Skip to content
2000
image of An Efficient Neuro-framework for Brain Tumor Classification Using a CNN-based Self-supervised Learning Approach with Genetic Optimizations

Abstract

Introduction

Accurate and non-invasive grading of glioma brain tumors from MRI scans is challenging due to limited labeled data and the complexity of clinical evaluation. This study aims to develop a robust and efficient deep learning framework for improved glioma classification using MRI images.

Methods

A multi-stage framework is proposed, starting with SimCLR-based self-supervised learning for representation learning without labels, followed by Deep Embedded Clustering to extract and group features effectively. EfficientNet-B7 is used for initial classification due to its parameter efficiency. A weighted ensemble of EfficientNet-B7, ResNet-50, and DenseNet-121 is employed for the final classification. Hyperparameters are fine-tuned using a Differential Evolution-optimized Genetic Algorithm to enhance accuracy and training efficiency.

Results

EfficientNet-B7 achieved approximately 88-90% classification accuracy. The weighted

ensemble improved this to approximately 93%. Genetic optimization further enhanced accuracy by 3-5% and reduced training time by 15%.

Discussion

The framework overcomes data scarcity and limited feature extraction issues in traditional CNNs. The combination of self-supervised learning, clustering, ensemble modeling, and evolutionary optimization provides improved performance and robustness, though it requires significant computational resources and further clinical validation.

Conclusion

The proposed framework offers an accurate and scalable solution for glioma classification from MRI images. It supports faster, more reliable clinical decision-making and holds promise for real-world diagnostic applications.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X378103250806214613
2025-09-15
2025-10-28
Loading full text...

Full text loading...

References

  1. Babu Vimala B. Srinivasan S. Mathivanan S.K. Mahalakshmi, Jayagopal, P.; Dalu, G.T. Detection and classification of brain tumor using hybrid deep learning models. Sci. Rep. 2023 13 1 23029 10.1038/s41598‑023‑50505‑6 38155247
    [Google Scholar]
  2. Ali A.A. Hammad M.T. Hassan H.S. A co-evolutionary genetic algorithm approach to optimizing deep learning for brain tumor classification. IEEE Access 2025 13 21229 21248 10.1109/ACCESS.2025.3535844
    [Google Scholar]
  3. Ravinder M. Saluja G. Allabun S. Alqahtani M.S. Abbas M. Othman M. Soufiene B.O. Enhanced brain tumor classification using graph convolutional neural network architecture. Sci. Rep. 2023 13 1 14938 10.1038/s41598‑023‑41407‑8 37697022
    [Google Scholar]
  4. Tiple A.H. Kakade A.B. Modified mask R-CNN with KNN algorithm based segmentation and classification for prediction of brain tumor types. Optoelectron. Instrum. Data Process. 2024 60 1 11 30 10.3103/S8756699024700146
    [Google Scholar]
  5. Pacal I. Celik O. Bayram B. Cunha A. Enhancing efficientnetv2 with global and efficient channel attention mechanisms for accurate MRI-based brain tumor classification. Cluster Comput. 2024 27 8 11187 11212 10.1007/s10586‑024‑04532‑1
    [Google Scholar]
  6. Mujahid M. Rehman A. Alamri F.S. Alotaibi S. Saba T. Brain tumor detection through novel feature selection using deep efficientNet-CNN-based features with supervised learning and data augmentation. Phys. Scr. 2024 99 7 075002 10.1088/1402‑4896/ad4f2d
    [Google Scholar]
  7. Rani K.V. Sumathy G. Shoba L.K. Gaussian weighting–based random walk segmentation and DCNN method for brain tumor detection and classification. Multimed Tools Appl 2024 10.1007/s11042‑024‑18996‑1
    [Google Scholar]
  8. Prakash B.V. Kannan A.R. Santhiyakumari N. Kumarganesh S. Raja D.S.S. Hephzipah J.J. MartinSagayam, K.; Pomplun, M.; Dang, H. Meningioma brain tumor detection and classification using hybrid CNN method and RIDGELET transform. Sci. Rep. 2023 13 1 14522 10.1038/s41598‑023‑41576‑6 37666922
    [Google Scholar]
  9. Viswanathan A. Umamaheswari M. M, S.; Yadav, S.J.K.D. Design a novel hybrid optimization with tuned deep convolutional neural network classifier for brain tumor segmentation and classification. Multimedia Tools Appl. 2024 83 27 69169 69196 10.1007/s11042‑024‑18315‑8
    [Google Scholar]
  10. Ahsan R. Shahzadi I. Najeeb F. Brain tumor detection and segmentation using deep learning. Magn. Reson. Mater. Phy. 2025 38 13 22 10.1007/s10334‑024‑01203‑5
    [Google Scholar]
  11. Balamurugan T. Gnanamanoharan E. Brain tumor segmentation and classification using hybrid deep CNN with LuNetClassifier. Neural Comput. Appl. 2023 35 6 4739 4753 10.1007/s00521‑022‑07934‑7
    [Google Scholar]
  12. Li L. Pan H. Liang Y. Shao M. Xie S. Lu S. Liao S. PMFN-SSL: Self-supervised learning-based progressive multimodal fusion network for cancer diagnosis and prognosis. Knowl. Base. Syst. 2024 289 111502 10.1016/j.knosys.2024.111502
    [Google Scholar]
  13. Prasad M.L. Kiran A. Shaker Reddy P.C. Chronic kidney disease risk prediction using machine learning techniques. J. Inf. Technol. Manage. 2024 16 1 118 134
    [Google Scholar]
  14. Arora S. Lamba M. 3D brain image based tumor classification using ensemble of reinforcement transfer-based belief neural networks. Multimedia Tools Appl. 2025 84 14001 14028 10.1007/s11042‑024‑19553‑6
    [Google Scholar]
  15. Gupta R.K. Bharti S. Kunhare N. Sahu Y. Pathik N. Brain tumor detection and classification using cycle generative adversarial networks. Interdiscip. Sci. 2022 14 2 485 502 10.1007/s12539‑022‑00502‑6 35137330
    [Google Scholar]
  16. Gurunathan A. Krishnan B. A hybrid CNN-GLCM classifier for detection and grade classification of brain tumor. Brain Imaging Behav. 2022 16 3 1410 1427 10.1007/s11682‑021‑00598‑2 35048264
    [Google Scholar]
  17. Thangavel R.K. Allwyn Sundarraj A. Ramakrishnan J. Balasubramanian K. Coati optimization algorithm for brain tumor identification based on MRI with utilizing phase-aware composite deep neural network. Electromagn. Biol. Med. 2025 44 2 119 136 10.1080/15368378.2024.2401540 39835842
    [Google Scholar]
  18. Ganapathy S. Thoidingjam V. Sen A. A brain tumor prediction system for detecting the tumor disease using mini batch K-Means clustering and CNN. Multimedia Tools Appl. 2024 83 35 83053 83091 10.1007/s11042‑024‑18790‑z
    [Google Scholar]
  19. Ravali P. Reddy P.C.S. Praveen P. Brain tumor classification and diagnosis using federated learning with transfer learning. 2024 4th International Conference on Mobile Networks and Wireless Communications (ICMNWC) Tumkuru, India 04-05 December 2024 1 5
    [Google Scholar]
  20. Hameed M. Zameer A. Khan S.H. Raja M.A.Z. ARiViT: Attention-based residual-integrated vision transformer for noisy brain medical image classification. Eur. Phys. J. Plus 2024 139 5 440 10.1140/epjp/s13360‑024‑05220‑0
    [Google Scholar]
  21. Kumar A. Pandey S.K. varshney, N.; Singh, K.U.; Singh, T.; Shah, M.A. Distinctive approach in brain tumor detection and feature extraction using biologically inspired DWT method and SVM. Sci. Rep. 2023 13 1 22735 10.1038/s41598‑023‑50073‑9 38123666
    [Google Scholar]
  22. Das S. Dubey R. Jena B. Tsai L-W. Saxena S. WU-Net++: A novel enhanced weighted U-Net++ model for brain tumor detection and segmentation from multi-parametric magnetic resonance scans. Multimedia Tools Appl. 2024 83 28 71885 71908 10.1007/s11042‑024‑18336‑3
    [Google Scholar]
  23. Verma A. Shivhare S.N. Singh S.P. Comprehensive review on MRI-based brain tumor segmentation: A comparative study from 2017 onwards. Arch. Comput. Methods Eng. 2024 31 4805 4851 10.1007/s11831‑024‑10128‑0
    [Google Scholar]
  24. Ravali P. Reddy P.C.S. Praveen P. Employing a deep learning approach for brain tumour detection using MR-images. 2024 4th International Conference on Mobile Networks and Wireless Communications (ICMNWC) Tumkuru, India 2024 1 5
    [Google Scholar]
  25. Mowlani K. Jafari Shahbazzadeh M. Hashemipour M. Segmentation and classification of brain tumors using fuzzy 3D highlighting and machine learning. J. Cancer Res. Clin. Oncol. 2023 149 11 9025 9041 10.1007/s00432‑023‑04754‑7 37166578
    [Google Scholar]
  26. Zubair Rahman A.M.J. Gupta M. Aarathi S. Mahesh T.R. Vinoth Kumar V. Yogesh Kumaran S. Guluwadi S. Advanced AI-driven approach for enhanced brain tumor detection from MRI images utilizing efficient NetB2 with equalization and homomorphic filtering. BMC Med. Inform. Decis. Mak. 2024 24 1 113 10.1186/s12911‑024‑02519‑x 38689289
    [Google Scholar]
  27. Sudhakar B. Sikrant P.A. Prasad M.L. Latha S.B. Kumar G.R. Sarika S. Reddy P.C. Brain tumor image prediction from MR images using CNN based deep learning networks. J. Inf. Technol. Manage. 2024 16 1 44 60
    [Google Scholar]
  28. Chakrapani K. Semantic segmentation of brain tumor images using attention-based residual light U-Net model. Multimedia Tools Appl. 2025 84 7425 7441 10.1007/s11042‑024‑19224‑6
    [Google Scholar]
  29. Bairagi V.K. Gumaste P.P. Rajput S.H. Automatic brain tumor detection using CNN transfer learning approach. Med. Biol. Eng. Comput. 2023 61 7 1821 1836 10.1007/s11517‑023‑02820‑3 36949356
    [Google Scholar]
  30. Sulaiman A. Anand V. Gupta S. Al Reshan M.S. Alshahrani H. Shaikh A. Elmagzoub M.A. An intelligent LinkNet-34 model with EfficientNetB7 encoder for semantic segmentation of brain tumor. Sci. Rep. 2024 14 1 1345 10.1038/s41598‑024‑51472‑2 38228639
    [Google Scholar]
  31. Anagun Y. Smart brain tumor diagnosis system utilizing deep convolutional neural networks. Multimedia Tools Appl. 2023 82 28 44527 44553 10.1007/s11042‑023‑15422‑w 37362644
    [Google Scholar]
  32. Ramtekkar P.K. Pandey A. Pawar M.K. Innovative brain tumor detection using optimized deep learning techniques. Int. J. Syst. Assur Eng. Manag. 2023 14 1 459 473 10.1007/s13198‑022‑01819‑7
    [Google Scholar]
  33. Liu R. Nan H. Zou Y. Xie T. AS-3DFCN: Automatically seeking 3DFCN-based brain tumor segmentation. Cognit. Comput. 2023 15 6 2034 2049 10.1007/s12559‑023‑10168‑x
    [Google Scholar]
  34. Khan A.H. Abbas S. Khan M.A. Farooq U. Khan W.A. Siddiqui S.Y. Ahmad A. Intelligent model for brain tumor identification using deep learning. Appl. Comput. Intell. Soft Comput. 2022 2022 1 1 10 10.1155/2022/8104054
    [Google Scholar]
  35. Nazir M. Shakil S. Khurshid K. Role of deep learning in brain tumor detection and classification (2015 to 2020): A review. Comput. Med. Imaging Graph. 2021 91 101940 10.1016/j.compmedimag.2021.101940 34293621
    [Google Scholar]
  36. Soomro T.A. Zheng L. Afifi A.J. Ali A. Soomro S. Yin M. Gao J. Image segmentation for MR brain tumor detection using machine learning: A review. IEEE Rev. Biomed. Eng. 2023 16 70 90 10.1109/RBME.2022.3185292 35737636
    [Google Scholar]
  37. Remzan N. Tahiry K. Farchi A. Advancing brain tumor classification accuracy through deep learning: Harnessing radimagenet pre-trained convolutional neural networks, ensemble learning, and machine learning classifiers on MRI brain images. Multimedia Tools Appl. 2024 83 35 82719 82747 10.1007/s11042‑024‑18780‑1
    [Google Scholar]
  38. Joseph S.S. Dennisan A. Optimised CNN based brain tumour detection and 3D reconstruction. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 2023 11 3 796 811 10.1080/21681163.2022.2113436
    [Google Scholar]
  39. Akinyelu A.A. Zaccagna F. Grist J.T. Castelli M. Rundo L. Brain tumor diagnosis using machine learning, convolutional neural networks, capsule neural networks and vision transformers, applied to MRI: A survey. J. Imaging 2022 8 8 205 10.3390/jimaging8080205 35893083
    [Google Scholar]
  40. Chowdhury A. Rosenthal J. Waring J. Umeton R. Applying self-supervised learning to medicine: review of the state of the art and medical implementations. Informatics 2021 8 3 59 10.3390/informatics8030059
    [Google Scholar]
  41. Xie Y. Zhang J. Xia Y. Wu Q. UniMiSS+: Universal medical self-supervised learning from cross-dimensional unpaired data. IEEE Trans. Pattern Anal. Mach. Intell. 2024 46 12 10021 10035 10.1109/TPAMI.2024.3436105
    [Google Scholar]
  42. Fung D.L.X. Liu Q. Zammit J. Leung C.K.S. Hu P. Self-supervised deep learning model for COVID-19 lung CT image segmentation highlighting putative causal relationship among age, underlying disease and COVID-19. J. Transl. Med. 2021 19 1 318 10.1186/s12967‑021‑02992‑2 34311742
    [Google Scholar]
  43. Zhao H. Zhou Z. Wu F. Xiang D. Zhao H. Zhang W. Li L. Li Z. Huang J. Hu H. Liu C. Wang T. Liu W. Ma J. Yang F. Wang X. Zheng C. Self-supervised learning enables 3D digital subtraction angiography reconstruction from ultra-sparse 2D projection views: A multicenter study. Cell Rep. Med. 2022 3 10 100775 10.1016/j.xcrm.2022.100775 36208630
    [Google Scholar]
/content/journals/cn/10.2174/011570159X378103250806214613
Loading
/content/journals/cn/10.2174/011570159X378103250806214613
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test