Skip to content
2000
image of The Role and Mechanism of Estrogen in Perimenopausal Depression

Abstract

Depression is a severe psychiatric disorder characterized by high prevalence rates, elevated suicide risks, and significant relapse rates. Women, particularly during the perimenopausal period, are more vulnerable to developing depression. Fluctuations in estrogen levels during perimenopause can heighten a woman's sensitivity to psychosocial stress. Clinical trials have demonstrated the short-term antidepressant efficacy of estradiol in perimenopausal women. However, the precise mechanisms through which estrogen influences mood disorders during perimenopause remain unclear. This review summarizes the risk factors associated with perimenopausal depression (PMD), examines current research on estrogen therapy, and explores the potential mechanisms and related pathological processes involved in estrogen's role in treating depression. Understanding how estrogen mitigates depressive symptoms in perimenopausal women may help reduce the morbidity and mortality associated with PMD while also alleviating its socioeconomic burden.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X371863250327073835
2025-04-24
2025-10-31
Loading full text...

Full text loading...

References

  1. Depression fact sheet. 2017 Available from: http://www.who.int/mediacentre/factsheets/fs369/en/
  2. Salk R.H. Hyde J.S. Abramson L.Y. Gender differences in depression in representative national samples: Meta-analyses of diagnoses and symptoms. Psychol. Bull. 2017 143 8 783 822 10.1037/bul0000102 28447828
    [Google Scholar]
  3. Noble R.E. Depression in women. Metabolism 2005 54 5)(1 49 52 10.1016/j.metabol.2005.01.014 15877314
    [Google Scholar]
  4. Maki P.M. Kornstein S.G. Joffe H. Bromberger J.T. Freeman E.W. Athappilly G. Bobo W.V. Rubin L.H. Koleva H.K. Cohen L.S. Soares C.N. Guidelines for the evaluation and treatment of perimenopausal depression: Summary and recommendations. J. Womens Health (Larchmt.) 2019 28 2 117 134 10.1089/jwh.2018.27099.mensocrec 30182804
    [Google Scholar]
  5. Lu W. Guo W. Cui D. Dong K. Qiu J. Effect of sex hormones on brain connectivity related to sexual function in perimenopausal women: A resting-state fMRI functional connectivity study. J. Sex. Med. 2019 16 5 711 720 10.1016/j.jsxm.2019.03.004 30956108
    [Google Scholar]
  6. Timur S. Şahin N.H. The prevalence of depression symptoms and influencing factors among perimenopausal and postmenopausal women. Menopause 2010 17 3 545 551 10.1097/gme.0b013e3181cf8997 20400922
    [Google Scholar]
  7. Schmidt P.J. Rubinow D.R. Sex hormones and mood in the perimenopause. Ann. N. Y. Acad. Sci. 2009 1179 1 70 85 10.1111/j.1749‑6632.2009.04982.x 19906233
    [Google Scholar]
  8. Albert K.M. Newhouse P.A. Estrogen, stress, and depression: Cognitive and biological interactions. Annu. Rev. Clin. Psychol. 2019 15 1 399 423 10.1146/annurev‑clinpsy‑050718‑095557 30786242
    [Google Scholar]
  9. Almeida O.P. Lautenschlager N. Vasikaram S. Leedman P. Flicker L. Association between physiological serum concentration of estrogen and the mental health of community-dwelling postmenopausal women age 70 years and over. Am. J. Geriatr. Psychiatry 2005 13 2 142 149 10.1097/00019442‑200502000‑00008 15703323
    [Google Scholar]
  10. Kiss Á. Delattre A.M. Pereira S.I.R. Carolino R.G. Szawka R.E. Anselmo-Franci J.A. Zanata S.M. Ferraz A.C. 17β-Estradiol replacement in young, adult and middle-aged female ovariectomized rats promotes improvement of spatial reference memory and an antidepressant effect and alters monoamines and BDNF levels in memory- and depression-related brain areas. Behav. Brain Res. 2012 227 1 100 108 10.1016/j.bbr.2011.10.047 22085882
    [Google Scholar]
  11. Xu Y. Sheng H. Tang Z. Lu J. Ni X. Inflammation and increased IDO in hippocampus contribute to depression-like behavior induced by estrogen deficiency. Behav. Brain Res. 2015 288 71 78 10.1016/j.bbr.2015.04.017 25907742
    [Google Scholar]
  12. de Novaes Soares C. Almeida O.P. Joffe H. Cohen L.S. Efficacy of estradiol for the treatment of depressive disorders in perimenopausal women: a double-blind, randomized, placebo-controlled trial. Arch. Gen. Psychiatry 2001 58 6 529 534 10.1001/archpsyc.58.6.529 11386980
    [Google Scholar]
  13. Gordon J.L. Rubinow D.R. Eisenlohr-Moul T.A. Xia K. Schmidt P.J. Girdler S.S. Efficacy of transdermal estradiol and micronized progesterone in the prevention of depressive symptoms in the menopause transition. JAMA Psychiatry 2018 75 2 149 157 10.1001/jamapsychiatry.2017.3998 29322164
    [Google Scholar]
  14. Kim H. Yoo J. Han K. Lee D.Y. Fava M. Mischoulon D. Jeon H.J. Hormone therapy and the decreased risk of dementia in women with depression: a population-based cohort study. Alzheimers Res. Ther. 2022 14 1 83 10.1186/s13195‑022‑01026‑3 35710453
    [Google Scholar]
  15. Hale G.E. Robertson D.M. Burger H.G. The perimenopausal woman: Endocrinology and management. J. Steroid Biochem. Mol. Biol. 2014 142 121 131 10.1016/j.jsbmb.2013.08.015 24134950
    [Google Scholar]
  16. Santoro N. Randolph J.F. Jr Reproductive hormones and the menopause transition. Obstet. Gynecol. Clin. North Am. 2011 38 3 455 466 10.1016/j.ogc.2011.05.004 21961713
    [Google Scholar]
  17. Harlow S.D. Gass M. Hall J.E. Lobo R. Maki P. Rebar R.W. Sherman S. Sluss P.M. de Villiers T.J. Executive summary of the Stages of Reproductive Aging Workshop + 10: addressing the unfinished agenda of staging reproductive aging. J. Clin. Endocrinol. Metab. 2012 97 4 1159 1168 10.1210/jc.2011‑3362 22344196
    [Google Scholar]
  18. Tepper P.G. Randolph J.F. Jr McConnell D.S. Crawford S.L. El Khoudary S.R. Joffe H. Gold E.B. Zheng H. Bromberger J.T. Sutton-Tyrrell K. Trajectory clustering of estradiol and follicle-stimulating hormone during the menopausal transition among women in the Study of Women’s Health across the Nation (SWAN). J. Clin. Endocrinol. Metab. 2012 97 8 2872 2880 10.1210/jc.2012‑1422 22659249
    [Google Scholar]
  19. Randolph J.F. Jr Zheng H. Sowers M.R. Crandall C. Crawford S. Gold E.B. Vuga M. Change in follicle-stimulating hormone and estradiol across the menopausal transition: effect of age at the final menstrual period. J. Clin. Endocrinol. Metab. 2011 96 3 746 754 10.1210/jc.2010‑1746 21159842
    [Google Scholar]
  20. McKinlay S.M. Brambilla D.J. Posner J.G. The normal menopause transition. Maturitas 1992 14 2 103 115 10.1016/0378‑5122(92)90003‑M 1565019
    [Google Scholar]
  21. Gordon J.L. Girdler S.S. Meltzer-Brody S.E. Stika C.S. Thurston R.C. Clark C.T. Prairie B.A. Moses-Kolko E. Joffe H. Wisner K.L. Ovarian hormone fluctuation, neurosteroids, and HPA axis dysregulation in perimenopausal depression: A novel heuristic model. Am. J. Psychiatry 2015 172 3 227 236 10.1176/appi.ajp.2014.14070918 25585035
    [Google Scholar]
  22. Bromberger J.T. Matthews K.A. Schott L.L. Brockwell S. Avis N.E. Kravitz H.M. Everson-Rose S.A. Gold E.B. Sowers M. Randolph J.F. Jr Depressive symptoms during the menopausal transition: The Study of Women’s Health Across the Nation (SWAN). J. Affect. Disord. 2007 103 1-3 267 272 10.1016/j.jad.2007.01.034 17331589
    [Google Scholar]
  23. Freeman E.W. Sammel M.D. Liu L. Gracia C.R. Nelson D.B. Hollander L. Hormones and menopausal status as predictors of depression in women in transition to menopause. Arch. Gen. Psychiatry 2004 61 1 62 70 10.1001/archpsyc.61.1.62 14706945
    [Google Scholar]
  24. Bromberger J.T. Kravitz H.M. Chang Y.F. Cyranowski J.M. Brown C. Matthews K.A. Major depression during and after the menopausal transition: Study of Women’s Health Across the Nation (SWAN). Psychol. Med. 2011 41 9 1879 1888 10.1017/S003329171100016X 21306662
    [Google Scholar]
  25. Kuehner C. Why is depression more common among women than among men? Lancet Psychiatry 2017 4 2 146 158 10.1016/S2215‑0366(16)30263‑2 27856392
    [Google Scholar]
  26. Cohen L.S. Soares C.N. Vitonis A.F. Otto M.W. Harlow B.L. Risk for new onset of depression during the menopausal transition: the Harvard study of moods and cycles. Arch. Gen. Psychiatry 2006 63 4 385 390 10.1001/archpsyc.63.4.385 16585467
    [Google Scholar]
  27. Payne J.L. Palmer J.T. Joffe H. A reproductive subtype of depression: Conceptualizing models and moving toward etiology. Harv. Rev. Psychiatry 2009 17 2 72 86 10.1080/10673220902899706 19373617
    [Google Scholar]
  28. Avis N.E. Brambilla D. McKinlay S.M. Vass K. A longitudinal analysis of the association between menopause and depression results from the Massachusetts women’s health study. Ann. Epidemiol. 1994 4 3 214 220 10.1016/1047‑2797(94)90099‑X 8055122
    [Google Scholar]
  29. Russell J.K. Jones C.K. Newhouse P.A. The role of estrogen in brain and cognitive aging. Neurotherapeutics 2019 16 3 649 665 10.1007/s13311‑019‑00766‑9 31364065
    [Google Scholar]
  30. Cavus I. Duman R.S. Influence of estradiol, stress, and 5-HT2A agonist treatment on brain-derived neurotrophic factor expression in female rats. Biol. Psychiatry 2003 54 1 59 69 10.1016/S0006‑3223(03)00236‑1 12842309
    [Google Scholar]
  31. Behl C. Oestrogen as a neuroprotective hormone. Nat. Rev. Neurosci. 2002 3 6 433 442 10.1038/nrn846 12042878
    [Google Scholar]
  32. Cizza G. Gold P.W. Chrousos G.P. High-dose transdermal estrogen, corticotropin-releasing hormone, and postnatal depression. J. Clin. Endocrinol. Metab. 1997 82 2 703 704 10.1210/jc.82.2.703 9024283
    [Google Scholar]
  33. Cohen L.S. Soares C.N. Poitras J.R. Prouty J. Alexander A.B. Shifren J.L. Short-term use of estradiol for depression in perimenopausal and postmenopausal women: A preliminary report. Am. J. Psychiatry 2003 160 8 1519 1522 10.1176/appi.ajp.160.8.1519 12900318
    [Google Scholar]
  34. Schmidt P.J. Nieman L. Danaceau M.A. Tobin M.B. Roca C.A. Murphy J.H. Rubinow D.R. Estrogen replacement in perimenopause-related depression: A preliminary report. Am. J. Obstet. Gynecol. 2000 183 2 414 420 10.1067/mob.2000.106004 10942479
    [Google Scholar]
  35. Rubinow D.R. Johnson S.L. Schmidt P.J. Girdler S. Gaynes B. Efficacy of estradiol in perimenopausal depression: So much promise and so few answers. Depress. Anxiety 2015 32 8 539 549 10.1002/da.22391 26130315
    [Google Scholar]
  36. Joffe H. Petrillo L.F. Koukopoulos A. Viguera A.C. Hirschberg A. Nonacs R. Somley B. Pasciullo E. White D.P. Hall J.E. Cohen L.S. Increased estradiol and improved sleep, but not hot flashes, predict enhanced mood during the menopausal transition. J. Clin. Endocrinol. Metab. 2011 96 7 E1044 E1054 10.1210/jc.2010‑2503 21525161
    [Google Scholar]
  37. Nagata H. Nozaki M. Nakano H. Short-term combinational therapy for oophorectomized women with hot flashes and depressive tendencies. J. Obstet. Gynaecol. Res. 2005 31 2 107 114 10.1111/j.1447‑0756.2005.00254.x 15771635
    [Google Scholar]
  38. Schneider L.S. Small G.W. Hamilton S.H. Bystritsky A. Nemeroff C.B. Meyers B.S. Estrogen replacement and response to fluoxetine in a multicenter geriatric depression trial. Am. J. Geriatr. Psychiatry 1997 5 2 97 106 10.1097/00019442‑199721520‑00002 9106373
    [Google Scholar]
  39. Baik S.H. Baye F. McDonald C.J. Use of menopausal hormone therapy beyond age 65 years and its effects on women’s health outcomes by types, routes, and doses. Menopause 2024 31 5 363 371 10.1097/GME.0000000000002335 38595196
    [Google Scholar]
  40. Shughrue P.J. Lane M.V. Merchenthaler I. Comparative distribution of estrogen receptor-α and-β mRNA in the rat central nervous system. J. Comp. Neurol. 1997 388 4 507 525 10.1002/(SICI)1096‑9861(19971201)388:4<507:AID‑CNE1>3.0.CO;2‑6 9388012
    [Google Scholar]
  41. Saito K. Cui H. Emerging roles of estrogen-related receptors in the brain: Potential interactions with estrogen signaling. Int. J. Mol. Sci. 2018 19 4 1091 10.3390/ijms19041091 29621182
    [Google Scholar]
  42. Lorsch Z.S. Loh Y.H.E. Purushothaman I. Walker D.M. Parise E.M. Salery M. Cahill M.E. Hodes G.E. Pfau M.L. Kronman H. Hamilton P.J. Issler O. Labonté B. Symonds A.E. Zucker M. Zhang T.Y. Meaney M.J. Russo S.J. Shen L. Bagot R.C. Nestler E.J. Estrogen receptor α drives pro-resilient transcription in mouse models of depression. Nat. Commun. 2018 9 1 1116 10.1038/s41467‑018‑03567‑4 29549264
    [Google Scholar]
  43. Walf A.A. Frye C.A. A review and update of mechanisms of estrogen in the hippocampus and amygdala for anxiety and depression behavior. Neuropsychopharmacology 2006 31 6 1097 1111 10.1038/sj.npp.1301067 16554740
    [Google Scholar]
  44. Gressier F. Verstuyft C. Hardy P. Becquemont L. Corruble E. Menopausal status could modulate the association between 5-HTTLPR and antidepressant efficacy in depressed women: A pilot study. Arch. Women Ment. Health 2014 17 6 569 573 10.1007/s00737‑014‑0464‑1 25257397
    [Google Scholar]
  45. Grochans E. Grzywacz A. Jurczak A. Samochowiec A. Karakiewicz B. Brodowska A. Starczewski A. Samochowiec J. The 5HTT and MAO-A polymorphisms associate with depressive mood and climacteric symptoms in postmenopausal women. Prog. Neuropsychopharmacol. Biol. Psychiatry 2013 45 125 130 10.1016/j.pnpbp.2013.05.007 23707423
    [Google Scholar]
  46. Pestana-Oliveira N. Kalil B. Leite C.M. Carolino R.O.G. Debarba L.K. Elias L.L.K. Antunes-Rodrigues J. Anselmo-Franci J.A. Effects of estrogen therapy on the serotonergic system in an animal model of perimenopause induced by 4-Vinylcyclohexen Diepoxide (VCD). eNeuro 2018 5 1 10.1523/ENEURO.0247‑17.2017 29362726
    [Google Scholar]
  47. Estrada-Camarena E. Fernández-Guasti A. López-Rubalcava C. Participation of the 5-HT1A receptor in the antidepressant-like effect of estrogens in the forced swimming test. Neuropsychopharmacology 2006 31 2 247 255 10.1038/sj.npp.1300821 16012533
    [Google Scholar]
  48. Suzuki H. Barros R.P.A. Sugiyama N. Krishnan V. Yaden B.C. Kim H-J. Warner M. Gustafsson J-Å. Involvement of estrogen receptor β in maintenance of serotonergic neurons of the dorsal raphe. Mol. Psychiatry 2013 18 6 674 680 10.1038/mp.2012.62 22665260
    [Google Scholar]
  49. Clark J.A. Alves S. Gundlah C. Rocha B. Birzin E.T. Cai S.J. Flick R. Hayes E. Ho K. Warrier S. Pai L. Yudkovitz J. Fleischer R. Colwell L. Li S. Wilkinson H. Schaeffer J. Wilkening R. Mattingly E. Hammond M. Rohrer S.P. Selective estrogen receptor-beta (SERM-beta) compounds modulate raphe nuclei tryptophan hydroxylase-1 (TPH-1) mRNA expression and cause antidepressant-like effects in the forced swim test. Neuropharmacology 2012 63 6 1051 1063 10.1016/j.neuropharm.2012.07.004 22796107
    [Google Scholar]
  50. Nomura M. Akama K.T. Alves S.E. Korach K.S. Gustafsson J.Å. Pfaff D.W. Ogawa S. Differential distribution of estrogen receptor (ER)-α and ER-β in the midbrain raphe nuclei and periaqueductal gray in male mouse: Predominant role of ER-β in midbrain serotonergic systems. Neuroscience 2005 130 2 445 456 10.1016/j.neuroscience.2004.09.028 15664701
    [Google Scholar]
  51. Yang F. Tao J. Xu L. Zhao N. Chen J. Chen W. Zhu Y. Qiu J. Estradiol decreases rat depressive behavior by estrogen receptor beta but not alpha. Neuroreport 2014 25 2 100 104 10.1097/WNR.0000000000000052 24128867
    [Google Scholar]
  52. Walf A.A. Rhodes M.E. Frye C.A. Antidepressant effects of ERβ-selective estrogen receptor modulators in the forced swim test. Pharmacol. Biochem. Behav. 2004 78 3 523 529 10.1016/j.pbb.2004.03.023 15251261
    [Google Scholar]
  53. Krȩżel W. Dupont S. Krust A. Chambon P. Chapman P.F. Increased anxiety and synaptic plasticity in estrogen receptor β-deficient mice. Proc. Natl. Acad. Sci. USA 2001 98 21 12278 12282 10.1073/pnas.221451898 11593044
    [Google Scholar]
  54. Sohrabji F. Miranda R.C. Toran-Allerand C.D. Identification of a putative estrogen response nlm in the gene encoding brain-derived neurotrophic factor. Proc. Natl. Acad. Sci. USA 1995 92 24 11110 11114 10.1073/pnas.92.24.11110 7479947
    [Google Scholar]
  55. Furuta M. Numakawa T. Chiba S. Ninomiya M. Kajiyama Y. Adachi N. Akema T. Kunugi H. Estrogen, predominantly via estrogen receptor α, attenuates postpartum-induced anxiety- and depression-like behaviors in female rats. Endocrinology 2013 154 10 3807 3816 10.1210/en.2012‑2136 23913447
    [Google Scholar]
  56. Qu N. Wang X.M. Zhang T. Zhang S.F. Li Y. Cao F.Y. Wang Q. Ning L.N. Tian Q. Estrogen receptor α agonist is beneficial for young female rats against chronic unpredicted mild stress-induced depressive behavior and cognitive deficits. J. Alzheimers Dis. 2020 77 3 1077 1093 10.3233/JAD‑200486 32804146
    [Google Scholar]
  57. Schiller C.E. Johnson S.L. Abate A.C. Schmidt P.J. Rubinow D.R. Reproductive steroid regulation of mood and behavior. Compr. Physiol. 2016 6 3 1135 1160 27347888
    [Google Scholar]
  58. Kim J.J. Pae C.U. Kim M.R. Min J.A. Kim K.H. Lee C.U. Lee C. Paik I.H. Association between estrogen receptor gene polymorphisms and depression in post-menopausal women: A preliminary study. Psychiatry Investig. 2010 7 3 224 227 10.4306/pi.2010.7.3.224 20927313
    [Google Scholar]
  59. McEwen B.S. Alves S.E. Estrogen actions in the central nervous system. Endocr. Rev. 1999 20 3 279 307 10.1210/er.20.3.279 10368772
    [Google Scholar]
  60. Borrow A.P. Cameron N.M. Estrogenic mediation of serotonergic and neurotrophic systems: Implications for female mood disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry 2014 54 13 25 10.1016/j.pnpbp.2014.05.009 24865152
    [Google Scholar]
  61. Halbreich U. Rojansky N. Palter S. Tworek H. Hissin P. Wang K. Estrogen augments serotonergic activity in postmenopausal women. Biol. Psychiatry 1995 37 7 434 441 10.1016/0006‑3223(94)00181‑2 7786956
    [Google Scholar]
  62. Zhang X. Gainetdinov R.R. Beaulieu J.M. Sotnikova T.D. Burch L.H. Williams R.B. Schwartz D.A. Krishnan K.R.R. Caron M.G. Loss-of-function mutation in tryptophan hydroxylase-2 identified in unipolar major depression. Neuron 2005 45 1 11 16 10.1016/j.neuron.2004.12.014 15629698
    [Google Scholar]
  63. Hou X. Adeosun S.O. Zhao X. Hill R. Zheng B. Reddy R. Su X. Meyer J. Mosley T. Wang J.M. ERβ agonist alters RNA splicing factor expression and has a longer window of antidepressant effectiveness than estradiol after long-term ovariectomy. J. Psychiatry Neurosci. 2019 44 1 19 31 10.1503/jpn.170199 30565903
    [Google Scholar]
  64. Rekkas P.V. Wilson A.A. Lee V.W.H. Yogalingam P. Sacher J. Rusjan P. Houle S. Stewart D.E. Kolla N.J. Kish S. Chiuccariello L. Meyer J.H. Greater monoamine oxidase a binding in perimenopausal age as measured with carbon 11-labeled harmine positron emission tomography. JAMA Psychiatry 2014 71 8 873 879 10.1001/jamapsychiatry.2014.250 24898155
    [Google Scholar]
  65. Hiroi R. McDevitt R.A. Neumaier J.F. Estrogen selectively increases tryptophan hydroxylase-2 mRNA expression in distinct subregions of rat midbrain raphe nucleus: Association between gene expression and anxiety behavior in the open field. Biol. Psychiatry 2006 60 3 288 295 10.1016/j.biopsych.2005.10.019 16458260
    [Google Scholar]
  66. Smith L.J. Henderson J.A. Abell C.W. Bethea C.L. Effects of ovarian steroids and raloxifene on proteins that synthesize, transport, and degrade serotonin in the raphe region of macaques. Neuropsychopharmacology 2004 29 11 2035 2045 10.1038/sj.npp.1300510 15199371
    [Google Scholar]
  67. Curran-Rauhut M.A. Petersen S.L. Oestradiol-dependent and -independent modulation of tyrosine hydroxylase mRNA levels in subpopulations of A1 and A2 neurones with oestrogen receptor (ER)alpha and ER beta gene expression. J. Neuroendocrinol. 2003 15 3 296 303 10.1046/j.1365‑2826.2003.01011.x 12588519
    [Google Scholar]
  68. Thompson T.L. Moss R.L. Estrogen regulation of dopamine release in the nucleus accumbens: Genomic- and nongenomic-mediated effects. J. Neurochem. 1994 62 5 1750 1756 10.1046/j.1471‑4159.1994.62051750.x 8158125
    [Google Scholar]
  69. Landry M. Lévesque D. Di Paolo T. Estrogenic properties of raloxifene, but not tamoxifen, on D2 and D3 dopamine receptors in the rat forebrain. Neuroendocrinology 2002 76 4 214 222 10.1159/000065951 12411738
    [Google Scholar]
  70. Becker J.B. Direct effect of 17β‐estradiol on striatum: Sex differences in dopamine release. Synapse 1990 5 2 157 164 10.1002/syn.890050211 2309159
    [Google Scholar]
  71. Etgen A.M. Karkanias G.B. Estrogen regulation of noradrenergic signaling in the hypothalamus. Psychoneuroendocrinology 1994 19 5-7 603 610 10.1016/0306‑4530(94)90044‑2 7938358
    [Google Scholar]
  72. Serova L. Rivkin M. Nakashima A. Sabban E.L. Estradiol stimulates gene expression of norepinephrine biosynthetic enzymes in rat locus coeruleus. Neuroendocrinology 2002 75 3 193 200 10.1159/000048237 11914591
    [Google Scholar]
  73. Dumas J.A. Kutz A.M. Naylor M.R. Johnson J.V. Newhouse P.A. Estradiol treatment altered anticholinergic-related brain activation during working memory in postmenopausal women. Neuroimage 2012 60 2 1394 1403 10.1016/j.neuroimage.2012.01.043 22266175
    [Google Scholar]
  74. Dumas J. Hancur-Bucci C. Naylor M. Sites C. Newhouse P. Estrogen treatment effects on anticholinergic-induced cognitive dysfunction in normal postmenopausal women. Neuropsychopharmacology 2006 31 9 2065 2078 10.1038/sj.npp.1301042 16482084
    [Google Scholar]
  75. Newhouse P. Dumas J. Estrogen–cholinergic interactions: Implications for cognitive aging. Horm. Behav. 2015 74 173 185 10.1016/j.yhbeh.2015.06.022 26187712
    [Google Scholar]
  76. Siuciak J.A. Lewis D.R. Wiegand S.J. Lindsay R.M. Antidepressant-like effect of brain-derived neurotrophic factor (BDNF). Pharmacol. Biochem. Behav. 1997 56 1 131 137 10.1016/S0091‑3057(96)00169‑4 8981620
    [Google Scholar]
  77. Shirayama Y. Chen A.C.H. Nakagawa S. Russell D.S. Duman R.S. Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J. Neurosci. 2002 22 8 3251 3261 10.1523/JNEUROSCI.22‑08‑03251.2002 11943826
    [Google Scholar]
  78. Duman R. Nakagawa S. Malberg J. Regulation of adult neurogenesis by antidepressant treatment. Neuropsychopharmacology 2001 25 6 836 844 10.1016/S0893‑133X(01)00358‑X 11750177
    [Google Scholar]
  79. Jezierski M.K. Sohrabji F. Neurotrophin expression in the reproductively senescent forebrain is refractory to estrogen stimulation. Neurobiol. Aging 2001 22 2 311 321 10.1016/S0197‑4580(00)00230‑X 11182481
    [Google Scholar]
  80. Zhou J. Zhang H. Cohen R.S. Pandey S.C. Effects of estrogen treatment on expression of brain-derived neurotrophic factor and cAMP response nlm-binding protein expression and phosphorylation in rat amygdaloid and hippocampal structures. Neuroendocrinology 2005 81 5 294 310 10.1159/000088448 16179807
    [Google Scholar]
  81. Gibbs R.B. Levels of trkA and BDNF mRNA, but not NGF mRNA, fluctuate across the estrous cycle and increase in response to acute hormone replacement. Brain Res. 1998 787 2 259 268 10.1016/S0006‑8993(97)01511‑4 9813376
    [Google Scholar]
  82. Allen A.L. McCarson K.E. Estrogen increases nociception-evoked brain-derived neurotrophic factor gene expression in the female rat. Neuroendocrinology 2005 81 3 193 199 10.1159/000087002 16020928
    [Google Scholar]
  83. Gibbs R.B. Pfaff D.W. Effects of estrogen and fimbria/fornix transection on p75NGFR and ChAT expression in the medial septum and diagonal band of Broca. Exp. Neurol. 1992 116 1 23 39 10.1016/0014‑4886(92)90173‑N 1313767
    [Google Scholar]
  84. McMillan P.J. Singer C.A. Dorsa D.M. The effects of ovariectomy and estrogen replacement on trkA and choline acetyltransferase mRNA expression in the basal forebrain of the adult female Sprague-Dawley rat. J. Neurosci. 1996 16 5 1860 1865 10.1523/JNEUROSCI.16‑05‑01860.1996 8774454
    [Google Scholar]
  85. Patapoutian A. Reichardt L.F. Trk receptors: Mediators of neurotrophin action. Curr. Opin. Neurobiol. 2001 11 3 272 280 10.1016/S0959‑4388(00)00208‑7 11399424
    [Google Scholar]
  86. Fan L. Zhao Z. Orr P.T. Chambers C.H. Lewis M.C. Frick K.M. Estradiol-induced object memory consolidation in middle-aged female mice requires dorsal hippocampal extracellular signal-regulated kinase and phosphatidylinositol 3-kinase activation. J. Neurosci. 2010 30 12 4390 4400 10.1523/JNEUROSCI.4333‑09.2010 20335475
    [Google Scholar]
  87. Gross K.S. Alf R.L. Polzin T.R. Frick K.M. 17β-estradiol activation of dorsal hippocampal TrkB is independent of increased mature BDNF expression and is required for enhanced memory consolidation in female mice. Psychoneuroendocrinology 2021 125 105110 10.1016/j.psyneuen.2020.105110 33352471
    [Google Scholar]
  88. Wang W. Kantorovich S. Babayan A.H. Hou B. Gall C.M. Lynch G. Estrogen’s effects on excitatory synaptic transmission entail integrin and trkb transactivation and depend upon β1-integrin function. Neuropsychopharmacology 2016 41 11 2723 2732 10.1038/npp.2016.83 27272766
    [Google Scholar]
  89. Toran-Allerand C.D. Miranda R.C. Bentham W.D. Sohrabji F. Brown T.J. Hochberg R.B. MacLusky N.J. Estrogen receptors colocalize with low-affinity nerve growth factor receptors in cholinergic neurons of the basal forebrain. Proc. Natl. Acad. Sci. USA 1992 89 10 4668 4672 10.1073/pnas.89.10.4668 1316615
    [Google Scholar]
  90. Singh M. Meyer E.M. Simpkins J.W. The effect of ovariectomy and estradiol replacement on brain-derived neurotrophic factor messenger ribonucleic acid expression in cortical and hippocampal brain regions of female Sprague-Dawley rats. Endocrinology 1995 136 5 2320 2324 10.1210/endo.136.5.7720680 7720680
    [Google Scholar]
  91. Bora S.H. Liu Z. Kecojevic A. Merchenthaler I. Koliatsos V.E. Direct, complex effects of estrogens on basal forebrain cholinergic neurons. Exp. Neurol. 2005 194 2 506 522 10.1016/j.expneurol.2005.03.015 15893308
    [Google Scholar]
  92. Esvald E.E. Tuvikene J. Sirp A. Patil S. Bramham C.R. Timmusk T. CREB family transcription factors are major mediators of BDNF transcriptional autoregulation in cortical neurons. J. Neurosci. 2020 40 7 1405 1426 10.1523/JNEUROSCI.0367‑19.2019 31915257
    [Google Scholar]
  93. Blendy J.A. The role of CREB in depression and antidepressant treatment. Biol. Psychiatry 2006 59 12 1144 1150 10.1016/j.biopsych.2005.11.003 16457782
    [Google Scholar]
  94. Zhou J. Cohen R.S. Pandey S.C. Estrogen affects the expression of Ca2+/calmodulin-dependent protein kinase IV in amygdala. Neuroreport 2001 12 13 2987 2990 10.1097/00001756‑200109170‑00046 11588616
    [Google Scholar]
  95. Nestler E.J. Barrot M. DiLeone R.J. Eisch A.J. Gold S.J. Monteggia L.M. Neurobiology of depression. Neuron 2002 34 1 13 25 10.1016/S0896‑6273(02)00653‑0 11931738
    [Google Scholar]
  96. Visentin A.P.V. Colombo R. Scotton E. Fracasso D.S. da Rosa A.R. Branco C.S. Salvador M. Targeting inflammatory-mitochondrial response in major depression: Current evidence and further challenges. Oxid. Med. Cell. Longev. 2020 2020 1 20 10.1155/2020/2972968 32351669
    [Google Scholar]
  97. Malviya S.A. Kelly S.D. Greenlee M.M. Eaton D.C. Duke B.J. Bourke C.H. Neigh G.N. Estradiol stimulates an anti-translocation expression pattern of glucocorticoid co-regulators in a hippocampal cell model. Physiol. Behav. 2013 122 187 192 10.1016/j.physbeh.2013.03.018 23541378
    [Google Scholar]
  98. Goel N. Workman J.L. Lee T.T. Innala L. Viau V. Sex differences in the HPA axis. Compr. Physiol. 2014 4 3 1121 1155 24944032
    [Google Scholar]
  99. McEwen B.S. Nasca C. Gray J.D. Stress effects on neuronal structure: Hippocampus, amygdala, and prefrontal cortex. Neuropsychopharmacology 2016 41 1 3 23 10.1038/npp.2015.171 26076834
    [Google Scholar]
  100. Lindheim S.R. Legro R.S. Bernstein L. Stanczyk F.Z. Vijod M.A. Presser S.C. Lobo R.A. Behavioral stress responses in premenopausal and postmenopausal women and the effects of estrogen. Am. J. Obstet. Gynecol. 1992 167 6 1831 1836 10.1016/0002‑9378(92)91783‑7 1471706
    [Google Scholar]
  101. Bethea C.L. Centeno M.L. Ovarian steroid treatment decreases corticotropin-releasing hormone (CRH) mRNA and protein in the hypothalamic paraventricular nucleus of ovariectomized monkeys. Neuropsychopharmacology 2008 33 3 546 556 10.1038/sj.npp.1301442 17507918
    [Google Scholar]
  102. Sato K. Akaishi T. Matsuki N. Ohno Y. Nakazawa K. β-Estradiol induces synaptogenesis in the hippocampus by enhancing brain-derived neurotrophic factor release from dentate gyrus granule cells. Brain Res. 2007 1150 108 120 10.1016/j.brainres.2007.02.093 17433270
    [Google Scholar]
  103. Lund T.D. Rovis T. Chung W.C.J. Handa R.J. Novel actions of estrogen receptor-beta on anxiety-related behaviors. Endocrinology 2005 146 2 797 807 10.1210/en.2004‑1158 15514081
    [Google Scholar]
  104. Handa R.J. Weiser M.J. Zuloaga D.G. A role for the androgen metabolite, 5alpha-androstane-3beta,17beta-diol, in modulating oestrogen receptor beta-mediated regulation of hormonal stress reactivity. J. Neuroendocrinol. 2009 21 4 351 358 10.1111/j.1365‑2826.2009.01840.x 19207807
    [Google Scholar]
  105. Gavin K.M.G.E. Stavros A. Nakamura T. Villalon K.L. Kohrt W.M. Ovarian hormone suppression with estradiol add-back therapy in premenopausal women reduces dynamic HPA axis activity. Endocr. Rev. 2013 34S SUN-55
    [Google Scholar]
  106. Kiecolt-Glaser J.K. Derry H.M. Fagundes C.P. Inflammation: Depression fans the flames and feasts on the heat. Am. J. Psychiatry 2015 172 11 1075 1091 10.1176/appi.ajp.2015.15020152 26357876
    [Google Scholar]
  107. Wohleb E.S. Franklin T. Iwata M. Duman R.S. Integrating neuroimmune systems in the neurobiology of depression. Nat. Rev. Neurosci. 2016 17 8 497 511 10.1038/nrn.2016.69 27277867
    [Google Scholar]
  108. Young J.J. Bruno D. Pomara N. A review of the relationship between proinflammatory cytokines and major depressive disorder. J. Affect. Disord. 2014 169 15 20 10.1016/j.jad.2014.07.032 25128861
    [Google Scholar]
  109. Straub R.H. The complex role of estrogens in inflammation. Endocr. Rev. 2007 28 5 521 574 10.1210/er.2007‑0001 17640948
    [Google Scholar]
  110. Zannas A.S. Gordon J.L. Hinderliter A.L. Girdler S.S. Rubinow D.R. IL-6 response to psychosocial stress predicts 12-month changes in cardiometabolic biomarkers in perimenopausal women. J. Clin. Endocrinol. Metab. 2020 105 10 e3757 e3765 10.1210/clinem/dgaa476 32706883
    [Google Scholar]
  111. Straub R.H. Hense H.W. Andus T. Schölmerich J. Riegger G.A.J. Schunkert H. Hormone replacement therapy and interrelation between serum interleukin-6 and body mass index in postmenopausal women: A population-based study. J. Clin. Endocrinol. Metab. 2000 85 3 1340 1344 10.1210/jcem.85.3.6355 10720088
    [Google Scholar]
  112. Rachoń D. Myśliwska J. Suchecka-Rachoń K. Wieckiewicz J. Myśliwski A. Effects of oestrogen deprivation on interleukin-6 production by peripheral blood mononuclear cells of postmenopausal women. J. Endocrinol. 2002 172 2 387 395 10.1677/joe.0.1720387 11834456
    [Google Scholar]
  113. Kim O.Y. Chae J.S. Paik J.K. Seo H.S. Jang Y. Cavaillon J.M. Lee J.H. Effects of aging and menopause on serum interleukin-6 levels and peripheral blood mononuclear cell cytokine production in healthy nonobese women. Age (Omaha) 2012 34 2 415 425 10.1007/s11357‑011‑9244‑2 21487705
    [Google Scholar]
  114. Wang J. Hou Y. Zhang L. Liu M. Zhao J. Zhang Z. Ma Y. Hou W. Estrogen attenuates traumatic brain injury by inhibiting the activation of microglia and astrocyte-mediated neuroinflammatory responses. Mol. Neurobiol. 2021 58 3 1052 1061 10.1007/s12035‑020‑02171‑2 33085047
    [Google Scholar]
  115. Deng Y. Ma Y. Zhang Z. Zhang L. Guo H. Qin P. Hou Y. Gao Z. Hou W. Astrocytic N-Myc downstream-regulated gene–2 is involved in nuclear transcription factor κB–mediated inflammation induced by global cerebral ischemia. Anesthesiology 2018 128 3 574 586 10.1097/ALN.0000000000002044 29252510
    [Google Scholar]
  116. Gorina R. Font-Nieves M. Márquez-Kisinousky L. Santalucia T. Planas A.M. Astrocyte TLR4 activation induces a proinflammatory environment through the interplay between MyD88‐dependent NFκB signaling, MAPK, and Jak1/Stat1 pathways. Glia 2011 59 2 242 255 10.1002/glia.21094 21125645
    [Google Scholar]
  117. Ghisletti S. Meda C. Maggi A. Vegeto E. 17beta-estradiol inhibits inflammatory gene expression by controlling NF-kappaB intracellular localization. Mol. Cell. Biol. 2005 25 8 2957 2968 10.1128/MCB.25.8.2957‑2968.2005 15798185
    [Google Scholar]
  118. Dodel R. Du Y. Bales K.R. Gao F. Paul S. Sodium salicylate and 17beta-estradiol attenuate nuclear transcription factor NF-kappaB translocation in cultured rat astroglial cultures following exposure to amyloid A beta(1-40) and lipopolysaccharides. J. Neurochem. 1999 73 4 1453 1460 10.1046/j.1471‑4159.1999.0731453.x 10501189
    [Google Scholar]
  119. Sun W.H. Keller E.T. Stebler B.S. Ershler W.B. Estrogen inhibits phorbol ester-induced I kappa B alpha transcription and protein degradation. Biochem. Biophys. Res. Commun. 1998 244 3 691 695 10.1006/bbrc.1998.8324 9535726
    [Google Scholar]
  120. Sharma R.V. Gurjar M.V. Bhalla, RC Selected contribution: estrogen receptor-alpha gene transfer inhibits proliferation and NF-kappaB activation in VSM cells from female rats. J. Appl. Physiol. 1985 91 5 2400 2406 10.1152/jappl.2001.91.5.2400
    [Google Scholar]
  121. Iwata M. Ota K.T. Duman R.S. The inflammasome: Pathways linking psychological stress, depression, and systemic illnesses. Brain Behav. Immun. 2013 31 105 114 10.1016/j.bbi.2012.12.008 23261775
    [Google Scholar]
  122. Kaufmann F.N. Costa A.P. Ghisleni G. Diaz A.P. Rodrigues A.L.S. Peluffo H. Kaster M.P. NLRP3 inflammasome-driven pathways in depression: Clinical and preclinical findings. Brain Behav. Immun. 2017 64 367 383 10.1016/j.bbi.2017.03.002 28263786
    [Google Scholar]
  123. Xu Y. Sheng H. Bao Q. Wang Y. Lu J. Ni X. NLRP3 inflammasome activation mediates estrogen deficiency-induced depression- and anxiety-like behavior and hippocampal inflammation in mice. Brain Behav. Immun. 2016 56 175 186 10.1016/j.bbi.2016.02.022 26928197
    [Google Scholar]
  124. Lu Y. Sareddy G.R. Wang J. Wang R. Li Y. Dong Y. Zhang Q. Liu J. O’Connor J.C. Xu J. Vadlamudi R.K. Brann D.W. Neuron-derived estrogen regulates synaptic plasticity and memory. J. Neurosci. 2019 39 15 2792 2809 10.1523/JNEUROSCI.1970‑18.2019 30728170
    [Google Scholar]
  125. Brandt N. Vierk R. Rune G.M. Sexual dimorphism in estrogen-induced synaptogenesis in the adult hippocampus. Int. J. Dev. Biol. 2013 57 5 351 356 10.1387/ijdb.120217gr 23873366
    [Google Scholar]
  126. Qiao H. Li M.X. Xu C. Chen H.B. An S.C. Ma X.M. Dendritic spines in depression: What we learned from animal models. Neural Plast. 2016 2016 1 26 10.1155/2016/8056370 26881133
    [Google Scholar]
  127. Woolley C.S. Gould E. Frankfurt M. McEwen B.S. Naturally occurring fluctuation in dendritic spine density on adult hippocampal pyramidal neurons. J. Neurosci. 1990 10 12 4035 4039 10.1523/JNEUROSCI.10‑12‑04035.1990 2269895
    [Google Scholar]
  128. Woolley C.S. McEwen B.S. Estradiol mediates fluctuation in hippocampal synapse density during the estrous cycle in the adult rat. J. Neurosci. 1992 12 7 2549 2554 10.1523/JNEUROSCI.12‑07‑02549.1992 1613547
    [Google Scholar]
  129. Fester L. Prange-Kiel J. Zhou L. Blittersdorf B. Böhm J. Jarry H. Schumacher M. Rune G.M. Estrogen-regulated synaptogenesis in the hippocampus: Sexual dimorphism in vivo but not in vitro. J. Steroid Biochem. Mol. Biol. 2012 131 1-2 24 29 10.1016/j.jsbmb.2011.11.010 22138012
    [Google Scholar]
  130. Liu F. Day M. Muñiz L.C. Bitran D. Arias R. Revilla-Sanchez R. Grauer S. Zhang G. Kelley C. Pulito V. Sung A. Mervis R.F. Navarra R. Hirst W.D. Reinhart P.H. Marquis K.L. Moss S.J. Pangalos M.N. Brandon N.J. Activation of estrogen receptor-β regulates hippocampal synaptic plasticity and improves memory. Nat. Neurosci. 2008 11 3 334 343 10.1038/nn2057 18297067
    [Google Scholar]
  131. Phan A. Lancaster K.E. Armstrong J.N. MacLusky N.J. Choleris E. Rapid effects of estrogen receptor α and β selective agonists on learning and dendritic spines in female mice. Endocrinology 2011 152 4 1492 1502 10.1210/en.2010‑1273 21285321
    [Google Scholar]
  132. Rapp P.R. Morrison J.H. Roberts J.A. Cyclic estrogen replacement improves cognitive function in aged ovariectomized rhesus monkeys. J. Neurosci. 2003 23 13 5708 5714 10.1523/JNEUROSCI.23‑13‑05708.2003 12843274
    [Google Scholar]
  133. Mahmoud R. Wainwright S.R. Galea L.A.M. Sex hormones and adult hippocampal neurogenesis: Regulation, implications, and potential mechanisms. Front. Neuroendocrinol. 2016 41 129 152 10.1016/j.yfrne.2016.03.002 26988999
    [Google Scholar]
  134. Hillerer K.M. Slattery D.A. Pletzer B. Neurobiological mechanisms underlying sex-related differences in stress-related disorders: Effects of neuroactive steroids on the hippocampus. Front. Neuroendocrinol. 2019 55 100796 10.1016/j.yfrne.2019.100796 31580837
    [Google Scholar]
  135. Tang C. Wang Q. Shen J. Wang C. Ding H. Wen S. Yang F. Jiao R. Wu X. Li J. Kong L. Neuron stem cell NLRP6 sustains hippocampal neurogenesis to resist stress-induced depression. Acta Pharm. Sin. B 2023 13 5 2017 2038 10.1016/j.apsb.2023.03.010 37250149
    [Google Scholar]
  136. Chen X.Q. Li C.F. Chen S.J. Liang W.N. Wang M. Wang S.S. Dong S.Q. Yi L.T. Li C.D. The antidepressant-like effects of Chaihu Shugan San: Dependent on the hippocampal BDNF-TrkB-ERK/Akt signaling activation in perimenopausal depression-like rats. Biomed. Pharmacother. 2018 105 45 52 10.1016/j.biopha.2018.04.035 29843044
    [Google Scholar]
  137. Okada M. Makino A. Nakajima M. Okuyama S. Furukawa S. Furukawa Y. Estrogen stimulates proliferation and differentiation of neural stem/progenitor cells through different signal transduction pathways. Int. J. Mol. Sci. 2010 11 10 4114 4123 10.3390/ijms11104114 21152324
    [Google Scholar]
  138. Zhang Z. Hong J. Zhang S. Zhang T. Sha S. Yang R. Qian Y. Chen L. Postpartum estrogen withdrawal impairs hippocampal neurogenesis and causes depression- and anxiety-like behaviors in mice. Psychoneuroendocrinology 2016 66 138 149 10.1016/j.psyneuen.2016.01.013 26803529
    [Google Scholar]
  139. Kim J. Seol S. Kim T.E. Lee J. Koo J.W. Kang H.J. Synaptotagmin-4 induces anhedonic responses to chronic stress via BDNF signaling in the medial prefrontal cortex. Exp. Mol. Med. 2024 56 2 329 343 10.1038/s12276‑024‑01156‑8 38297157
    [Google Scholar]
  140. Brann D.W. Lu Y. Wang J. Sareddy G.R. Pratap U.P. Zhang Q. Tekmal R.R. Vadlamudi R.K. Neuron-derived estrogen: A key neuromodulator in synaptic function and memory. Int. J. Mol. Sci. 2021 22 24 13242 10.3390/ijms222413242 34948039
    [Google Scholar]
  141. Sheppard P.A.S. Asling H.A. Walczyk-Mooradally A. Armstrong S.E. Elad V.M. Lalonde J. Choleris E. Protein synthesis and actin polymerization in the rapid effects of 17β-estradiol on short-term social memory and dendritic spine dynamics in female mice. Psychoneuroendocrinology 2021 128 105232 10.1016/j.psyneuen.2021.105232 33892375
    [Google Scholar]
  142. Sheppard P.A.S. Choleris E. Galea L.A.M. Structural plasticity of the hippocampus in response to estrogens in female rodents. Mol. Brain 2019 12 1 22 10.1186/s13041‑019‑0442‑7 30885239
    [Google Scholar]
  143. Lai Y.J. Yu D. Zhang J.H. Chen G.J. Cooperation of genomic and rapid nongenomic actions of estrogens in synaptic plasticity. Mol. Neurobiol. 2017 54 6 4113 4126 10.1007/s12035‑016‑9979‑y 27324789
    [Google Scholar]
  144. Quan Z. Wang S. Xie H. Zhang J. Duan R. Li M. Zhang J. ROS regulation in CNS disorder therapy: Unveiling the dual roles of nanomedicine. Small 2025 21 5 2410031 10.1002/smll.202410031 39676433
    [Google Scholar]
  145. Hu Y. Zhao M. Wang H. Guo Y. Cheng X. Zhao T. Wang H. Zhang Y. Ma Y. Tao W. Exosome-sheathed ROS-responsive nanogel to improve targeted therapy in perimenopausal depression. J. Nanobiotechnology 2023 21 1 261 10.1186/s12951‑023‑02005‑y 37553718
    [Google Scholar]
  146. Baltgalvis K.A. Greising S.M. Warren G.L. Lowe D.A. Estrogen regulates estrogen receptors and antioxidant gene expression in mouse skeletal muscle. PLoS One 2010 5 4 e10164 10.1371/journal.pone.0010164 20405008
    [Google Scholar]
  147. Bukato K. Kostrzewa T. Gammazza A.M. Gorska-Ponikowska M. Sawicki S. Endogenous estrogen metabolites as oxidative stress mediators and endometrial cancer biomarkers. Cell Commun. Signal. 2024 22 1 205 10.1186/s12964‑024‑01583‑0 38566107
    [Google Scholar]
  148. Yan Q. Lv J. Shen X. Ou-Yang X. Yang J. Nie R. Lu J. Huang Y. Wang J. Shen X. Patchouli alcohol as a selective estrogen receptor β agonist ameliorates AD-like pathology of APP/PS1 model mice. Acta Pharmacol. Sin. 2022 43 9 2226 2241 10.1038/s41401‑021‑00857‑4 35091686
    [Google Scholar]
  149. Nilsen J. Estradiol and neurodegenerative oxidative stress. Front. Neuroendocrinol. 2008 29 4 463 475 10.1016/j.yfrne.2007.12.005 18275991
    [Google Scholar]
  150. Bustamante-Barrientos F.A. Méndez-Ruette M. Ortloff A. Luz-Crawford P. Rivera F.J. Figueroa C.D. Molina L. Bátiz L.F. The impact of estrogen and estrogen-like molecules in neurogenesis and neurodegeneration: Beneficial or harmful? Front. Cell. Neurosci. 2021 15 636176 10.3389/fncel.2021.636176 33762910
    [Google Scholar]
  151. Wise P.M. Estrogens and neuroprotection. Trends Endocrinol. Metab. 2002 13 6 229 230 10.1016/S1043‑2760(02)00611‑2 12128278
    [Google Scholar]
  152. Elliot S.J. Catanuto P. Pereira-Simon S. Xia X. Pastar I. Thaller S. Head C.R. Stojadinovic O. Tomic-Canic M. Glassberg M.K. Catalase, a therapeutic target in the reversal of estrogen-mediated aging. Mol. Ther. 2022 30 2 947 962 10.1016/j.ymthe.2021.06.020 34174444
    [Google Scholar]
  153. Zhang Q.G. Raz L. Wang R. Han D. De Sevilla L. Yang F. Vadlamudi R.K. Brann D.W. Estrogen attenuates ischemic oxidative damage via an estrogen receptor alpha-mediated inhibition of NADPH oxidase activation. J. Neurosci. 2009 29 44 13823 13836 10.1523/JNEUROSCI.3574‑09.2009 19889994
    [Google Scholar]
  154. Remigante A. Spinelli S. Gambardella L. Bozzuto G. Vona R. Caruso D. Villari V. Cappello T. Maisano M. Dossena S. Marino A. Morabito R. Straface E. Internalization of nano- and micro-plastics in human erythrocytes leads to oxidative stress and estrogen receptor-mediated cellular responses. Free Radic. Biol. Med. 2024 223 1 17 10.1016/j.freeradbiomed.2024.07.017 39038767
    [Google Scholar]
  155. Kardeh S. Ashkani-Esfahani S. Alizadeh A.M. Paradoxical action of reactive oxygen species in creation and therapy of cancer. Eur. J. Pharmacol. 2014 735 150 168 10.1016/j.ejphar.2014.04.023 24780648
    [Google Scholar]
  156. Stice J.P. Knowlton A.A. Estrogen, NFkappaB, and the heat shock response. Mol. Med. 2008 14 7-8 517 527 10.2119/2008‑00026.Stice 18431462
    [Google Scholar]
  157. Sun Q. Li G. Zhao F. Dong M. Xie W. Liu Q. Yang W. Cui R. Role of estrogen in treatment of female depression. Aging (Albany NY) 2024 16 3 3021 3042 10.18632/aging.205507 38309292
    [Google Scholar]
  158. Liang G. Kow A.S.F. Yusof R. Tham C.L. Ho Y.C. Lee M.T. Menopause-associated depression: Impact of oxidative stress and neuroinflammation on the central nervous system: A review. Biomedicines 2024 12 1 184 10.3390/biomedicines12010184 38255289
    [Google Scholar]
  159. López M. Tena-Sempere M. Estrogens and the control of energy homeostasis: A brain perspective. Trends Endocrinol. Metab. 2015 26 8 411 421 10.1016/j.tem.2015.06.003 26126705
    [Google Scholar]
  160. Ko S.H. Jung Y. Energy metabolism changes and dysregulated lipid metabolism in postmenopausal women. Nutrients 2021 13 12 4556 10.3390/nu13124556 34960109
    [Google Scholar]
  161. Gavin K.M. Sullivan T.M. Kohrt W.M. Majka S.M. Klemm D.J. Ovarian hormones regulate the production of adipocytes from bone marrow-derived cells. Front. Endocrinol. (Lausanne) 2018 9 276 10.3389/fendo.2018.00276 29892267
    [Google Scholar]
  162. Kang S. Park Y.M. Kwon D.J. Chung Y.J. Namkung J. Han K. Ko S.H. Reproductive life span and severe hypoglycemia risk in postmenopausal women with Type 2 Diabetes Mellitus. Diabetes Metab. J. 2022 46 4 578 591 10.4093/dmj.2021.0135 35067011
    [Google Scholar]
  163. Pu J. Liu Y. Gui S. Tian L. Yu Y. Wang D. Zhong X. Chen W. Chen X. Chen Y. Chen X. Gong X. Liu L. Li W. Wang H. Xie P. Effects of pharmacological treatment on metabolomic alterations in animal models of depression. Transl. Psychiatry 2022 12 1 175 10.1038/s41398‑022‑01947‑5 35487889
    [Google Scholar]
  164. Torres M.J. Kew K.A. Ryan T.E. Pennington E.R. Lin C.T. Buddo K.A. Fix A.M. Smith C.A. Gilliam L.A. Karvinen S. Lowe D.A. Spangenburg E.E. Zeczycki T.N. Shaikh S.R. Neufer P.D. 17β-estradiol directly lowers mitochondrial membrane microviscosity and improves bioenergetic function in skeletal muscle. Cell Metab. 2018 27 1 167 179.e7 10.1016/j.cmet.2017.10.003 29103922
    [Google Scholar]
  165. Klinge C.M. Estrogenic control of mitochondrial function and biogenesis. J. Cell. Biochem. 2008 105 6 1342 1351 10.1002/jcb.21936 18846505
    [Google Scholar]
  166. Karabatsiakis A. Schönfeldt-Lecuona C. Depression, mitochondrial bioenergetics, and electroconvulsive therapy: A new approach towards personalized medicine in psychiatric treatment: A short review and current perspective. Transl. Psychiatry 2020 10 1 226 10.1038/s41398‑020‑00901‑7 32647150
    [Google Scholar]
  167. Allen J. Romay-Tallon R. Brymer K.J. Caruncho H.J. Kalynchuk L.E. Mitochondria and mood: Mitochondrial dysfunction as a key player in the manifestation of depression. Front. Neurosci. 2018 12 386 10.3389/fnins.2018.00386 29928190
    [Google Scholar]
  168. Damri O. Natour S. Asslih S. Agam G. Does treatment with autophagy-enhancers and/or ROS-scavengers alleviate behavioral and neurochemical consequences of low-dose rotenone-induced mild mitochondrial dysfunction in mice? Mol. Psychiatry 2023 28 4 1667 1678 10.1038/s41380‑023‑01955‑x 36690794
    [Google Scholar]
  169. Du Toit A. Gut microbiota and depression. Nat. Rev. Microbiol. 2022 20 4 190 35169287
    [Google Scholar]
  170. Tetel M.J. de Vries G.J. Melcangi R.C. Panzica G. O’Mahony S.M. Steroids, stress and the gut microbiome‐brain axis. J. Neuroendocrinol. 2018 30 2 e12548 10.1111/jne.12548 29024170
    [Google Scholar]
  171. Foster J.A. McVey Neufeld K.A. Gut–brain axis: How the microbiome influences anxiety and depression. Trends Neurosci. 2013 36 5 305 312 10.1016/j.tins.2013.01.005 23384445
    [Google Scholar]
  172. O’Mahony S.M. Clarke G. Borre Y.E. Dinan T.G. Cryan J.F. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav. Brain Res. 2015 277 32 48 10.1016/j.bbr.2014.07.027 25078296
    [Google Scholar]
  173. Ogbonnaya E.S. Clarke G. Shanahan F. Dinan T.G. Cryan J.F. O’Leary O.F. Adult hippocampal neurogenesis is regulated by the microbiome. Biol. Psychiatry 2015 78 4 e7 e9 10.1016/j.biopsych.2014.12.023 25700599
    [Google Scholar]
  174. Palepu M.S.K. Dandekar M.P. Remodeling of microbiota gut-brain axis using psychobiotics in depression. Eur. J. Pharmacol. 2022 931 175171 10.1016/j.ejphar.2022.175171 35926568
    [Google Scholar]
  175. Kelly J.R. Borre Y. O’ Brien C. Patterson E. El Aidy S. Deane J. Kennedy P.J. Beers S. Scott K. Moloney G. Hoban A.E. Scott L. Fitzgerald P. Ross P. Stanton C. Clarke G. Cryan J.F. Dinan T.G. Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat. J. Psychiatr. Res. 2016 82 109 118 10.1016/j.jpsychires.2016.07.019 27491067
    [Google Scholar]
  176. Tian P. Chen Y. Zhu H. Wang L. Qian X. Zou R. Zhao J. Zhang H. Qian L. Wang Q. Wang G. Chen W. Bifidobacterium breve CCFM1025 attenuates major depression disorder via regulating gut microbiome and tryptophan metabolism: A randomized clinical trial. Brain Behav. Immun. 2022 100 233 241 10.1016/j.bbi.2021.11.023 34875345
    [Google Scholar]
  177. Snigdha S. Ha K. Tsai P. Dinan T.G. Bartos J.D. Shahid M. Probiotics: Potential novel therapeutics for microbiota-gut-brain axis dysfunction across gender and lifespan. Pharmacol. Ther. 2022 231 107978 10.1016/j.pharmthera.2021.107978 34492236
    [Google Scholar]
  178. Gu F. Wu Y. Liu Y. Dou M. Jiang Y. Liang H. Lactobacillus casei improves depression-like behavior in chronic unpredictable mild stress-induced rats by the BDNF-TrkB signal pathway and the intestinal microbiota. Food Funct. 2020 11 7 6148 6157 10.1039/D0FO00373E 32578646
    [Google Scholar]
  179. Messaoudi M. Violle N. Bisson J.F. Desor D. Javelot H. Rougeot C. Beneficial psychological effects of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in healthy human volunteers. Gut Microbes 2011 2 4 256 261 10.4161/gmic.2.4.16108 21983070
    [Google Scholar]
  180. Fuhrman B.J. Feigelson H.S. Flores R. Gail M.H. Xu X. Ravel J. Goedert J.J. Associations of the fecal microbiome with urinary estrogens and estrogen metabolites in postmenopausal women. J. Clin. Endocrinol. Metab. 2014 99 12 4632 4640 10.1210/jc.2014‑2222 25211668
    [Google Scholar]
  181. Kaliannan K. Robertson R.C. Murphy K. Stanton C. Kang C. Wang B. Hao L. Bhan A.K. Kang J.X. Estrogen-mediated gut microbiome alterations influence sexual dimorphism in metabolic syndrome in mice. Microbiome 2018 6 1 205 10.1186/s40168‑018‑0587‑0 30424806
    [Google Scholar]
  182. Javurek A.B. Spollen W.G. Johnson S.A. Bivens N.J. Bromert K.H. Givan S.A. Rosenfeld C.S. Effects of exposure to bisphenol A and ethinyl estradiol on the gut microbiota of parents and their offspring in a rodent model. Gut Microbes 2016 7 6 471 485 10.1080/19490976.2016.1234657 27624382
    [Google Scholar]
  183. Acharya K.D. Noh H.L. Graham M.E. Suk S. Friedline R.H. Gomez C.C. Parakoyi A.E.R. Chen J. Kim J.K. Tetel M.J. Distinct changes in gut microbiota are associated with estradiol-mediated protection from diet-induced obesity in female mice. Metabolites 2021 11 8 499 10.3390/metabo11080499 34436440
    [Google Scholar]
  184. Wang C. Symington J.W. Ma E. Cao B. Mysorekar I.U. Estrogenic modulation of uropathogenic Escherichia coli infection pathogenesis in a murine menopause model. Infect. Immun. 2013 81 3 733 739 10.1128/IAI.01234‑12 23264047
    [Google Scholar]
  185. Cross T.W.L. Kasahara K. Rey F.E. Sexual dimorphism of cardiometabolic dysfunction: Gut microbiome in the play? Mol. Metab. 2018 15 70 81 10.1016/j.molmet.2018.05.016 29887245
    [Google Scholar]
  186. Tran A. Scholtes C. Songane M. Champagne C. Galarneau L. Levasseur M.P. Fodil N. Dufour C.R. Giguère V. Saleh M. Estrogen-related receptor alpha (ERRα) is a key regulator of intestinal homeostasis and protects against colitis. Sci. Rep. 2021 11 1 15073 10.1038/s41598‑021‑94499‑5 34302001
    [Google Scholar]
  187. Huang F. Liu X. Xu S. Hu S. Wang S. Shi D. Wang K. Wang Z. Lin Q. Li S. Zhao S. Jin K. Wang C. Chen L. Wang F. Prevotella histicola mitigated estrogen deficiency-induced depression via gut microbiota-dependent modulation of inflammation in ovariectomized mice. Front. Nutr. 2022 8 805465 10.3389/fnut.2021.805465 35155523
    [Google Scholar]
  188. Flores R. Shi J. Fuhrman B. Xu X. Veenstra T.D. Gail M.H. Gajer P. Ravel J. Goedert J.J. Fecal microbial determinants of fecal and systemic estrogens and estrogen metabolites: A cross-sectional study. J. Transl. Med. 2012 10 1 253 10.1186/1479‑5876‑10‑253 23259758
    [Google Scholar]
  189. Baker J.M. Al-Nakkash L. Herbst-Kralovetz M.M. Estrogen–gut microbiome axis: Physiological and clinical implications. Maturitas 2017 103 45 53 10.1016/j.maturitas.2017.06.025 28778332
    [Google Scholar]
  190. Ervin S.M. Li H. Lim L. Roberts L.R. Liang X. Mani S. Redinbo M.R. Gut microbial β-glucuronidases reactivate estrogens as components of the estrobolome that reactivate estrogens. J. Biol. Chem. 2019 294 49 18586 18599 10.1074/jbc.RA119.010950 31636122
    [Google Scholar]
  191. Park S. Kim D.S. Kang E.S. Kim D.B. Kang S. Low-dose brain estrogen prevents menopausal syndrome while maintaining the diversity of the gut microbiomes in estrogen-deficient rats. Am. J. Physiol. Endocrinol. Metab. 2018 315 1 E99 E109 10.1152/ajpendo.00005.2018 29558207
    [Google Scholar]
  192. Lach G. Schellekens H. Dinan T.G. Cryan J.F. Anxiety, depression, and the microbiome: A role for gut peptides. Neurotherapeutics 2018 15 1 36 59 10.1007/s13311‑017‑0585‑0 29134359
    [Google Scholar]
  193. Catena-Dell’Osso M. Fagiolini A. Marazziti D. Baroni S. Bellantuono C. Non-monoaminergic targets for the development of antidepressants: Focus on neuropeptides. Mini Rev. Med. Chem. 2013 13 1 2 10 10.2174/138955713804484758 22876945
    [Google Scholar]
  194. Kojima M. Hosoda H. Date Y. Nakazato M. Matsuo H. Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 1999 402 6762 656 660 10.1038/45230 10604470
    [Google Scholar]
  195. Spencer S.J. Emmerzaal T.L. Kozicz T. Andrews Z.B. Ghrelin’s role in the hypothalamic-pituitary-adrenal axis stress response: Implications for mood disorders. Biol. Psychiatry 2015 78 1 19 27 10.1016/j.biopsych.2014.10.021 25534754
    [Google Scholar]
  196. Han Q.Q. Huang H.J. Wang Y.L. Yang L. Pilot A. Zhu X.C. Yu R. Wang J. Chen X.R. Liu Q. Li B. Wu G.C. Yu J. Ghrelin exhibited antidepressant and anxiolytic effect via the p38-MAPK signaling pathway in hippocampus. Prog. Neuropsychopharmacol. Biol. Psychiatry 2019 93 11 20 10.1016/j.pnpbp.2019.02.013 30853341
    [Google Scholar]
  197. Schellekens H. Finger B.C. Dinan T.G. Cryan J.F. Ghrelin signalling and obesity: At the interface of stress, mood and food reward. Pharmacol. Ther. 2012 135 3 316 326 10.1016/j.pharmthera.2012.06.004 22749794
    [Google Scholar]
  198. Lutter M. Sakata I. Osborne-Lawrence S. Rovinsky S.A. Anderson J.G. Jung S. Birnbaum S. Yanagisawa M. Elmquist J.K. Nestler E.J. Zigman J.M. The orexigenic hormone ghrelin defends against depressive symptoms of chronic stress. Nat. Neurosci. 2008 11 7 752 753 10.1038/nn.2139 18552842
    [Google Scholar]
  199. Huang H.J. Zhu X.C. Han Q.Q. Wang Y.L. Yue N. Wang J. Yu R. Li B. Wu G.C. Liu Q. Yu J. Ghrelin alleviates anxiety- and depression-like behaviors induced by chronic unpredictable mild stress in rodents. Behav. Brain Res. 2017 326 33 43 10.1016/j.bbr.2017.02.040 28245976
    [Google Scholar]
  200. Nakashima K. Akiyoshi J. Hatano K. Hanada H. Tanaka Y. Tsuru J. Matsushita H. Kodama K. Isogawa K. Ghrelin gene polymorphism is associated with depression, but not panic disorder. Psychiatr. Genet. 2008 18 5 257 10.1097/YPG.0b013e328306c979 18797403
    [Google Scholar]
  201. Barkan A.L. Dimaraki E.V. Jessup S.K. Symons K.V. Ermolenko M. Jaffe C.A. Ghrelin secretion in humans is sexually dimorphic, suppressed by somatostatin, and not affected by the ambient growth hormone levels. J. Clin. Endocrinol. Metab. 2003 88 5 2180 2184 10.1210/jc.2002‑021169 12727973
    [Google Scholar]
  202. Johnson M.L. Saffrey M.J. Taylor V.J. Plasma ghrelin concentrations were altered with oestrous cycle stage and increasing age in reproductively competent wistar females. PLoS One 2016 11 11 e0166229 10.1371/journal.pone.0166229 27829021
    [Google Scholar]
  203. Akamizu T. Murayama T. Teramukai S. Miura K. Bando I. Irako T. Iwakura H. Ariyasu H. Hosoda H. Tada H. Matsuyama A. Kojima S. Wada T. Wakatsuki Y. Matsubayashi K. Kawakita T. Shimizu A. Fukushima M. Yokode M. Kangawa K. Plasma ghrelin levels in healthy elderly volunteers: The levels of acylated ghrelin in elderly females correlate positively with serum IGF-I levels and bowel movement frequency and negatively with systolic blood pressure. J. Endocrinol. 2006 188 2 333 344 10.1677/joe.1.06442 16461559
    [Google Scholar]
  204. Kellokoski E. Pöykkö S.M. Karjalainen A.H. Ukkola O. Heikkinen J. Kesäniemi Y.A. Hörkkö S. Estrogen replacement therapy increases plasma ghrelin levels. J. Clin. Endocrinol. Metab. 2005 90 5 2954 2963 10.1210/jc.2004‑2016 15872336
    [Google Scholar]
  205. Fan J. Li B.J. Wang X.F. Zhong L.L. Cui R.J. Ghrelin produces antidepressant-like effect in the estrogen deficient mice. Oncotarget 2017 8 35 58964 58973 10.18632/oncotarget.19768 28938610
    [Google Scholar]
  206. Sakata I. Tanaka T. Yamazaki M. Tanizaki T. Zheng Z. Sakai T. Gastric estrogen directly induces ghrelin expression and production in the rat stomach. J. Endocrinol. 2006 190 3 749 757 10.1677/joe.1.06808 17003276
    [Google Scholar]
  207. Matsubara M. Sakata I. Wada R. Yamazaki M. Inoue K. Sakai T. Estrogen modulates ghrelin expression in the female rat stomach. Peptides 2004 25 2 289 297 10.1016/j.peptides.2003.12.020 15063011
    [Google Scholar]
  208. Redrobe J.P. Dumont Y. Quirion R. Neuropeptide Y. Neuropeptide Y. NPY) and depression: From animal studies to the human condition. Life Sci. 2002 71 25 2921 2937 10.1016/S0024‑3205(02)02159‑8 12384178
    [Google Scholar]
  209. Alldredge B. Pathogenic involvement of neuropeptides in anxiety and depression. Neuropeptides 2010 44 3 215 224 10.1016/j.npep.2009.12.014 20096456
    [Google Scholar]
  210. Paschos K.A. Veletza S. Chatzaki E. Neuropeptide and sigma receptors as novel therapeutic targets for the pharmacotherapy of depression. CNS Drugs 2009 23 9 755 772 10.2165/11310830‑000000000‑00000 19689166
    [Google Scholar]
  211. Caberlotto L. Jimenez P. Overstreet D.H. Hurd Y.L. Mathé A.A. Fuxe K. Alterations in neuropeptide Y levels and Y1 binding sites in the Flinders Sensitive Line rats, a genetic animal model of depression. Neurosci. Lett. 1999 265 3 191 194 10.1016/S0304‑3940(99)00234‑7 10327163
    [Google Scholar]
  212. Sergeyev V. Fetissov S. Mathé A.A. Jimenez P.A. Bartfai T. Mortas P. Gaudet L. Moreau J.L. Hökfelt T. Neuropeptide expression in rats exposed to chronic mild stresses. Psychopharmacology (Berl.) 2005 178 2-3 115 124 10.1007/s00213‑004‑2015‑3 15719227
    [Google Scholar]
  213. Widdowson P.S. Ordway G.A. Halaris A.E. Reduced neuropeptide Y concentrations in suicide brain. J. Neurochem. 1992 59 1 73 80 10.1111/j.1471‑4159.1992.tb08877.x 1613514
    [Google Scholar]
  214. Heilig M. Koob G.F. Ekman R. Britton K.T. Corticotropin-releasing factor and neuropeptide y: Role in emotional integration. Trends Neurosci. 1994 17 2 80 85 10.1016/0166‑2236(94)90079‑5 7512773
    [Google Scholar]
  215. Rugarn O. Hammar M. Theodorsson A. Theodorsson E. Stenfors C. Sex differences in neuropeptide distribution in the rat brain. Peptides 1999 20 1 81 86 10.1016/S0196‑9781(98)00139‑9 10098627
    [Google Scholar]
  216. Nahvi R.J. Sabban E.L. Sex differences in the neuropeptide Y system and implications for stress related disorders. Biomolecules 2020 10 9 1248 10.3390/biom10091248 32867327
    [Google Scholar]
  217. Hilke S. Holm L. Åman K. Hökfelt T. Theodorsson E. Rapid change of neuropeptide Y levels and gene-expression in the brain of ovariectomized mice after administration of 17β-estradiol. Neuropeptides 2009 43 4 327 332 10.1016/j.npep.2009.04.005 19481799
    [Google Scholar]
  218. Velíšková J. Iacobas D. Iacobas S. Sidyelyeva G. Chachua T. Velíšek L. Oestradiol regulates neuropeptide Y release and gene coupling with the gabaergic and glutamatergic synapses in the adult female rat dentate gyrus. J. Neuroendocrinol. 2015 27 12 911 920 10.1111/jne.12332 26541912
    [Google Scholar]
  219. Bauer-Dantoin A.C. Urban J.H. Levine J.E. Neuropeptide Y gene expression in the arcuate nucleus is increased during preovulatory luteinizing hormone surges. Endocrinology 1992 131 6 2953 2958 10.1210/endo.131.6.1446633 1446633
    [Google Scholar]
  220. Urban J.H. Bauer-Dantoin A.C. Levine J.E. Neuropeptide Y gene expression in the arcuate nucleus: sexual dimorphism and modulation by testosterone. Endocrinology 1993 132 1 139 145 10.1210/endo.132.1.8419120 8419120
    [Google Scholar]
  221. Martini M. Sica M. Gotti S. Eva C. Panzica G.C. Effects of estrous cycle and sex on the expression of neuropeptide Y Y1 receptor in discrete hypothalamic and limbic nuclei of transgenic mice. Peptides 2011 32 6 1330 1334 10.1016/j.peptides.2011.04.004 21514339
    [Google Scholar]
  222. Eva C. Serra M. Mele P. Panzica G. Oberto A. Physiology and gene regulation of the brain NPY Y1 receptor. Front. Neuroendocrinol. 2006 27 3 308 339 10.1016/j.yfrne.2006.07.002 16989896
    [Google Scholar]
  223. Nakamura N.H. McEwen B.S. Changes in interneuronal phenotypes regulated by estradiol in the adult rat hippocampus: A potential role for neuropeptide Y. Neuroscience 2005 136 1 357 369 10.1016/j.neuroscience.2005.07.056 16198490
    [Google Scholar]
  224. Titolo D. Mayer C.M. Dhillon S.S. Cai F. Belsham D.D. Estrogen facilitates both phosphatidylinositol 3-kinase/Akt and ERK1/2 mitogen-activated protein kinase membrane signaling required for long-term neuropeptide Y transcriptional regulation in clonal, immortalized neurons. J. Neurosci. 2008 28 25 6473 6482 10.1523/JNEUROSCI.0514‑08.2008 18562618
    [Google Scholar]
  225. Birnbaumer M. Vasopressin receptors. Trends Endocrinol. Metab. 2000 11 10 406 410 10.1016/S1043‑2760(00)00304‑0 11091117
    [Google Scholar]
  226. Meynen G. Unmehopa U.A. van Heerikhuize J.J. Hofman M.A. Swaab D.F. Hoogendijk W.J.G. Increased arginine vasopressin mRNA expression in the human hypothalamus in depression: A preliminary report. Biol. Psychiatry 2006 60 8 892 895 10.1016/j.biopsych.2005.12.010 16499879
    [Google Scholar]
  227. Purba J.S. Hoogendijk W.J. Hofman M.A. Swaab D.F. Increased number of vasopressin- and oxytocin-expressing neurons in the paraventricular nucleus of the hypothalamus in depression. Arch. Gen. Psychiatry 1996 53 2 137 143 10.1001/archpsyc.1996.01830020055007 8629889
    [Google Scholar]
  228. Nomura M. McKenna E. Korach K.S. Pfaff D.W. Ogawa S. Estrogen receptor-β regulates transcript levels for oxytocin and arginine vasopressin in the hypothalamic paraventricular nucleus of male mice. Brain Res. Mol. Brain Res. 2002 109 1-2 84 94 10.1016/S0169‑328X(02)00525‑9 12531518
    [Google Scholar]
  229. Lagunas N. Marraudino M. de Amorim M. Pinos H. Collado P. Panzica G. Garcia-Segura L.M. Grassi D. Estrogen receptor beta and G protein-coupled estrogen receptor 1 are involved in the acute estrogenic regulation of arginine-vasopressin immunoreactive levels in the supraoptic and paraventricular hypothalamic nuclei of female rats. Brain Res. 2019 1712 93 100 10.1016/j.brainres.2019.02.002 30731078
    [Google Scholar]
  230. Somponpun S. Sladek C.D. Role of estrogen receptor-beta in regulation of vasopressin and oxytocin release in vitro. Endocrinology 2002 143 8 2899 2904 10.1210/endo.143.8.8946 12130554
    [Google Scholar]
  231. Sladek C.D. Somponpun S.J. Estrogen receptors: Their roles in regulation of vasopressin release for maintenance of fluid and electrolyte homeostasis. Front. Neuroendocrinol. 2008 29 1 114 127 10.1016/j.yfrne.2007.08.005 18022678
    [Google Scholar]
  232. Shapiro R.A. Xu C. Dorsa D.M. Differential transcriptional regulation of rat vasopressin gene expression by estrogen receptor alpha and beta. Endocrinology 2000 141 11 4056 4064 10.1210/endo.141.11.7796 11089536
    [Google Scholar]
  233. Hrabovszky E. Kalló I. Hajszán T. Shughrue P.J. Merchenthaler I. Liposits Z. Expression of estrogen receptor-beta messenger ribonucleic acid in oxytocin and vasopressin neurons of the rat supraoptic and paraventricular nuclei. Endocrinology 1998 139 5 2600 2604 10.1210/endo.139.5.6024 9564876
    [Google Scholar]
  234. Grassi D. Amorim M.A. Garcia-Segura L.M. Panzica G. Estrogen receptor α is involved in the estrogenic regulation of arginine vasopressin immunoreactivity in the supraoptic and paraventricular nuclei of ovariectomized rats. Neurosci. Lett. 2010 474 3 135 139 10.1016/j.neulet.2010.03.022 20298751
    [Google Scholar]
  235. Mitra S. Dash R. Sohel M. Chowdhury A. Munni Y.A. Ali M.C. Hannan M.A. Islam M.T. Moon I.S. Targeting estrogen signaling in the radiation-induced neurodegeneration: A possible role of phytoestrogens. Curr. Neuropharmacol. 2023 21 2 353 379 10.2174/1570159X20666220310115004 35272592
    [Google Scholar]
  236. Desmawati D. Sulastri D. Phytoestrogens and their health effect. Open Access Maced. J. Med. Sci. 2019 7 3 495 499 10.3889/oamjms.2019.086 30834024
    [Google Scholar]
  237. Petrine J.C.P. Del Bianco-Borges B. The influence of phytoestrogens on different physiological and pathological processes: An overview. Phytother. Res. 2021 35 1 180 197 10.1002/ptr.6816 32780464
    [Google Scholar]
  238. Chavda V.P. Chaudhari A.Z. Balar P.C. Gholap A. Vora L.K. Phytoestrogens: Chemistry, potential health benefits, and their medicinal importance. Phytother. Res. 2024 38 6 3060 3079 10.1002/ptr.8196 38602108
    [Google Scholar]
  239. Richard A. Rohrmann S. Mohler-Kuo M. Rodgers S. Moffat R. Güth U. Eichholzer M. Urinary phytoestrogens and depression in perimenopausal US women: NHANES 2005–2008. J. Affect. Disord. 2014 156 200 205 10.1016/j.jad.2013.12.029 24434020
    [Google Scholar]
  240. Li J. Li H. Yan P. Guo L. Li J. Han J. Qiu J. Yang K. Efficacy and safety of phytoestrogens in the treatment of perimenopausal and postmenopausal depressive disorders: A systematic review and meta‐analysis. Int. J. Clin. Pract. 2021 75 10 e14360 10.1111/ijcp.14360 33987926
    [Google Scholar]
  241. Chen L.R. Chen K.H. Utilization of isoflavones in soybeans for women with menopausal syndrome: An overview. Int. J. Mol. Sci. 2021 22 6 3212 10.3390/ijms22063212
    [Google Scholar]
  242. de Sousa-Muñoz R.L. Filizola R.G. Efficacy of soy isoflavones for depressive symptoms of the climacteric syndrome. Maturitas 2009 63 1 89 93 10.1016/j.maturitas.2009.02.008 19339127
    [Google Scholar]
  243. Wang Y.F. Xu Z.K. Yang D.H. Yao H.Y. Ku B.S. Ma X.Q. Wang C.Z. Liu S.L. Cai S.Q. The antidepressant effect of secoisolariciresinol, a lignan-type phytoestrogen constituent of flaxseed, on ovariectomized mice. J. Nat. Med. 2013 67 1 222 227 10.1007/s11418‑012‑0655‑x 22476613
    [Google Scholar]
  244. Lu C. Gao R. Zhang Y. Jiang N. Chen Y. Sun J. Wang Q. Fan B. Liu X. Wang F. S-equol, a metabolite of dietary soy isoflavones, alleviates lipopolysaccharide-induced depressive-like behavior in mice by inhibiting neuroinflammation and enhancing synaptic plasticity. Food Funct. 2021 12 13 5770 5778 10.1039/D1FO00547B 34038497
    [Google Scholar]
  245. Hou Y. Qian H. Yao R. Jiang N. Chen Y. Sun J. Wang Q. Fan B. Untargeted metabolomics revealed that quercetin inhibited ferroptosis by improving metabolic disorder in the hippocampus of perimenopausal depression model rats. Mol. Neurobiol. 2024 39179684
    [Google Scholar]
  246. Thangavel P. Puga-Olguín A. Rodríguez-Landa J.F. Zepeda R.C. Genistein as potential therapeutic candidate for menopausal symptoms and other related diseases. Molecules 2019 24 21 3892 10.3390/molecules24213892 31671813
    [Google Scholar]
  247. Mareti E. Abatzi C. Vavilis D. Lambrinoudaki I. Goulis D.G. Effect of oral phytoestrogens on endometrial thickness and breast density of perimenopausal and postmenopausal women: A systematic review and meta-analysis. Maturitas 2019 124 81 88 10.1016/j.maturitas.2019.03.023 31097185
    [Google Scholar]
  248. Rietjens I.M.C.M. Louisse J. Beekmann K. The potential health effects of dietary phytoestrogens. Br. J. Pharmacol. 2017 174 11 1263 1280 10.1111/bph.13622 27723080
    [Google Scholar]
/content/journals/cn/10.2174/011570159X371863250327073835
Loading
/content/journals/cn/10.2174/011570159X371863250327073835
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test