar]
  89. Votaw V.R. Geyer R. Rieselbach M.M. McHugh R.K. The epidemiology of benzodiazepine misuse: A systematic review. Drug Alcohol Depend. 2019 200 95 114 10.1016/j.drugalcdep.2019.02.033 31121495
    [Google Scholar]
  90. Machado N.L.S. Todd W.D. Kaur S. Saper C.B. Median preoptic GABA and glutamate neurons exert differential control over sleep behavior. Curr. Biol. 2022 32 9 2011 2021.e3 10.1016/j.cub.2022.03.039 35385692
    [Google Scholar]
  91. Evely K.M. Hudson R.L. Dubocovich M.L. Haj-dahmane S. Melatonin receptor activation increases glutamatergic synaptic transmission in the rat medial lateral habenula. Synapse 2016 70 5 181 186 10.1002/syn.21892 26799638
    [Google Scholar]
  92. Tardito D. Milanese M. Bonifacino T. Musazzi L. Grilli M. Mallei A. Mocaer E. Gabriel-Gracia C. Racagni G. Popoli M. Bonanno G. Blockade of stress-induced increase of glutamate release in the rat prefrontal/frontal cortex by agomelatine involves synergy between melatonergic and 5-HT2C receptor-dependent pathways. BMC Neurosci. 2010 11 1 68 10.1186/1471‑2202‑11‑68 20525261
    [Google Scholar]
  93. Mao K. Luo P. Geng W. Xu J. Liao Y. Zhong H. Ma P. Tan Q. Xia H. Duan L. Song S. Long D. Liu Y. Yang T. Wu Y. Jin Y. An integrative transcriptomic and metabolomic study revealed that melatonin plays a protective role in chronic lung inflammation by reducing necroptosis. Front. Immunol. 2021 12 668002 10.3389/fimmu.2021.668002 34017341
    [Google Scholar]
  94. Zhao H. Zhang T. Zhang H. Wang Y. Cheng L. Exercise-with-melatonin therapy improves sleep disorder and motor dysfunction in a rat model of ischemic stroke. Neural Regen. Res. 2024 19 6 1336 1343 10.4103/1673‑5374.385844 37905883
    [Google Scholar]
  95. Chuluyan H.E. Rosenstein R.E. Chang S.M. Gálvez M.M. Cardinali D.P. Presynaptic effects of melatonin on norepinephrine release and uptake in rat pineal gland. J. Pineal Res. 1991 10 4 165 173 10.1111/j.1600‑079X.1991.tb00811.x 1681046
    [Google Scholar]
  96. Brusco L.I. García-Bonacho M. Esquifino A.I. Cardinali D.P. Diurnal rhythms in norepinephrine and acetylcholine synthesis of sympathetic ganglia, heart and adrenals of aging rats: Effect of melatonin. J. Auton. Nerv. Syst. 1998 74 1 49 61 10.1016/S0165‑1838(98)00134‑9 9858124
    [Google Scholar]
  97. Appelbaum L. Wang G.X. Maro G.S. Mori R. Tovin A. Marin W. Yokogawa T. Kawakami K. Smith S.J. Gothilf Y. Mignot E. Mourrain P. Sleep–wake regulation and hypocretin–melatonin interaction in zebrafish. Proc. Natl. Acad. Sci. USA 2009 106 51 21942 21947 10.1073/pnas.906637106 19966231
    [Google Scholar]
  98. Appelbaum L. Wang G. Yokogawa T. Skariah G.M. Smith S.J. Mourrain P. Mignot E. Circadian and homeostatic regulation of structural synaptic plasticity in hypocretin neurons. Neuron 2010 68 1 87 98 10.1016/j.neuron.2010.09.006 20920793
    [Google Scholar]
  99. SEHZADE S. KOC C. KAHVECI N. Melatonin treatment affects leptin and nesfatin-1 levels but not orexin: A levels in REM sleep deprived rats. Kafkas Univ. Vet. Fak. Derg. 2023 29 537 544 10.9775/kvfd.2023.29955
    [Google Scholar]
  100. Gott J.A. Stücker S. Kanske P. Haaker J. Dresler M. Acetylcholine and metacognition during sleep. Conscious. Cogn. 2024 117 103608 10.1016/j.concog.2023.103608 38042119
    [Google Scholar]
  101. Cardinali D.P. Brusco L.I. GarcíaBonacho M. Esquifìno A.I. Effect of melatonin on 24-hour rhythms of ornithine decarboxylase activity and norepinephrine and acetylcholine synthesis in submaxillary lymph nodes and spleen of young and aged rats. Neuroendocrinology 1998 67 5 349 362 10.1159/000054333 9641617
    [Google Scholar]
  102. de Prado B.M. Reiter R.J. Mora F. Perfusion of melatonin into the prefrontal cortex disrupts the circadian rhythm of acetylcholine but not of locomotor activity. J. Pineal Res. 2003 35 4 283 287 10.1034/j.1600‑079X.2003.00088.x 14521635
    [Google Scholar]
  103. Tancheva L. Lazarova M. Saso L. Kalfin R. Stefanova M. Uzunova D. Atanasov A.G. Beneficial effect of melatonin on motor and memory disturbances in 6-OHDA-Lesioned rats. J. Mol. Neurosci. 2021 71 4 702 712 10.1007/s12031‑020‑01760‑z 33403591
    [Google Scholar]
  104. von Gall C. Garabette M.L. Kell C.A. Frenzel S. Dehghani F. Schumm-Draeger P.M. Weaver D.R. Korf H.W. Hastings M.H. Stehle J.H. Rhythmic gene expression in pituitary depends on heterologous sensitization by the neurohormone melatonin. Nat. Neurosci. 2002 5 3 234 238 10.1038/nn806 11836530
    [Google Scholar]
  105. Zamorskii I.I. Effect of melatonin on the intensity of adenosine production in the rat forebrain under conditions of acute hypoxia and varied photoperiodicity. Neurophysiology 2003 35 1 44 47 10.1023/A:1023998306826
    [Google Scholar]
  106. Cao J. Ribelayga C.P. Mangel S.C. A circadian clock in the retina regulates rod-cone gap junction coupling and neuronal light responses via activation of adenosine A2A receptors. Front. Cell. Neurosci. 2021 14 605067 10.3389/fncel.2020.605067 33510619
    [Google Scholar]
  107. Bannai M. Kawai N. New therapeutic strategy for amino acid medicine: Glycine improves the quality of sleep. J. Pharmacol. Sci. 2012 118 2 145 148 10.1254/jphs.11R04FM 22293292
    [Google Scholar]
  108. Ma Y. Miracca G. Yu X. Harding E.C. Miao A. Yustos R. Vyssotski A.L. Franks N.P. Wisden W. Galanin neurons unite sleep homeostasis and α2-adrenergic sedation. Curr. Biol. 2019 29 19 3315 3322.e3 10.1016/j.cub.2019.07.087 31543455
    [Google Scholar]
  109. Taheri P. Mogheiseh A. Shojaee Tabrizi A. Nazifi S. Salavati S. Koohi F. Changes in thyroid hormones, leptin, ghrelin and, galanin following oral melatonin administration in intact and castrated dogs: A preliminary study. BMC Vet. Res. 2019 15 1 145 10.1186/s12917‑019‑1894‑9 31088464
    [Google Scholar]
  110. Thakkar M.M. Histamine in the regulation of wakefulness. Sleep Med. Rev. 2011 15 1 65 74 10.1016/j.smrv.2010.06.004 20851648
    [Google Scholar]
  111. Burgazli C.R. Rana K.B. Brown J.N. Tillman F. III Efficacy and safety of hydroxyzine for sleep in adults: Systematic review. Hum. Psychopharmacol. 2023 38 2 e2864 10.1002/hup.2864 36843057
    [Google Scholar]
  112. Dolder C.R. Nelson M.H. Iler C.A. The effects of mirtazapine on sleep in patients with major depressive disorder. Ann. Clin. Psychiatry 2012 24 3 215 224 22860241
    [Google Scholar]
  113. Dijk D.J. Roth C. Landolt H.P. Werth E. Aeppli M. Achermann P. Borbély A.A. Melatonin effect on daytime sleep in men: Suppression of EEG low frequency activity and enhancement of spindle frequency activity. Neurosci. Lett. 1995 201 1 13 16 10.1016/0304‑3940(95)12118‑N 8830301
    [Google Scholar]
  114. Fernandez L.M.J. Lüthi A. Sleep spindles: Mechanisms and functions. Physiol. Rev. 2020 100 2 805 868 10.1152/physrev.00042.2018 31804897
    [Google Scholar]
  115. Yu X. Li W. Ma Y. Tossell K. Harris J.J. Harding E.C. Ba W. Miracca G. Wang D. Li L. Guo J. Chen M. Li Y. Yustos R. Vyssotski A.L. Burdakov D. Yang Q. Dong H. Franks N.P. Wisden W. GABA and glutamate neurons in the VTA regulate sleep and wakefulness. Nat. Neurosci. 2019 22 1 106 119 10.1038/s41593‑018‑0288‑9 30559475
    [Google Scholar]
  116. Manconi M. Ferri R. Miano S. Maestri M. Bottasini V. Zucconi M. Ferini-Strambi L. Sleep architecture in insomniacs with severe benzodiazepine abuse. Clin. Neurophysiol. 2017 128 6 875 881 10.1016/j.clinph.2017.03.009 28399441
    [Google Scholar]
  117. Sigel E. Ernst M. The benzodiazepine binding sites of GABAA receptors. Trends Pharmacol. Sci. 2018 39 7 659 671 10.1016/j.tips.2018.03.006 29716746
    [Google Scholar]
  118. Ziemichód W. Grabowska K. Kurowska A. Biała G. A comprehensive review of daridorexant, a dual-orexin receptor antagonist as new approach for the treatment of insomnia. Molecules 2022 27 18 6041 10.3390/molecules27186041 36144776
    [Google Scholar]
  119. Guan Q. Wang Z. Cao J. Dong Y. Chen Y. Mechanisms of melatonin in obesity: A review. Int. J. Mol. Sci. 2021 23 1 218 10.3390/ijms23010218 35008644
    [Google Scholar]
  120. Suriyagandhi V. Nachiappan V. Protective effects of melatonin against obesity‐induced by leptin resistance. Behav. Brain Res. 2022 417 113598 10.1016/j.bbr.2021.113598 34563600
    [Google Scholar]
  121. Jones B.E. Arousal and sleep circuits. Neuropsychopharmacology 2020 45 1 6 20 10.1038/s41386‑019‑0444‑2 31216564
    [Google Scholar]
  122. Greenlund I.M. Carter J.R. Sympathetic neural responses to sleep disorders and insufficiencies. Am. J. Physiol. Heart Circ. Physiol. 2022 322 3 H337 H349 10.1152/ajpheart.00590.2021 34995163
    [Google Scholar]
  123. Pham L. Baiocchi L. Kennedy L. Sato K. Meadows V. Meng F. Huang C.K. Kundu D. Zhou T. Chen L. Alpini G. Francis H. The interplay between mast cells, pineal gland, and circadian rhythm: Links between histamine, melatonin, and inflammatory mediators. J. Pineal Res. 2021 70 2 e12699 10.1111/jpi.12699 33020940
    [Google Scholar]
  124. Marseglia L. D’Angelo G. Manti S. Salpietro C. Arrigo T. Barberi I. Reiter R. Gitto E. Melatonin and atopy: Role in atopic dermatitis and asthma. Int. J. Mol. Sci. 2014 15 8 13482 13493 10.3390/ijms150813482 25093714
    [Google Scholar]
  125. Tan K.R. Brown M. Labouèbe G. Yvon C. Creton C. Fritschy J.M. Rudolph U. Lüscher C. Neural bases for addictive properties of benzodiazepines. Nature 2010 463 7282 769 774 10.1038/nature08758 20148031
    [Google Scholar]
  126. Besag F.M.C. Vasey M.J. Lao K.S.J. Wong I.C.K. Adverse events associated with melatonin for the treatment of primary or secondary sleep disorders: A systematic review. CNS Drugs 2019 33 12 1167 1186 10.1007/s40263‑019‑00680‑w 31722088
    [Google Scholar]
  127. Foley H.M. Steel A.E. Adverse events associated with oral administration of melatonin: A critical systematic review of clinical evidence. Complement. Ther. Med. 2019 42 65 81 10.1016/j.ctim.2018.11.003 30670284
    [Google Scholar]
  128. Otmani S. Demazières A. Staner C. Jacob N. Nir T. Zisapel N. Staner L. Effects of prolonged‐release melatonin, zolpidem, and their combination on psychomotor functions, memory recall, and driving skills in healthy middle aged and elderly volunteers. Hum. Psychopharmacol. 2008 23 8 693 705 10.1002/hup.980 18763235
    [Google Scholar]
  129. Giovannini S. Onder G. van der Roest H.G. Topinkova E. Gindin J. Cipriani M.C. Denkinger M.D. Bernabei R. Liperoti R. SHELTER Study Investigators Use of antidepressant medications among older adults in European long-term care facilities: A cross-sectional analysis from the SHELTER study. BMC Geriatr. 2020 20 1 310 10.1186/s12877‑020‑01730‑5 32854659
    [Google Scholar]
  130. Foster B.C. Cvijovic K. Boon H.S. Tam T.W. Liu R. Murty M. Vu D. Jaeger W. Tsuyuki R.T. Barnes J. Vohra S. Melatonin interaction resulting in severe sedation. J. Pharm. Pharm. Sci. 2015 18 2 124 131 10.18433/J3SS35 26158279
    [Google Scholar]
  131. Tuft C. Matar E. Menczel Schrire Z. Grunstein R.R. Yee B.J. Hoyos C.M. Current insights into the risks of using melatonin as a treatment for sleep disorders in older adults. Clin. Interv. Aging 2023 18 49 59 10.2147/CIA.S361519 36660543
    [Google Scholar]
  132. Rzepka-Migut B. Paprocka J. Efficacy and safety of melatonin treatment in children with autism spectrum disorder and attention-deficit/hyperactivity disorder: A review of the literature. Brain Sci. 2020 10 4 219 10.3390/brainsci10040219 32272607
    [Google Scholar]
  133. Menczel Schrire Z. Phillips C.L. Chapman J.L. Duffy S.L. Wong G. D’Rozario A.L. Comas M. Raisin I. Saini B. Gordon C.J. McKinnon A.C. Naismith S.L. Marshall N.S. Grunstein R.R. Hoyos C.M. Safety of higher doses of melatonin in adults: A systematic review and meta‐analysis. J. Pineal Res. 2022 72 2 e12782 10.1111/jpi.12782 34923676
    [Google Scholar]
  134. Moroni I. Garcia-Bennett A. Chapman J. Grunstein R.R. Gordon C.J. Comas M. Pharmacokinetics of exogenous melatonin in relation to formulation, and effects on sleep: A systematic review. Sleep Med. Rev. 2021 57 101431 10.1016/j.smrv.2021.101431 33549911
    [Google Scholar]
  135. Savoca A. Manca D. Physiologically-based pharmacokinetic simulations in pharmacotherapy: Selection of the optimal administration route for exogenous melatonin. ADMET DMPK 2019 7 1 44 59 10.5599/admet.625 35350746
    [Google Scholar]
  136. Zetner D. Andersen L.P. Rosenberg J. Pharmacokinetics of alternative administration routes of melatonin: A systematic review. Drug Res. (Stuttg.) 2016 66 4 169 173 26514093
    [Google Scholar]
  137. Paredes D. Rada P. Bonilla E. Gonzalez L.E. Parada M. Hernandez L. Melatonin acts on the nucleus accumbens to increase acetylcholine release and modify the motor activity pattern of rats. Brain Res. 1999 850 1-2 14 20 10.1016/S0006‑8993(99)01992‑7 10629744
    [Google Scholar]
/content/journals/cn/10.2174/011570159X379708250702084616
Loading
/content/journals/cn/10.2174/011570159X379708250702084616
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher’s website along with the published article.


  • Article Type:
    Review Article
Keywords: sleep ; Melatonin ; sleep-wake neurotransmitters ; scoping review ; sleep disorders
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test