Skip to content
2000
image of Intercellular Communication Pathways in Cerebral Ischemia: Mechanisms, Molecular Insights, and Therapeutic Implications

Abstract

Introduction

Cerebral ischemia (CI) is a severe neurological disorder characterized by high incidence and disability rates. Its pathogenesis is complex, involving multiple interrelated biological processes. Among these, intercellular communication has emerged as a key mechanism regulating the damage and recovery phases of CI. It controls information exchange between cells, thereby playing a crucial role in cellular responses to ischemic injury. Understanding how intercellular communication promotes the pathophysiology of CI may provide valuable insights into new therapeutic targets.

Methods

To elucidate the role of intercellular communication in CI, recent literature was analyzed, with a focus on how intercellular communication influences cellular behaviors and metabolism. This review integrates data from molecular biology, cellular signaling studies, and cerebral ischemia models.

Results

Studies indicate that intercellular communication significantly influences the progression and outcomes of CI. Intercellular communication not only participates in regulating the inflammatory response following injury but also plays a dual role in neuroprotection and regeneration.

Discussion

The dual role of intercellular communication—exacerbating damage through inflammatory cascades and promoting recovery through neuroprotective mechanisms—highlights its complex contribution to the pathology of CI. Cellular crosstalk between neurons, glial cells, endothelial cells, and immune cells coordinates the dynamic response to ischemic injury. Understanding these dynamics offers promising opportunities for targeted interventions.

Conclusion

Intercellular communication plays a central role in the mechanisms of injury and repair in cerebral ischemia. By influencing inflammation, neuroprotection, and regeneration, it serves as both a mediator of injury and a potential therapeutic target. Further research is needed to fully elucidate these mechanisms and translate them into effective clinical strategies for treating CI.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X388985250711064325
2025-07-18
2025-10-29
Loading full text...

Full text loading...

/deliver/fulltext/cn/10.2174/011570159X388985250711064325/BMS-CN-2025-HT3-6363-8.html?itemId=/content/journals/cn/10.2174/011570159X388985250711064325&mimeType=html&fmt=ahah

References

  1. Garcia-Martin G. Alcover-Sanchez B. Wandosell F. Cubelos B. Pathways involved in remyelination after cerebral ischemia. Curr. Neuropharmacol. 2022 20 4 751 765 10.2174/1570159X19666210610093658 34151767
    [Google Scholar]
  2. Garcia-Dorado D. Ruiz-Meana M. Padilla F. Rodriguez-Sinovas A. Mirabet M. Gap junction-mediated intercellular communication in ischemic preconditioning. Cardiovasc. Res. 2002 55 3 456 465 10.1016/S0008‑6363(02)00441‑8 12160942
    [Google Scholar]
  3. Peng L. Xiong W. Han C. Li Z. Chen X. CellDialog: A computational framework for ligand-receptor-mediated cell-cell communication analysis III. IEEE J. Biomed. Health Inform. 2023 10.1109/JBHI.2023.3333828 37976192
    [Google Scholar]
  4. Armingol E. Officer A. Harismendy O. Lewis N.E. Deciphering cell–cell interactions and communication from gene expression. Nat. Rev. Genet. 2021 22 2 71 88 10.1038/s41576‑020‑00292‑x 33168968
    [Google Scholar]
  5. Eom D.S. Airineme-mediated intercellular communication. Results Probl. Cell Differ. 2024 73 147 154 10.1007/978‑3‑031‑62036‑2_7 39242378
    [Google Scholar]
  6. Rechavi O. Goldstein I. Kloog Y. Intercellular exchange of proteins: The immune cell habit of sharing. FEBS Lett. 2009 583 11 1792 1799 10.1016/j.febslet.2009.03.014 19289124
    [Google Scholar]
  7. Mucci S. Herrera M.I. Barreto G.E. Kolliker-Frers R. Capani F. Neuroprotection in hypoxic-ischemic brain injury targeting glial cells. Curr. Pharm. Des. 2017 23 26 3899 3906 10.2174/1381612823666170727145422 28748754
    [Google Scholar]
  8. Koizumi S. Hirayama Y. Morizawa Y.M. New roles of reactive astrocytes in the brain; an organizer of cerebral ischemia. Neurochem. Int. 2018 119 107 114 10.1016/j.neuint.2018.01.007 29360494
    [Google Scholar]
  9. Zhang W.J. Hu D.X. Lin S.J. Contribution of P2X purinergic receptor in cerebral ischemia injury. Brain Res. Bull. 2022 190 42 49 10.1016/j.brainresbull.2022.09.009 36113681
    [Google Scholar]
  10. Pluta R. The dual role of autophagy in postischemic brain neurodegeneration of alzheimer’s disease proteinopathy. Int. J. Mol. Sci. 2023 24 18 13793 10.3390/ijms241813793 37762096
    [Google Scholar]
  11. Zorina I.I. Avrova N.F. Zakharova I.O. Shpakov A.O. Prospects for the use of intranasally administered insulin and insulin-like growth factor-1 in cerebral ischemia. Biochemistry (Mosc.) 2023 88 3 374 391 10.1134/S0006297923030070 37076284
    [Google Scholar]
  12. Zheng X. Yang J. Zhu Z. Fang Y. Tian Y. Xie M. Wang W. Liu Y. The two-pore domain potassium channel TREK-1 promotes blood-brain barrier breakdown and exacerbates neuronal death after focal cerebral ischemia in mice. Mol. Neurobiol. 2022 59 4 2305 2327 10.1007/s12035‑021‑02702‑5 35067892
    [Google Scholar]
  13. Soto-Díaz K. Juda M.B. Blackmore S. Walsh C. Steelman A.J. TAK1 inhibition in mouse astrocyte cultures ameliorates cytokine‐induced chemokine production and neutrophil migration. J. Neurochem. 2020 152 6 697 709 10.1111/jnc.14930 31782806
    [Google Scholar]
  14. Li Z. Song Y. He T. Wen R. Li Y. Chen T. Huang S. Wang Y. Tang Y. Shen F. Tian H.L. Yang G.Y. Zhang Z. M2 microglial small extracellular vesicles reduce glial scar formation via the miR-124/STAT3 pathway after ischemic stroke in mice. Theranostics 2021 11 3 1232 1248 10.7150/thno.48761 33391532
    [Google Scholar]
  15. Rothhammer V. Quintana F.J. Control of autoimmune CNS inflammation by astrocytes. Semin. Immunopathol. 2015 37 6 625 638 10.1007/s00281‑015‑0515‑3 26223505
    [Google Scholar]
  16. Drinkut A. Tereshchenko Y. Schulz J.B. Bähr M. Kügler S. Efficient gene therapy for Parkinson’s disease using astrocytes as hosts for localized neurotrophic factor delivery. Mol. Ther. 2012 20 3 534 543 10.1038/mt.2011.249 22086235
    [Google Scholar]
  17. Yang J. Wu J. Xie X. Xia P. Lu J. Liu J. Bai L. Li X. Yu Z. Li H. Perilipin-2 mediates ferroptosis in oligodendrocyte progenitor cells and myelin injury after ischemic stroke. Neural Regen. Res. 2025 20 7 2015 2028 10.4103/NRR.NRR‑D‑23‑01540 39254564
    [Google Scholar]
  18. Hughes E.G. Stockton M.E. Premyelinating oligodendrocytes: Mechanisms underlying cell survival and integration. Front. Cell Dev. Biol. 2021 9 714169 10.3389/fcell.2021.714169 34368163
    [Google Scholar]
  19. Shen Y. Lu H. Xu R. Tian H. Xia X. Zhou F.H. Wang L. Dong J. Sun L. The expression of GLAST and GLT1 in a transient cerebral ischemia mongolian gerbil model. Neuropsychiatr. Dis. Treat. 2020 16 789 800 10.2147/NDT.S238455 32280223
    [Google Scholar]
  20. Fabbri R. Spennato D. Conte G. Spray D.C. The emerging science of Glioception: Contribution of glia in sensing, transduction, circuit integration of interoception. Pharmacol. Ther. 2023 245 108403 10.1016/j.pharmthera.2023.108403 37024060
    [Google Scholar]
  21. Bolaños J.P. A special issue in Essays in Biochemistry on astrocytes—more than a neuronal support network. Essays Biochem. 2023 67 1 1 2 10.1042/EBC20230005 36866606
    [Google Scholar]
  22. Ting Wong C.G. Bottiglieri T. Snead O.C. GABA? -hydroxybutyric acid, and neurological disease. Ann. Neurol. 2003 54 S6 S3 S12 10.1002/ana.10696 12891648
    [Google Scholar]
  23. Duan D. Zhang H. Yue X. Fan Y. Xue Y. Shao J. Ding G. Chen D. Li S. Cheng H. Zhang X. Zou W. Liu J. Zhao J. Wang L. Zhao B. Wang Z. Xu S. Wen Q. Liu J. Duan S. Kang L. Sensory glia detect repulsive odorants and drive olfactory adaptation. Neuron 2020 108 4 707 721.e8 10.1016/j.neuron.2020.08.026 32970991
    [Google Scholar]
  24. Hausott B. Glueckert R. Schrott-Fischer A. Klimaschewski L. Signal transduction regulators in axonal regeneration. Cells 2022 11 9 1537 10.3390/cells11091537 35563843
    [Google Scholar]
  25. Krauthausen M. Saxe S. Zimmermann J. Emrich M. Heneka M.T. Müller M. CXCR3 modulates glial accumulation and activation in cuprizone-induced demyelination of the central nervous system. J. Neuroinflammation 2014 11 1 109 10.1186/1742‑2094‑11‑109 24930935
    [Google Scholar]
  26. Alsbrook D.L. Di Napoli M. Bhatia K. Biller J. Andalib S. Hinduja A. Rodrigues R. Rodriguez M. Sabbagh S.Y. Selim M. Farahabadi M.H. Jafarli A. Divani A.A. Neuroinflammation in acute ischemic and hemorrhagic stroke. Curr. Neurol. Neurosci. Rep. 2023 23 8 407 431 10.1007/s11910‑023‑01282‑2 37395873
    [Google Scholar]
  27. Pannasch U. Rouach N. Emerging role for astroglial networks in information processing: From synapse to behavior. Trends Neurosci. 2013 36 7 405 417 10.1016/j.tins.2013.04.004 23659852
    [Google Scholar]
  28. Tang Z. Li R. Guo X. Wang Z. Wu J. Regulation of blood-brain barrier integrity by brain microvascular endothelial cells in ischemic stroke: A therapeutic opportunity. Eur. J. Pharmacol. 2025 996 177553 10.1016/j.ejphar.2025.177553 40147580
    [Google Scholar]
  29. Altrieth A.L. Kenney J. Nelson D.A. Suarez E.G. Gellatly V. Gabunia S. Larsen M. Single-cell transcriptomic analysis of salivary gland endothelial cells. J. Dent. Res. 2024 103 3 269 278 10.1177/00220345231219987 38411696
    [Google Scholar]
  30. Wang M. Dufort C. Du Z. Shi R. Xu F. Huang Z. Sigler A.R. Leak R.K. Hu X. IL-33/ST2 signaling in monocyte-derived macrophages maintains blood-brain barrier integrity and restricts infarctions early after ischemic stroke. J. Neuroinflammation 2024 21 1 274 10.1186/s12974‑024‑03264‑8 39449077
    [Google Scholar]
  31. Chen S. Wang L. Yuan Y. Wen Y. Shu S. Electroacupuncture regulates microglia polarization via lncRNA-mediated hippo pathway after ischemic stroke. Biotechnol. Genet. Eng. Rev. 2023 39 2 1379 1395 10.1080/02648725.2023.2177046 36760060
    [Google Scholar]
  32. Geng Y. Lu Z. Guan J. van Rooijen N. Zhi Y. Microglia/Macrophages and CD4+CD25+ T cells enhance the ability of injury-activated lymphocytes to reduce traumatic optic neuropathy in vitro. Front. Immunol. 2021 12 687898 10.3389/fimmu.2021.687898 34484185
    [Google Scholar]
  33. Zeng J. Bao T. Yang K. Zhu X. Wang S. Xiang W. Ge A. Zeng L. Ge J. The mechanism of microglia-mediated immune inflammation in ischemic stroke and the role of natural botanical components in regulating microglia: A review. Front. Immunol. 2023 13 1047550 10.3389/fimmu.2022.1047550 36818470
    [Google Scholar]
  34. Harazin A. Bocsik A. Barna L. Kincses A. Váradi J. Fenyvesi F. Tubak V. Deli M.A. Vecsernyés M. Protection of cultured brain endothelial cells from cytokine-induced damage by α-melanocyte stimulating hormone. PeerJ 2018 6 e4774 10.7717/peerj.4774 29780671
    [Google Scholar]
  35. Chooi W.H. Chew S.Y. Modulation of cell-cell interactions for neural tissue engineering: Potential therapeutic applications of cell adhesion molecules in nerve regeneration. Biomaterials 2019 197 327 344 10.1016/j.biomaterials.2019.01.030 30690420
    [Google Scholar]
  36. Eidson L.N. Gao Q. Qu H. Kikuchi D.S. Campos A.C.P. Faidley E.A. Sun Y.Y. Kuan C.Y. Pagano R.L. Lassègue B. Tansey M.G. Griendling K.K. Hernandes M.S. Poldip2 controls leukocyte infiltration into the ischemic brain by regulating focal adhesion kinase-mediated VCAM-1 induction. Sci. Rep. 2021 11 1 5533 10.1038/s41598‑021‑84987‑z 33692398
    [Google Scholar]
  37. Kim Y. Lee S. Zhang H. Lee S. Kim H. Kim Y. Won M.H. Kim Y.M. Kwon Y.G. CLEC14A deficiency exacerbates neuronal loss by increasing blood-brain barrier permeability and inflammation. J. Neuroinflammation 2020 17 1 48 10.1186/s12974‑020‑1727‑6 32019570
    [Google Scholar]
  38. Frijns C.J. Kappelle L.J. Inflammatory cell adhesion molecules in ischemic cerebrovascular disease. Stroke 2002 33 8 2115 2122 10.1161/01.STR.0000021902.33129.69 12154274
    [Google Scholar]
  39. Li X.L. Guo Y. Zhang Y.S. Zhao Y. Zhang L. Effects of Integrin β1 on behavior and neurovascular regeneration in rats with cerebral ischemia-reperfusion injury. Eur. Rev. Med. Pharmacol. Sci. 2019 23 8 3487 3494 10.26355/eurrev_201904_17714 31081104
    [Google Scholar]
  40. Wang L. Zhang X. Liu X. Milner R. Li L. Overexpression of α5β1 integrin and angiopoietin-1 co-operatively promote blood-brain barrier integrity and angiogenesis following ischemic stroke. Exp. Neurol. 2019 321 113042 10.1016/j.expneurol.2019.113042 31445044
    [Google Scholar]
  41. Lee J. Balzraine B. Schweizer A. Neutrophil CRACR2A promotes neutrophil recruitment in sterile inflammation and ischemic stroke. Circulation 2024 2024 10.1161/CIRCULATIONAHA.124.070487 39601147
    [Google Scholar]
  42. Candelario-Jalil E. Dijkhuizen R.M. Magnus T. Neuroinflammation, stroke, blood-brain barrier dysfunction, and imaging modalities. Stroke 2022 53 5 1473 1486 10.1161/STROKEAHA.122.036946 35387495
    [Google Scholar]
  43. Choi H.J. Kim N.E. Kwon I. Choi D. Kim J. Heo J.H. Fc-saxatilin inhibits VEGF-induced permeability by regulating claudin-5 expression in human brain microvascular endothelial cells. Microvasc. Res. 2020 128 103953 10.1016/j.mvr.2019.103953 31715125
    [Google Scholar]
  44. Soriano S.G. Lipton S.A. Wang Y.F. Xaio M. Springer T.A. Gutierrez-Ramos J.C. Hickey P.R. Intercellular adhesion molecule‐1‐deficient mice are less susceptible to cerebral ischemia‐reperfusion lnjury. Ann. Neurol. 1996 39 5 618 624 10.1002/ana.410390511 8619547
    [Google Scholar]
  45. Wang P. Ren Q. Shi M. Liu Y. Bai H. Chang Y.Z. Overexpression of mitochondrial ferritin enhances blood–brain barrier integrity following ischemic stroke in mice by maintaining iron homeostasis in endothelial cells. Antioxidants 2022 11 7 1257 10.3390/antiox11071257 35883748
    [Google Scholar]
  46. Zhang Y. Yeh J. Richardson P.M. Bo X. Cell adhesion molecules of the immunoglobulin superfamily in axonal regeneration and neural repair. Restor. Neurol. Neurosci. 2008 26 2-3 81 96 10.3233/RNN‑2008‑00437 18820404
    [Google Scholar]
  47. del Zoppo G. Ginis I. Hallenbeck J.M. Inflammation and stroke: Putative role for cytokines, adhesion molecules and iNOS in brain response to ischemia. Brain Pathol. 2000 10 1 95 112 10.1111/j.1750‑3639.2000.tb00247.x 10668900
    [Google Scholar]
  48. Singh V. Kaur R. Kumari P. Pasricha C. Singh R. ICAM-1 and VCAM-1: Gatekeepers in various inflammatory and cardiovascular disorders. Clin. Chim. Acta 2023 548 117487 10.1016/j.cca.2023.117487 37442359
    [Google Scholar]
  49. Lucas S.M. Rothwell N.J. Gibson R.M. The role of inflammation in CNS injury and disease. Br. J. Pharmacol. 2006 147 S1 S232 S240 10.1038/sj.bjp.0706400 16402109
    [Google Scholar]
  50. Chaitanya G.V. Minagar A. Alexander J.S. Neuronal and astrocytic interactions modulate brain endothelial properties during metabolic stresses of in vitro cerebral ischemia. Cell Commun. Signal. 2014 12 1 7 10.1186/1478‑811X‑12‑7 24438487
    [Google Scholar]
  51. Chen S. He B. Zhou G. Xu Y. Wu L. Xie Y. Li Y. Chen S. Huang J. Wu H. Xiao Z. Berberine enhances L1 expression and axonal remyelination in rats after brachial plexus root avulsion. Brain Behav. 2020 10 10 e01792 10.1002/brb3.1792 32770668
    [Google Scholar]
  52. Kurisu K. Abumiya T. Nakamura H. Shimbo D. Shichinohe H. Nakayama N. Kazumata K. Shimizu H. Houkin K. Transarterial regional brain hypothermia inhibits acute aquaporin-4 surge and sequential microvascular events in ischemia/reperfusion injury. Neurosurgery 2016 79 1 125 134 10.1227/NEU.0000000000001088 26516820
    [Google Scholar]
  53. Xie C. Zhu B. Gu J. Sun M. The correlation of lncRNA SNHG16 with inflammatory cytokines, adhesion molecules, disease severity, and prognosis in acute ischemic stroke patients. J. Clin. Lab. Anal. 2022 36 6 e24439 10.1002/jcla.24439 35441431
    [Google Scholar]
  54. Walsh F.S. Doherty P. Cell adhesion molecules and neuronal regeneration. Curr. Opin. Cell Biol. 1996 8 5 707 713 10.1016/S0955‑0674(96)80113‑X 8939655
    [Google Scholar]
  55. Guan L. Guo S. Yip J. Elkin K.B. Li F. Peng C. Geng X. Ding Y. Artificial hibernation by phenothiazines: A potential neuroprotective therapy against cerebral inflammation in stroke. Curr. Neurovasc. Res. 2019 16 3 232 240 10.2174/1567202616666190624122727 31232236
    [Google Scholar]
  56. Eidson L.N. Gao Q. Qu H. Kikuchi D.S. Campos A.C.P. Faidley E.A. Sun Y.Y. Kuan C.Y. Pagano R.L. Lassègue B. Tansey M.G. Griendling K.K. Hernandes M.S. Poldip2 controls leukocyte infiltration into the ischemic brain by regulating focal adhesion kinase-mediated VCAM-1 induction. Sci. Rep. 2021 11 1 5533 10.1038/s41598‑021‑84987‑z 33692398
    [Google Scholar]
  57. Chooi W.H. Chew S.Y. Modulation of cell-cell interactions for neural tissue engineering: Potential therapeutic applications of cell adhesion molecules in nerve regeneration. Biomaterials 2019 197 327 344 10.1016/j.biomaterials.2019.01.030 30690420
    [Google Scholar]
  58. Chi O.Z. Theis T. Kumar S. Chiricolo A. Liu X. Farooq S. Trivedi N. Young W. Schachner M. Weiss H.R. Adhesion molecule L1 inhibition increases infarct size in cerebral ischemia-reperfusion without change in blood-brain barrier disruption. Neurol. Res. 2021 43 9 751 759 10.1080/01616412.2021.1934311 34057049
    [Google Scholar]
  59. Grönloh M.L.B. Arts J.J.G. van Buul J.D. Neutrophil transendothelial migration hotspots – mechanisms and implications. J. Cell Sci. 2021 134 7 jcs255653 10.1242/jcs.255653 33795378
    [Google Scholar]
  60. Woods D. Jiang Q. Chu X.P. Monoclonal antibody as an emerging therapy for acute ischemic stroke. Int. J. Physiol. Pathophysiol. Pharmacol. 2020 12 4 95 106 32934765
    [Google Scholar]
  61. Kopecky B.J. Liang R. Bao J. T-type calcium channel blockers as neuroprotective agents. Pflugers Arch. 2014 466 4 757 765 10.1007/s00424‑014‑1454‑x 24563219
    [Google Scholar]
  62. Zhang R.L. Chopp M. Li Y. Zaloga C. Jiang N. Jones M.L. Miyasaka M. Ward P.A. Anti‐ICAM‐1 antibody reduces ischemic cell damage after transient middle cerebral artery occlusion in the rat. Neurology 1994 44 9 1747 1751 10.1212/WNL.44.9.1747 7936308
    [Google Scholar]
  63. Xie R. Zeng X. Yan H. Huang X. Deng C. Effects and mechanisms of exosomes from different sources in cerebral ischemia. Cells 2022 11 22 3623 10.3390/cells11223623 36429051
    [Google Scholar]
  64. Choi K.A. Kim J.H. Ryu K. Kaushik N. Current nanomedicine for targeted vascular disease treatment: Trends and perspectives. Int. J. Mol. Sci. 2022 23 20 12397 10.3390/ijms232012397 36293254
    [Google Scholar]
  65. Deng Y-H. He H-Y. Ren L. Guo T. Neuronal autophagy aggravates microglial inflammatory injury by downregulating CX3CL1/fractalkine after ischemic stroke. Neural Regen. Res. 2019 14 2 280 288 10.4103/1673‑5374.244793 30531011
    [Google Scholar]
  66. Zhang Y. Li Y.W. Wang Y.X. Zhang H.T. Zhang X.M. Liang Y. Zhang X.S. Wang W.S. Liu H.G. Zhang Y. Zhang L. Zheng Y.H. Remifentanil preconditioning alleviating brain damage of cerebral ischemia reperfusion rats by regulating the JNK signal pathway and TNF-α/TNFR1 signal pathway. Mol. Biol. Rep. 2013 40 12 6997 7006 10.1007/s11033‑013‑2819‑5 24190484
    [Google Scholar]
  67. Zahran E.M. Sayed A.M. Alaaeldin R. Elrehany M.A. Khattab A.R. Abdelmohsen U.R. Bioactives and functional food ingredients with promising potential for the management of cerebral and myocardial ischemia: A comprehensive mechanistic review. Food Funct. 2022 13 13 6859 6874 10.1039/D2FO00834C 35698869
    [Google Scholar]
  68. Wu W. Xu L. Mu D. Wang D. Tan S. Liu L. Li Y. Chai H. Hou Y. Ethanol extracts of Cinnamomum migao H.W. Li attenuates neuroinflammation in cerebral ischemia-reperfusion injury via regulating TLR4-PI3K-Akt-NF-κB pathways. J. Ethnopharmacol. 2025 339 119150 10.1016/j.jep.2024.119150 39580135
    [Google Scholar]
  69. Han L. Zhuo Q. Zhou Y. Qian Y. Propofol protects human cardiac cells against chemical hypoxiainduced injury by regulating the JNK signaling pathways. Exp. Ther. Med. 2020 19 3 1864 1870 10.3892/etm.2020.8440 32104242
    [Google Scholar]
  70. Chen W. Balan P. Popovich D.G. The effects of New Zealand grown ginseng fractions on cytokine production from human monocytic THP-1 cells. Molecules 2021 26 4 1158 10.3390/molecules26041158 33671522
    [Google Scholar]
  71. Ko I.G. Jin J.J. Hwang L. Chung J.Y. Han J.H. Adenosine A2A receptor agonist polydeoxyribonucleotide ameliorates short-term memory impairment by suppressing cerebral ischemia-induced inflammation via MAPK pathway. PLoS One 2021 16 3 e0248689 10.1371/journal.pone.0248689 33735236
    [Google Scholar]
  72. Arango-Dávila C.A. Vera A. Londoño A.C. Echeverri A.F. Cañas F. Cardozo C.F. Orozco J.L. Rengifo J. Cañas C.A. Soluble or soluble/membrane TNF-± inhibitors protect the brain from focal ischemic injury in rats. Int. J. Neurosci. 2015 125 12 936 940 10.3109/00207454.2014.980906 25350870
    [Google Scholar]
  73. Kerkis I. Silva Á.P. Araldi R.P. The impact of interleukin-6 (IL-6) and mesenchymal stem cell-derived IL-6 on neurological conditions. Front. Immunol. 2024 15 1400533 10.3389/fimmu.2024.1400533 39015561
    [Google Scholar]
  74. Kazmi S. Salehi-Pourmehr H. Sadigh-Eteghad S. Farhoudi M. The efficacy and safety of interleukin-1 receptor antagonist in stroke patients: A systematic review. J. Clin. Neurosci. 2024 120 120 128 10.1016/j.jocn.2024.01.009 38237490
    [Google Scholar]
  75. Shen S.Y. Liang L.F. Shi T.L. Shen Z.Q. Yin S.Y. Zhang J.R. Li W. Mi W.L. Wang Y.Q. Zhang Y.Q. Yu J. Microglia‐derived interleukin‐6 triggers astrocyte apoptosis in the hippocampus and mediates depression‐like behavior. Adv. Sci. (Weinh.) 2025 12 11 2412556 10.1002/advs.202412556 39888279
    [Google Scholar]
  76. Di Vincenzo S. Ferraro M. Taverna S. Malizia V. Buscetta M. Cipollina C. Lazzara V. Pinto P. Bassano M. La Grutta S. Pace E. Tyndallized bacteria preferentially induce human macrophage m1 polarization: an effect useful to balance allergic immune responses and to control infections. Antibiotics 2023 12 3 571 10.3390/antibiotics12030571 36978438
    [Google Scholar]
  77. Zhang C. Wang L. Guo Y. Feng W. Systematic analysis of brain and skull ischemic injury expression profiles reveals associations of the tumor immune microenvironment and cell death with ischemic stroke. Front. Immunol. 2022 13 1082546 10.3389/fimmu.2022.1082546 36605216
    [Google Scholar]
  78. Liu Y. Deng S. Zhang Z. Cao X. Xu Y. 6-Gingerol attenuates microglia-mediated neuroinflammation and ischemic brain injuries through Akt-mTOR-STAT3 signaling pathway. Eur. J. Pharmacol. 2020 883 173294 10.1016/j.ejphar.2020.173294 32681941
    [Google Scholar]
  79. He Y. Jin W. Wan H. Zhang L. Yu L. Research progress on immune-related therapeutic targets of brain injury caused by cerebral ischemia. Cytokine 2024 180 156651 10.1016/j.cyto.2024.156651 38761715
    [Google Scholar]
  80. Meyer M.A.S. Wiberg S. Grand J. Meyer A.S.P. Obling L.E.R. Frydland M. Thomsen J.H. Josiassen J. Møller J.E. Kjaergaard J. Hassager C. Treatment effects of interleukin-6 receptor antibodies for modulating the systemic inflammatory response after out-of-hospital cardiac arrest (The IMICA Trial). Circulation 2021 143 19 1841 1851 10.1161/CIRCULATIONAHA.120.053318 33745292
    [Google Scholar]
  81. Ryu G. Noh D. van Hemert J. Sadda S.R. Sagong M. Relationship between distribution and severity of non-perfusion and cytokine levels and macular thickness in branch retinal vein occlusion. Sci. Rep. 2021 11 1 271 10.1038/s41598‑020‑79522‑5 33432033
    [Google Scholar]
  82. Wang L. Vijayan V. Jang M.S. Thorenz A. Greite R. Rong S. Chen R. Shushakova N. Tudorache I. Derlin K. Pradhan P. Madyaningrana K. Madrahimov N. Bräsen J.H. Lichtinghagen R. van Kooten C. Huber-Lang M. Haller H. Immenschuh S. Gueler F. Labile heme aggravates renal inflammation and complement activation after ischemia reperfusion injury. Front. Immunol. 2019 10 2975 10.3389/fimmu.2019.02975 31921212
    [Google Scholar]
  83. Panda S.P. Kesharwani A. Datta S. Prasanth D.S.N.B.K. Panda S.K. Guru A. JAK2/STAT3 as a new potential target to manage neurodegenerative diseases: An interactive review. Eur. J. Pharmacol. 2024 970 176490 10.1016/j.ejphar.2024.176490 38492876
    [Google Scholar]
  84. Zhang W. Hong J. Zheng W. Liu A. Yang Y. High glucose exacerbates neuroinflammation and apoptosis at the intermediate stage after post-traumatic brain injury. Aging (Albany NY) 2021 13 12 16088 16104 10.18632/aging.203136 34176788
    [Google Scholar]
  85. Song Y. Wu Z. Zhao P. The protective effects of activating Sirt1/NF-κB pathway for neurological disorders. Rev. Neurosci. 2022 33 4 427 438 10.1515/revneuro‑2021‑0118 34757706
    [Google Scholar]
  86. Kong X. Xu L. Mou Z. Lyu W. Shan K. Wang L. Liu F. Rong F. Li J. Wei P. The anti-inflammatory effects of itaconate and its derivatives in neurological disorders. Cytokine Growth Factor Rev. 2024 78 37 49 10.1016/j.cytogfr.2024.07.001 38981775
    [Google Scholar]
  87. Hanna A. Frangogiannis N.G. Inflammatory cytokines and chemokines as therapeutic targets in heart failure. Cardiovasc. Drugs Ther. 2020 34 6 849 863 10.1007/s10557‑020‑07071‑0 32902739
    [Google Scholar]
  88. Su H. Cantrell A.C. Zeng H. Zhu S.H. Chen J.X. Emerging role of pericytes and their secretome in the heart. Cells 2021 10 3 548 10.3390/cells10030548 33806335
    [Google Scholar]
  89. Moore K.W. de Waal Malefyt R. Coffman R.L. Interleukin-10 and the interleukin-10 receptor. Annu. Rev. Immunol. 2001 19 1 683 765 10.1146/annurev.immunol.19.1.683 11244051
    [Google Scholar]
  90. Khan M.A. Ashoor G.A. Shamma T. Alanazi F. Altuhami A. Kazmi S. Ahmed H.A. Assiri M.A. Broering C.D. IL-10 mediated immunomodulation limits subepithelial fibrosis and repairs airway epithelium in rejecting airway allografts. Cells 2021 10 5 1248 10.3390/cells10051248 34069395
    [Google Scholar]
  91. Liu X. Hu R. Pei L. Si P. Wang C. Tian X. Wang X. Liu H. Wang B. Xia Z. Xu Y. Song B. Regulatory T cell is critical for interleukin-33-mediated neuroprotection against stroke. Exp. Neurol. 2020 328 113233 10.1016/j.expneurol.2020.113233 32044328
    [Google Scholar]
  92. Mihelic S.A. Engelmann S.A. Sadr M. Jafari C.Z. Zhou A. Woods A.L. Williamson M.R. Jones T.A. Dunn A.K. Microvascular plasticity in mouse stroke model recovery: Anatomy statistics, dynamics measured by longitudinal in vivo two-photon angiography, network vectorization. J. Cereb. Blood Flow Metab. 2024 44 12 1441 1458 10.1177/0271678X241270465 39113424
    [Google Scholar]
  93. Gao X.M. Su Y. Moore S. Han L.P. Kiriazis H. Lu Q. Zhao W.B. Ruze A. Fang B.B. Duan M.J. Du X.J. Relaxin mitigates microvascular damage and inflammation following cardiac ischemia–reperfusion. Basic Res. Cardiol. 2019 114 4 30 10.1007/s00395‑019‑0739‑9 31218471
    [Google Scholar]
  94. Andjus P. Kosanović M. Milićević K. Gautam M. Vainio S.J. Jagečić D. Kozlova E.N. Pivoriūnas A. Chachques J.C. Sakaj M. Brunello G. Mitrecic D. Zavan B. Extracellular vesicles as innovative tool for diagnosis, regeneration and protection against neurological damage. Int. J. Mol. Sci. 2020 21 18 6859 10.3390/ijms21186859 32962107
    [Google Scholar]
  95. Nasirishargh A. Kumar P. Ramasubramanian L. Lazar S.V. Wang A. Exosomal microRNAs from mesenchymal stem/stromal cells: Biology and applications in neuroprotection. World J. Stem Cells 2021 13 7 776 794 10.4252/wjsc.v13.i7.776 34367477
    [Google Scholar]
  96. Zhang J. Hu D. Li L. Qu D. Shi W. Xie L. Jiang Q. Li H. Yu T. Qi C. Fu H. M2 Microglia-derived exosomes promote spinal cord injury recovery in mice by alleviating A1 Astrocyte Activation. Mol. Neurobiol. 2024 61 9 7009 7025 10.1007/s12035‑024‑04026‑6 38367135
    [Google Scholar]
  97. Poongodi R. Yang T.H. Huang Y.H. Yang K.D. Chen H.Z. Chu T.Y. Wang T.Y. Lin H.C. Cheng J.K. Stem cell exosome-loaded Gelfoam improves locomotor dysfunction and neuropathic pain in a rat model of spinal cord injury. Stem Cell Res. Ther. 2024 15 1 143 10.1186/s13287‑024‑03758‑5 38764049
    [Google Scholar]
  98. Kavitha L. Priyadharsini J.V. Arumugam P. Targeting compensatory proliferation signals in oral cancer. J. Oral Biol. Craniofac. Res. 2024 14 4 461 464 10.1016/j.jobcr.2024.05.014 38946920
    [Google Scholar]
  99. Takeuchi T. Nagai Y. Emerging roles of extracellular vesicles in polyglutamine diseases: Mutant protein transmission, therapeutic potential, and diagnostics. Neurochem. Int. 2022 157 105357 10.1016/j.neuint.2022.105357 35525394
    [Google Scholar]
  100. Stefańska K. Józkowiak M. Angelova Volponi A. Shibli J.A. Golkar-Narenji A. Antosik P. Bukowska D. Piotrowska-Kempisty H. Mozdziak P. Dzięgiel P. Podhorska-Okołów M. Zabel M. Dyszkiewicz-Konwińska M. Kempisty B. The role of exosomes in human carcinogenesis and cancer therapy—recent findings from molecular and clinical research. Cells 2023 12 3 356 10.3390/cells12030356 36766698
    [Google Scholar]
  101. Han C. Yang J. Sun J. Qin G. Extracellular vesicles in cardiovascular disease: Biological functions and therapeutic implications. Pharmacol. Ther. 2022 233 108025 10.1016/j.pharmthera.2021.108025 34687770
    [Google Scholar]
  102. Shi Q. Huo N. Wang X. Yang S. Wang J. Zhang T. Exosomes from oral tissue stem cells: Biological effects and applications. Cell Biosci. 2020 10 1 108 10.1186/s13578‑020‑00471‑7 32944222
    [Google Scholar]
  103. Papakonstantinou E. Dragoumani K. Mitsis T. Chrousos G.P. Vlachakis D. Milk exosomes and a new way of communication between mother and child. EMBnet. J. 2024 29 e1050 10.14806/ej.29.0.1050 38845751
    [Google Scholar]
  104. Hou Y. Liu Y. Liang S. Yan D. Li D. The novel target: Exosoms derived from M2 macrophage. Int. Rev. Immunol. 2021 40 3 183 196 10.1080/08830185.2020.1800687 32783545
    [Google Scholar]
  105. Zhang S. Duan Z. Liu F. Wu Q. Sun X. Ma H. The impact of exosomes derived from distinct sources on Rheumatoid arthritis. Front. Immunol. 2023 14 1240747 10.3389/fimmu.2023.1240747 37575235
    [Google Scholar]
  106. Chen Q. Shi J. Ruan D. Bian C. The diagnostic and therapeutic prospects of exosomes in ovarian cancer. BJOG 2023 130 9 999 1006 10.1111/1471‑0528.17446 36852533
    [Google Scholar]
  107. Nguyen D.B. Tran H.T. Kaestner L. Bernhardt I. The relation between extracellular vesicles released from red blood cells, their cargo, and the clearance by macrophages. Front. Physiol. 2022 13 783260 10.3389/fphys.2022.783260 35432007
    [Google Scholar]
  108. Di Bella M.A. Overview and update on extracellular vesicles: considerations on exosomes and their application in modern medicine. Biology 2022 11 6 804 10.3390/biology11060804 35741325
    [Google Scholar]
  109. Liu C. Yin T. Zhang M. Li Z. Xu B. Lv H. Wang P. Wang J. Hao J. Zhang L. Function of miR-21-5p derived from ADSCs-exos on the neuroinflammation after cerebral ischemia. J. Stroke Cerebrovasc. Dis. 2024 33 8 107779 10.1016/j.jstrokecerebrovasdis.2024.107779 38768666
    [Google Scholar]
  110. Xie R. Zeng X. Yan H. Huang X. Deng C. Effects and mechanisms of exosomes from different sources in cerebral ischemia. Cells 2022 11 22 3623 10.3390/cells11223623 36429051
    [Google Scholar]
  111. Zhu H. Xing Z. Zhao Y. Hao Z. Li M. The role of circular RNAs in brain injury. Neuroscience 2020 428 50 59 10.1016/j.neuroscience.2019.12.018 31917349
    [Google Scholar]
  112. Wang Q. Liu X. Zhu R. Long noncoding RNAs as diagnostic and therapeutic targets for ischemic stroke. Curr. Pharm. Des. 2019 25 10 1115 1121 10.2174/1381612825666190328112844 30919772
    [Google Scholar]
  113. Yan W. Jiang S. Immune cell-derived exosomes in the cancer-immunity cycle. Trends Cancer 2020 6 6 506 517 10.1016/j.trecan.2020.02.013 32460004
    [Google Scholar]
  114. Rezaie J. Etemadi T. Feghhi M. The distinct roles of exosomes in innate immune responses and therapeutic applications in cancer. Eur. J. Pharmacol. 2022 933 175292 10.1016/j.ejphar.2022.175292 36150532
    [Google Scholar]
  115. Asgarpour K. Shojaei Z. Amiri F. Ai J. Mahjoubin-Tehran M. Ghasemi F. ArefNezhad, R.; Hamblin, M.R.; Mirzaei, H. Exosomal microRNAs derived from mesenchymal stem cells: Cell-to-cell messages. Cell Commun. Signal. 2020 18 1 149 10.1186/s12964‑020‑00650‑6 32917227
    [Google Scholar]
  116. Zhang L. Lin Y. Bai W. Sun L. Tian M. Human umbilical cord mesenchymal stem cell‐derived exosome suppresses programmed cell death in traumatic brain injury via PINK1/Parkin‐mediated mitophagy. CNS Neurosci. Ther. 2023 29 8 2236 2258 10.1111/cns.14159 36890626
    [Google Scholar]
  117. Zhang L. Bai W. Peng Y. Lin Y. Tian M. Human umbilical cord mesenchymal stem cell-derived exosomes provide neuroprotection in traumatic brain injury through the lncRNA TUBB6/Nrf2 pathway. Brain Res. 2024 1824 148689 10.1016/j.brainres.2023.148689 38030103
    [Google Scholar]
  118. Zhong L. Wang J. Wang P. Liu X. Liu P. Cheng X. Cao L. Wu H. Chen J. Zhou L. Neural stem cell-derived exosomes and regeneration: Cell-free therapeutic strategies for traumatic brain injury. Stem Cell Res. Ther. 2023 14 1 198 10.1186/s13287‑023‑03409‑1 37553595
    [Google Scholar]
  119. Wang Q. Liu K. Cao X. Rong W. Shi W. Yu Q. Deng W. Yu J. Xu X. Plant‐derived exosomes extracted from Lycium barbarum L. loaded with isoliquiritigenin to promote spinal cord injury repair based on 3D printed bionic scaffold. Bioeng. Transl. Med. 2024 9 4 e10646 10.1002/btm2.10646 39036078
    [Google Scholar]
  120. Xie R. Zeng X. Yan H. Huang X. Deng C. Effects and mechanisms of exosomes from different sources in cerebral ischemia. Cells 2022 11 22 3623 10.3390/cells11223623 36429051
    [Google Scholar]
  121. Song Y. Li Z. He T. Qu M. Jiang L. Li W. Shi X. Pan J. Zhang L. Wang Y. Zhang Z. Tang Y. Yang G.Y. M2 microglia-derived exosomes protect the mouse brain from ischemia-reperfusion injury via exosomal miR-124. Theranostics 2019 9 10 2910 2923 10.7150/thno.30879 31244932
    [Google Scholar]
  122. Wang B. Cao C. Han D. Bai J. Guo J. Guo Q. Li D. Zhang J. Zhang Z. Wang Y. Tang J. Shen D. Zhang J. Dysregulation of miR-342-3p in plasma exosomes derived from convalescent AMI patients and its consequences on cardiac repair. Biomed. Pharmacother. 2021 142 112056 10.1016/j.biopha.2021.112056 34435593
    [Google Scholar]
  123. Khan H. Pan J.J. Li Y. Zhang Z. Yang G.Y. Native and bioengineered exosomes for ischemic stroke therapy. Front. Cell Dev. Biol. 2021 9 619565 10.3389/fcell.2021.619565 33869170
    [Google Scholar]
  124. Toghiani R. Azimian Zavareh V. Najafi H. Mirian M. Azarpira N. Abolmaali S.S. Varshosaz J. Tamaddon A.M. Hypoxia-preconditioned WJ-MSC spheroid-derived exosomes delivering miR-210 for renal cell restoration in hypoxia-reoxygenation injury. Stem Cell Res. Ther. 2024 15 1 240 10.1186/s13287‑024‑03845‑7 39080774
    [Google Scholar]
  125. Liang Z. Wang X. Hao Y. Qiu L. Lou Y. Zhang Y. Ma D. Feng J. The multifaceted role of astrocyte connexin 43 in ischemic stroke through forming hemichannels and gap junctions. Front. Neurol. 2020 11 703 10.3389/fneur.2020.00703 32849190
    [Google Scholar]
  126. Wang X. Feng L. Xin M. Hao Y. Wang X. Shang P. Zhao M. Hou S. Zhang Y. Xiao Y. Ma D. Feng J. Mechanisms underlying astrocytic connexin-43 autophagy degradation during cerebral ischemia injury and the effect on neuroinflammation and cell apoptosis. Biomed. Pharmacother. 2020 127 110125 10.1016/j.biopha.2020.110125 32361163
    [Google Scholar]
  127. Solan J.L. Márquez-Rosado L. Lampe P.D. Cx43 phosphorylation–mediated effects on ERK and Akt protect against ischemia reperfusion injury and alter the stability of the stress-inducible protein NDRG1. J. Biol. Chem. 2019 294 31 11762 11771 10.1074/jbc.RA119.009162 31189653
    [Google Scholar]
  128. Gemel J. Kilkus J. Dawson G. Beyer E.C. Connecting exosomes and connexins. Cancers 2019 11 4 476 10.3390/cancers11040476 30987321
    [Google Scholar]
  129. Tschernig T. Connexins and gap junctions in cancer of the urinary tract. Cancers 2019 11 5 704 10.3390/cancers11050704 31121877
    [Google Scholar]
  130. Kieninger A.K. Maldener I. Cell-cell communication through septal junctions in filamentous cyanobacteria. Curr. Opin. Microbiol. 2021 61 35 41 10.1016/j.mib.2021.02.002 33676334
    [Google Scholar]
  131. Rehni A.K. Cho S. Dave K.R. Ischemic brain injury in diabetes and endoplasmic reticulum stress. Neurochem. Int. 2022 152 105219 10.1016/j.neuint.2021.105219 34736936
    [Google Scholar]
  132. Wu L. Xiong X. Wu X. Ye Y. Jian Z. Zhi Z. Gu L. Targeting oxidative stress and inflammation to prevent ischemia-reperfusion injury. Front. Mol. Neurosci. 2020 13 28 10.3389/fnmol.2020.00028 32194375
    [Google Scholar]
  133. Li H. Xia S. Xu S. Liu P. Gu Y. Bao X. Xu Y. Cao X. γ ‐Glutamylcysteine alleviates ischemic stroke‐induced neuronal apoptosis by inhibiting ros‐mediated endoplasmic reticulum stress. Oxid. Med. Cell. Longev. 2021 2021 1 2961079 10.1155/2021/2961079 34824669
    [Google Scholar]
  134. Trevisan L. Kocsis I. Hunter C.A. Redox switching of an artificial transmembrane signal transduction system. Chem. Commun. (Camb.) 2021 57 17 2196 2198 10.1039/D0CC08322D 33616133
    [Google Scholar]
  135. Mao L. Wang K. Zhang P. Ren S. Sun J. Yang M. Zhang F. Sun B. Carbonyl Reductase 1 attenuates ischemic brain injury by reducing oxidative stress and neuroinflammation. Transl. Stroke Res. 2021 12 5 711 724 10.1007/s12975‑021‑00912‑6 33964000
    [Google Scholar]
  136. Wang L. Zhang X. Xiong X. Zhu H. Chen R. Zhang S. Chen G. Jian Z. Nrf2 regulates oxidative stress and its role in cerebral ischemic stroke. Antioxidants 2022 11 12 2377 10.3390/antiox11122377 36552584
    [Google Scholar]
  137. Zeitz M.J. Smyth J.W. Gap junctions and ageing. Subcell. Biochem. 2023 102 113 137 10.1007/978‑3‑031‑21410‑3_6 36600132
    [Google Scholar]
  138. Meng L. Yan D. NLR-1/CASPR anchors F-Actin to promote Gap junction formation. Dev. Cell 2020 55 5 574 587.e3 10.1016/j.devcel.2020.10.020 33238150
    [Google Scholar]
  139. Kohn A.B. Moroz L.L. Gap Junctions in ctenophora. Methods Mol. Biol. 2024 2757 361 381 10.1007/978‑1‑0716‑3642‑8_16 38668976
    [Google Scholar]
  140. Dou W. Shan G. Zhao Q. Malhi M. Jiang A. Zhang Z. González-Guerra A. Fu S. Law J. Hamilton R.M. Bernal J.A. Liu X. Sun Y. Maynes J.T. Robotic manipulation of cardiomyocytes to identify gap junction modifiers for arrhythmogenic cardiomyopathy. Sci. Robot. 2024 9 95 eadm8233 10.1126/scirobotics.adm8233 39441897
    [Google Scholar]
  141. Bai M. Liu B. Peng M. Jia J. Fang X. Miao M. Effect of Sargentodoxa cuneata total phenolic acids on focal cerebral ischemia reperfusion injury rats model. Saudi J. Biol. Sci. 2019 26 3 569 576 10.1016/j.sjbs.2018.11.019 30899173
    [Google Scholar]
  142. Guan L. Yang Y. Liang J. Miao Y. Shang A. Wang B. Wang Y. Ding M. ERGIC2 and ERGIC3 regulate the ER‐to‐Golgi transport of gap junction proteins in metazoans. Traffic 2022 23 3 140 157 10.1111/tra.12830 34994051
    [Google Scholar]
  143. Zhan Q.Y. Xie L.X. Wang C. Promoting critical care system and capacity building in pulmonary and critical care medicine subspecialties. Zhonghua Yi Xue Za Zhi 2023 103 40 3149 3151 37879866
    [Google Scholar]
  144. Fang J.G. Standardized and individualized treatment improves survival rate and quality of life for advanced thyroid cancer. Zhonghua Yi Xue Za Zhi 2023 103 3152 10.3760/cma.j.cn112137‑20230605‑00939
    [Google Scholar]
  145. Tashak G.H. Banikarimi S.P. Ayati A. Hadizadeh A. Khorasani Zavareh Z. Hajikhani K. Heirani-Tabasi A. Tafti A.M. Davoodi S. Ahmadi Tafti H. Advanced micro-nanotechnologies for exosome encapsulation and targeting in regenerative medicine. Clin. Exp. Med. 2023 23 6 1845 1866 10.1007/s10238‑023‑00993‑7 36705868
    [Google Scholar]
  146. Hou W. Hao Y. Sun L. Zhao Y. Zheng X. Song L. The dual roles of autophagy and the GPCRs-mediating autophagy signaling pathway after cerebral ischemic stroke. Mol. Brain 2022 15 1 14 10.1186/s13041‑022‑00899‑7 35109896
    [Google Scholar]
  147. Berezutskaya J. Freudenburg Z.V. Vansteensel M.J. Aarnoutse E.J. Ramsey N.F. van Gerven M.A.J. Direct speech reconstruction from sensorimotor brain activity with optimized deep learning models. J. Neural Eng. 2023 20 5 056010 10.1088/1741‑2552/ace8be 37467739
    [Google Scholar]
  148. Zheng Y. Yang Y. Zhang Q. Jiang D. Tu J. Zhang D. Duan H. Ultrasonic methods for brain imaging: Techniques and implications. IEEE Trans. Biomed. Eng. 2022 69 11 3526 3537 10.1109/TBME.2022.3173035 35522631
    [Google Scholar]
  149. Thomas K.E. Fotaki A. Botnar R.M. Ferreira V.M. Imaging methods: Magnetic resonance imaging. Circ. Cardiovasc. Imaging 2023 16 1 e014068 10.1161/CIRCIMAGING.122.014068 36649450
    [Google Scholar]
  150. Chen Q. Zhou T. Yuan J. Xiong X. Liu X. Qiu Z. Hu L. Lu H. He Q. Liu C. Yang Q. Metabolomics profiling to characterize cerebral ischemia-reperfusion injury in mice. Front. Pharmacol. 2023 14 1091616 10.3389/fphar.2023.1091616 36814490
    [Google Scholar]
  151. Limkakeng A.T. Rowlette L.L. Hatch A. Nixon A.B. Ilkayeva O. Corcoran D. Modliszewski J. Griffin S.M. Ginsburg G.S. Voora D. A precision medicine approach to stress testing using metabolomics and microribonucleic acids. Per. Med. 2022 19 4 287 297 10.2217/pme‑2021‑0021 35466688
    [Google Scholar]
  152. Yin C. Sun M. Jin L. Rat serum and heart tissue metabolomics in myocardial ischemia based on liquid chromatography-mass spectrometry. Chinese 2020 38 2 206 10.3724/SP.J.1123.2019.07019
    [Google Scholar]
  153. Liu Y. Xiao T. Wang Z. Ou Y. Tan Y. Chen L. Zhou N. Zou R. A circular network of adenosine-mediated mitochondrial dysfunction as coregulators of acute myocardial infarction. Int. J. Med. Sci. 2024 21 7 1353 1365 10.7150/ijms.97066 38818463
    [Google Scholar]
  154. Samie H.A.A. Saeed M. Faisal S.M. Kausar M.A. Kamal M.A. Recent findings on nanotechnology-based therapeutic strategies against hepatocellular carcinoma. Curr. Drug Metab. 2019 20 4 283 291 10.2174/1389200220666190308134351 30854953
    [Google Scholar]
  155. Liu S.Z. Feng D.C. Liu Z.H. Liang J.Y. Ren Z.J. Zhou C. Wu K. Zhang F.X. Zhang F. Lu Y.P. Wang X.D. Development of nanotechnology in andrology. Transl. Androl. Urol. 2020 9 2 702 708 10.21037/tau.2020.01.18 32420177
    [Google Scholar]
  156. Yang D. Li Z. Gao G. Li X. Liao Z. Wang Y. Li W. Zhang Y. Liu W. Combined analysis of surface protein profile and microrna expression profile of exosomes derived from brain microvascular endothelial cells in early cerebral ischemia. ACS Omega 2021 6 34 22410 22421 10.1021/acsomega.1c03248 34497930
    [Google Scholar]
  157. Ahad M.A. Kumaran K.R. Ning T. Mansor N.I. Effendy M.A. Damodaran T. Lingam K. Wahab H.A. Nordin N. Liao P. Müller C.P. Hassan Z. Insights into the neuropathology of cerebral ischemia and its mechanisms. Rev. Neurosci. 2020 31 5 521 538 10.1515/revneuro‑2019‑0099 32126019
    [Google Scholar]
  158. Zhou L. Wang X. Peng L. Chen M. Wen H. SEnSCA: Identifying possible ligand‐receptor interactions and its application in cell–cell communication inference. J. Cell. Mol. Med. 2024 28 9 e18372 10.1111/jcmm.18372 38747737
    [Google Scholar]
  159. Wilk A.J. Shalek A.K. Holmes S. Blish C.A. Comparative analysis of cell–cell communication at single-cell resolution. Nat. Biotechnol. 2024 42 3 470 483 10.1038/s41587‑023‑01782‑z 37169965
    [Google Scholar]
  160. Shen X. Zhao Y. Wang Z. Shi Q. Recent advances in high-throughput single-cell transcriptomics and spatial transcriptomics. Lab Chip 2022 22 24 4774 4791 10.1039/D2LC00633B 36254761
    [Google Scholar]
  161. Cooper S.A. Kostallari E. Shah V.H. Angiocrine signaling in sinusoidal health and disease. Semin. Liver Dis. 2023 43 3 245 257 10.1055/a‑2128‑5907 37442155
    [Google Scholar]
  162. Bye L.J. Finol-Urdaneta R.K. Adams D.J. Calcium imaging of non-adherent cells. Methods Mol. Biol. 2023 2644 361 369 10.1007/978‑1‑0716‑3052‑5_23 37142934
    [Google Scholar]
  163. Luetzenburg G. Kroon A. Kjeldsen K.K. Splinter K.D. Bjørk A.A. High-resolution topographic surveying and change detection with the iPhone LiDAR. Nat. Protoc. 2024 19 12 3520 3541 10.1038/s41596‑024‑01024‑9 39075310
    [Google Scholar]
  164. Baruzzo G. Cesaro G. Di Camillo B. Identify, quantify and characterize cellular communication from single-cell RNA sequencing data with scSeqComm. Bioinformatics 2022 38 7 1920 1929 10.1093/bioinformatics/btac036 35043939
    [Google Scholar]
  165. Wang C. Zhang B. Proteomics meets dose response: A new paradigm for deciphering drug effects. Cancer Res. 2024 84 16 2572 2574 10.1158/0008‑5472.CAN‑24‑2087 38924463
    [Google Scholar]
  166. Zhao Y. Chen Y. Cheng K. Huang W. Artificial intelligence based multimodal language decoding from brain activity: A review. Brain Res. Bull. 2023 201 110713 10.1016/j.brainresbull.2023.110713 37487829
    [Google Scholar]
  167. Su J. Song Y. Zhu Z. Huang X. Fan J. Qiao J. Mao F. Cell–cell communication: New insights and clinical implications. Signal Transduct. Target. Ther. 2024 9 1 196 10.1038/s41392‑024‑01888‑z 39107318
    [Google Scholar]
  168. Hou Z. Chen J. Yang H. Hu X. Yang F. microRNA-26a shuttled by extracellular vesicles secreted from adipose-derived mesenchymal stem cells reduce neuronal damage through KLF9-mediated regulation of TRAF2/KLF2 axis. Adipocyte 2021 10 1 378 393 10.1080/21623945.2021.1938829 34311651
    [Google Scholar]
  169. Kawamura H. Li X. Goishi K. van Meeteren L.A. Jakobsson L. Cébe-Suarez S. Shimizu A. Edholm D. Ballmer-Hofer K. Kjellén L. Klagsbrun M. Claesson-Welsh L. Neuropilin-1 in regulation of VEGF-induced activation of p38MAPK and endothelial cell organization. Blood 2008 112 9 3638 3649 10.1182/blood‑2007‑12‑125856 18664627
    [Google Scholar]
  170. Brown D.I. Griendling K.K. Regulation of signal transduction by reactive oxygen species in the cardiovascular system. Circ. Res. 2015 116 3 531 549 10.1161/CIRCRESAHA.116.303584 25634975
    [Google Scholar]
  171. Sever R. Brugge J.S. Signal transduction in cancer. Cold Spring Harb. Perspect. Med. 2015 5 4 a006098 10.1101/cshperspect.a006098 25833940
    [Google Scholar]
  172. Li G. Gao J. Ding P. Gao Y. The role of endothelial cell-pericyte interactions in vascularization and diseases. J. Adv. Res. 2025 67 269 288 10.1016/j.jare.2024.01.016 38246244
    [Google Scholar]
  173. Wu B. Wang Q. Shi X. Jiang M. Targeting endocytosis and cell communications in the tumor immune microenvironment. Cell Commun. Signal. 2022 20 1 161 10.1186/s12964‑022‑00968‑3 36258231
    [Google Scholar]
  174. Zagrean A.M. Hermann D.M. Opris I. Zagrean L. Popa-Wagner A. Multicellular crosstalk between exosomes and the neurovascular unit after cerebral ischemia. Therapeutic implications. Front. Neurosci. 2018 12 811 10.3389/fnins.2018.00811 30459547
    [Google Scholar]
  175. Cun Y. Jin Y. Wu D. Zhou L. Zhang C. Zhang S. Yang X. Zuhong Wang Zhang, P. Exosome in crosstalk between inflammation and angiogenesis: A potential therapeutic strategy for stroke. Mediators Inflamm. 2022 2022 1 13 10.1155/2022/7006281 36052309
    [Google Scholar]
  176. Wang X. Wang T. Zhu D. Wang J. Han W. From acute lung injury to cerebral ischemia: A unified concept involving intercellular communication through extracellular vesicle-associated miRNAs released by macrophages/microglia. Clin. Exp. Immunol. 2025 219 1 uxae105 10.1093/cei/uxae105 39658101
    [Google Scholar]
  177. Yang T Liu X Zhou Y Zhang W. Feng Z. Ge J. Mei Z. Sanpian decoction ameliorates cerebral ischemia-reperfusion injury by regulating SIRT1/ERK/HIF-1α pathway through in silico analysis and experimental validation. J. Ethnopharmacol 2024 318 Pt A 116898 10.1016/j.jep.2023.116898 37467820
    [Google Scholar]
  178. Shaharudin N.S. Singh S.G.K. Kek T. Sultan S. Targeting signaling pathways with andrographolide in cancer therapy (Review). Mol. Clin. Oncol. 2024 21 5 81 [Review 10.3892/mco.2024.2779 39301125
    [Google Scholar]
  179. Vallée A. Lecarpentier Y. Guillevin R. Vallée J.N. Interactions between TGF-β1, canonical WNT/β-catenin pathway and PPAR γ in radiation-induced fibrosis. Oncotarget 2017 8 52 90579 90604 10.18632/oncotarget.21234 29163854
    [Google Scholar]
  180. Donahue H.J. Qu R.W. Genetos D.C. Joint diseases: from connexins to gap junctions. Nat. Rev. Rheumatol. 2018 14 1 42 51 10.1038/nrrheum.2017.204 29255213
    [Google Scholar]
  181. Van Campenhout R. Cooreman A. Leroy K. Cogliati B. Kwak B.R. Vinken M. Non-canonical roles of connexins. Prog. Biophys. Mol. Biol. 2020 153 35 41 10.1016/j.pbiomolbio.2020.03.002 32220599
    [Google Scholar]
  182. Hautefort A. Pfenniger A. Kwak B.R. Endothelial connexins in vascular function. Vasc. Biol. 2019 1 1 H117 H124 10.1530/VB‑19‑0015 32923963
    [Google Scholar]
  183. Li K.H. Zhu Y. Zhang P.H. Alini M. Grad S. Li Z. Osteochondral explants for diarthrodial joint diseases: Bridging the gap between bench and bedside. Eur. Cell. Mater. 2022 44 74 89 10.22203/eCM.v044a05 36161648
    [Google Scholar]
  184. Hernando J. Ros J. Arroyo A. Capdevila J. Clinical and translational challenges in thyroid cancer. Curr. Med. Chem. 2020 27 29 4806 4822 10.2174/0929867327666200214125712 32056516
    [Google Scholar]
  185. Petrini C. Minghetti L. Brusaferro S. A few ethical issues in translational research for medicinal products discovery and development. Ann. Ist. Super. Sanita 2020 56 4 487 491 10.4415/ANN_20_04_11 33346175
    [Google Scholar]
  186. Lee N.K. Chang J.W. Manufacturing cell and gene therapies: Challenges in clinical translation. Ann. Lab. Med. 2024 44 4 314 323 10.3343/alm.2023.0382 38361427
    [Google Scholar]
  187. Yuan F. Lerman L.O. Targeted therapeutic strategies for the kidney. Expert Opin. Ther. Targets 2024 28 11 979 989 10.1080/14728222.2024.2421756 39491501
    [Google Scholar]
  188. Arzi B. Webb T.L. Koch T.G. Volk S.W. Betts D.H. Watts A. Goodrich L. Kallos M.S. Kol A. Cell therapy in veterinary medicine as a proof-of-concept for human therapies: perspectives from the north american veterinary regenerative medicine association. Front. Vet. Sci. 2021 8 779109 10.3389/fvets.2021.779109 34917671
    [Google Scholar]
  189. Younis M.A. Tawfeek H.M. Abdellatif A.A.H. Abdel-Aleem J.A. Harashima H. Clinical translation of nanomedicines: Challenges, opportunities, and keys. Adv. Drug Deliv. Rev. 2022 181 114083 10.1016/j.addr.2021.114083 34929251
    [Google Scholar]
  190. Kim J.E. Lee R.P. Yazigi E. Atta L. Feghali J. Pant A. Jain A. Levitan I. Kim E. Patel K. Kannapadi N. Shah P. Bibic A. Hou Z. Caplan J.M. Gonzalez L.F. Huang J. Xu R. Fan J. Tyler B. Brem H. Boussiotis V.A. Jantzie L. Robinson S. Koehler R.C. Lim M. Tamargo R.J. Jackson C.M. Soluble PD-L1 reprograms blood monocytes to prevent cerebral edema and facilitate recovery after ischemic stroke. Brain Behav. Immun. 2024 116 160 174 10.1016/j.bbi.2023.12.007 38070624
    [Google Scholar]
  191. Jin S. Guerrero-Juarez C.F. Zhang L. Chang I. Ramos R. Kuan C.H. Myung P. Plikus M.V. Nie Q. Inference and analysis of cell-cell communication using CellChat. Nat. Commun. 2021 12 1 1088 10.1038/s41467‑021‑21246‑9 33597522
    [Google Scholar]
  192. Peng L Xiong W Han C Li Z. Chen X. CellDialog: A computational framework for ligand-receptor-mediated cell-cell communication analysis III. IEEE J. Biomed. Health. Inform. 2023 10.1109/JBHI.2023.3333828 37976192
    [Google Scholar]
  193. Huang M. Xu L. Liu J. Huang P. Tan Y. Chen S. Cell-cell communication alterations via intercellular signaling pathways in substantia nigra of Parkinson’s disease. Front. Aging Neurosci. 2022 14 828457 10.3389/fnagi.2022.828457 35283752
    [Google Scholar]
  194. He M. Liu Z. Li L. Liu Y. Cell-cell communication in kidney fibrosis. Nephrol. Dial. Transplant. 2024 39 5 761 769 10.1093/ndt/gfad257 38040652
    [Google Scholar]
  195. Galardi A. De Bethlen A. Di Paolo V. Lampis S. Mastronuzzi A. Di Giannatale A. Recent advancements on the use of exosomes as drug carriers for the tratment of glieoblastoma. Life 2023 13 4 964 10.3390/life13040964 37109493
    [Google Scholar]
  196. Fitts C.A. Ji N. Li Y. Li Y. Tan C. Exploiting exosomes in cancer liquid biopsies and drug delivery. Adv. Healthc. Mater. 2019 8 6 1801268 10.1002/adhm.201801268 30663276
    [Google Scholar]
/content/journals/cn/10.2174/011570159X388985250711064325
Loading
/content/journals/cn/10.2174/011570159X388985250711064325
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test