Skip to content
2000
Volume 24, Issue 1
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

Depression is a severe psychiatric disorder characterized by high prevalence rates, elevated suicide risks, and significant relapse rates. Women, particularly during the perimenopausal period, are more vulnerable to developing depression. Fluctuations in estrogen levels during perimenopause can heighten a woman's sensitivity to psychosocial stress. Clinical trials have demonstrated the short-term antidepressant efficacy of estradiol in perimenopausal women. However, the precise mechanisms through which estrogen influences mood disorders during perimenopause remain unclear. This review summarizes the risk factors associated with perimenopausal depression (PMD), examines current research on estrogen therapy, and explores the potential mechanisms and related pathological processes involved in estrogen's role in treating depression. Understanding how estrogen mitigates depressive symptoms in perimenopausal women may help reduce the morbidity and mortality associated with PMD while also alleviating its socioeconomic burden.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X371863250327073835
2025-04-24
2026-02-21
Loading full text...

Full text loading...

References

  1. Depression fact sheet.2017Available from http://www.who.int/mediacentre/factsheets/fs369/en/
  2. SalkR.H. HydeJ.S. AbramsonL.Y. Gender differences in depression in representative national samples: Meta-analyses of diagnoses and symptoms.Psychol. Bull.2017143878382210.1037/bul0000102 28447828
    [Google Scholar]
  3. NobleR.E. Depression in women.Metabolism2005545)(1495210.1016/j.metabol.2005.01.01415877314
    [Google Scholar]
  4. MakiP.M. KornsteinS.G. JoffeH. BrombergerJ.T. FreemanE.W. AthappillyG. BoboW.V. RubinL.H. KolevaH.K. CohenL.S. SoaresC.N. Guidelines for the evaluation and treatment of perimenopausal depression: Summary and recommendations.J. Womens Health (Larchmt.)201928211713410.1089/jwh.2018.27099.mensocrec 30182804
    [Google Scholar]
  5. LuW. GuoW. CuiD. DongK. QiuJ. Effect of sex hormones on brain connectivity related to sexual function in perimenopausal women: A resting-state fMRI functional connectivity study.J. Sex. Med.201916571172010.1016/j.jsxm.2019.03.004 30956108
    [Google Scholar]
  6. TimurS. ŞahinN.H. The prevalence of depression symptoms and influencing factors among perimenopausal and postmenopausal women.Menopause201017354555110.1097/gme.0b013e3181cf8997 20400922
    [Google Scholar]
  7. SchmidtP.J. RubinowD.R. Sex hormones and mood in the perimenopause.Ann. N. Y. Acad. Sci.200911791708510.1111/j.1749‑6632.2009.04982.x 19906233
    [Google Scholar]
  8. AlbertK.M. NewhouseP.A. Estrogen, stress, and depression: Cognitive and biological interactions.Annu. Rev. Clin. Psychol.201915139942310.1146/annurev‑clinpsy‑050718‑095557 30786242
    [Google Scholar]
  9. AlmeidaO.P. LautenschlagerN. VasikaramS. LeedmanP. FlickerL. Association between physiological serum concentration of estrogen and the mental health of community-dwelling postmenopausal women age 70 years and over.Am. J. Geriatr. Psychiatry200513214214910.1097/00019442‑200502000‑00008 15703323
    [Google Scholar]
  10. KissÁ. DelattreA.M. PereiraS.I.R. CarolinoR.G. SzawkaR.E. Anselmo-FranciJ.A. ZanataS.M. FerrazA.C. 17β-Estradiol replacement in young, adult and middle-aged female ovariectomized rats promotes improvement of spatial reference memory and an antidepressant effect and alters monoamines and BDNF levels in memory- and depression-related brain areas.Behav. Brain Res.2012227110010810.1016/j.bbr.2011.10.047 22085882
    [Google Scholar]
  11. XuY. ShengH. TangZ. LuJ. NiX. Inflammation and increased IDO in hippocampus contribute to depression-like behavior induced by estrogen deficiency.Behav. Brain Res.2015288717810.1016/j.bbr.2015.04.017 25907742
    [Google Scholar]
  12. de Novaes SoaresC. AlmeidaO.P. JoffeH. CohenL.S. Efficacy of estradiol for the treatment of depressive disorders in perimenopausal women: a double-blind, randomized, placebo-controlled trial.Arch. Gen. Psychiatry200158652953410.1001/archpsyc.58.6.529 11386980
    [Google Scholar]
  13. GordonJ.L. RubinowD.R. Eisenlohr-MoulT.A. XiaK. SchmidtP.J. GirdlerS.S. Efficacy of transdermal estradiol and micronized progesterone in the prevention of depressive symptoms in the menopause transition.JAMA Psychiatry201875214915710.1001/jamapsychiatry.2017.3998 29322164
    [Google Scholar]
  14. KimH. YooJ. HanK. LeeD.Y. FavaM. MischoulonD. JeonH.J. Hormone therapy and the decreased risk of dementia in women with depression: a population-based cohort study.Alzheimers Res. Ther.20221418310.1186/s13195‑022‑01026‑3 35710453
    [Google Scholar]
  15. HaleG.E. RobertsonD.M. BurgerH.G. The perimenopausal woman: Endocrinology and management.J. Steroid Biochem. Mol. Biol.201414212113110.1016/j.jsbmb.2013.08.015 24134950
    [Google Scholar]
  16. SantoroN. RandolphJ.F.Jr. Reproductive hormones and the menopause transition.Obstet. Gynecol. Clin. North Am.201138345546610.1016/j.ogc.2011.05.004 21961713
    [Google Scholar]
  17. HarlowS.D. GassM. HallJ.E. LoboR. MakiP. RebarR.W. ShermanS. SlussP.M. de VilliersT.J. Executive summary of the Stages of Reproductive Aging Workshop + 10: addressing the unfinished agenda of staging reproductive aging.J. Clin. Endocrinol. Metab.20129741159116810.1210/jc.2011‑3362 22344196
    [Google Scholar]
  18. TepperP.G. RandolphJ.F.Jr McConnellD.S. CrawfordS.L. El KhoudaryS.R. JoffeH. GoldE.B. ZhengH. BrombergerJ.T. Sutton-TyrrellK. Trajectory clustering of estradiol and follicle-stimulating hormone during the menopausal transition among women in the Study of Women’s Health across the Nation (SWAN).J. Clin. Endocrinol. Metab.20129782872288010.1210/jc.2012‑1422 22659249
    [Google Scholar]
  19. RandolphJ.F.Jr ZhengH. SowersM.R. CrandallC. CrawfordS. GoldE.B. VugaM. Change in follicle-stimulating hormone and estradiol across the menopausal transition: effect of age at the final menstrual period.J. Clin. Endocrinol. Metab.201196374675410.1210/jc.2010‑1746 21159842
    [Google Scholar]
  20. McKinlayS.M. BrambillaD.J. PosnerJ.G. The normal menopause transition.Maturitas199214210311510.1016/0378‑5122(92)90003‑M 1565019
    [Google Scholar]
  21. GordonJ.L. GirdlerS.S. Meltzer-BrodyS.E. StikaC.S. ThurstonR.C. ClarkC.T. PrairieB.A. Moses-KolkoE. JoffeH. WisnerK.L. Ovarian hormone fluctuation, neurosteroids, and HPA axis dysregulation in perimenopausal depression: A novel heuristic model.Am. J. Psychiatry2015172322723610.1176/appi.ajp.2014.14070918 25585035
    [Google Scholar]
  22. BrombergerJ.T. MatthewsK.A. SchottL.L. BrockwellS. AvisN.E. KravitzH.M. Everson-RoseS.A. GoldE.B. SowersM. RandolphJ.F.Jr Depressive symptoms during the menopausal transition: The Study of Women’s Health Across the Nation (SWAN).J. Affect. Disord.20071031-326727210.1016/j.jad.2007.01.034 17331589
    [Google Scholar]
  23. FreemanE.W. SammelM.D. LiuL. GraciaC.R. NelsonD.B. HollanderL. Hormones and menopausal status as predictors of depression in women in transition to menopause.Arch. Gen. Psychiatry2004611627010.1001/archpsyc.61.1.62 14706945
    [Google Scholar]
  24. BrombergerJ.T. KravitzH.M. ChangY.F. CyranowskiJ.M. BrownC. MatthewsK.A. Major depression during and after the menopausal transition: Study of Women’s Health Across the Nation (SWAN).Psychol. Med.20114191879188810.1017/S003329171100016X 21306662
    [Google Scholar]
  25. KuehnerC. Why is depression more common among women than among men?Lancet Psychiatry20174214615810.1016/S2215‑0366(16)30263‑2 27856392
    [Google Scholar]
  26. CohenL.S. SoaresC.N. VitonisA.F. OttoM.W. HarlowB.L. Risk for new onset of depression during the menopausal transition: the Harvard study of moods and cycles.Arch. Gen. Psychiatry200663438539010.1001/archpsyc.63.4.385 16585467
    [Google Scholar]
  27. PayneJ.L. PalmerJ.T. JoffeH. A reproductive subtype of depression: Conceptualizing models and moving toward etiology.Harv. Rev. Psychiatry2009172728610.1080/10673220902899706 19373617
    [Google Scholar]
  28. AvisN.E. BrambillaD. McKinlayS.M. VassK. A longitudinal analysis of the association between menopause and depression results from the Massachusetts women’s health study.Ann. Epidemiol.19944321422010.1016/1047‑2797(94)90099‑X 8055122
    [Google Scholar]
  29. RussellJ.K. JonesC.K. NewhouseP.A. The role of estrogen in brain and cognitive aging.Neurotherapeutics201916364966510.1007/s13311‑019‑00766‑9 31364065
    [Google Scholar]
  30. CavusI. DumanR.S. Influence of estradiol, stress, and 5-HT2A agonist treatment on brain-derived neurotrophic factor expression in female rats.Biol. Psychiatry2003541596910.1016/S0006‑3223(03)00236‑1 12842309
    [Google Scholar]
  31. BehlC. Oestrogen as a neuroprotective hormone.Nat. Rev. Neurosci.20023643344210.1038/nrn846 12042878
    [Google Scholar]
  32. CizzaG. GoldP.W. ChrousosG.P. High-dose transdermal estrogen, corticotropin-releasing hormone, and postnatal depression.J. Clin. Endocrinol. Metab.199782270370410.1210/jc.82.2.703 9024283
    [Google Scholar]
  33. CohenL.S. SoaresC.N. PoitrasJ.R. ProutyJ. AlexanderA.B. ShifrenJ.L. Short-term use of estradiol for depression in perimenopausal and postmenopausal women: A preliminary report.Am. J. Psychiatry200316081519152210.1176/appi.ajp.160.8.1519 12900318
    [Google Scholar]
  34. SchmidtP.J. NiemanL. DanaceauM.A. TobinM.B. RocaC.A. MurphyJ.H. RubinowD.R. Estrogen replacement in perimenopause-related depression: A preliminary report.Am. J. Obstet. Gynecol.2000183241442010.1067/mob.2000.106004 10942479
    [Google Scholar]
  35. RubinowD.R. JohnsonS.L. SchmidtP.J. GirdlerS. GaynesB. Efficacy of estradiol in perimenopausal depression: So much promise and so few answers.Depress. Anxiety201532853954910.1002/da.22391 26130315
    [Google Scholar]
  36. JoffeH. PetrilloL.F. KoukopoulosA. VigueraA.C. HirschbergA. NonacsR. SomleyB. PasciulloE. WhiteD.P. HallJ.E. CohenL.S. Increased estradiol and improved sleep, but not hot flashes, predict enhanced mood during the menopausal transition.J. Clin. Endocrinol. Metab.2011967E1044E105410.1210/jc.2010‑2503 21525161
    [Google Scholar]
  37. NagataH. NozakiM. NakanoH. Short-term combinational therapy for oophorectomized women with hot flashes and depressive tendencies.J. Obstet. Gynaecol. Res.200531210711410.1111/j.1447‑0756.2005.00254.x 15771635
    [Google Scholar]
  38. SchneiderL.S. SmallG.W. HamiltonS.H. BystritskyA. NemeroffC.B. MeyersB.S. Estrogen replacement and response to fluoxetine in a multicenter geriatric depression trial.Am. J. Geriatr. Psychiatry1997529710610.1097/00019442‑199721520‑00002 9106373
    [Google Scholar]
  39. BaikS.H. BayeF. McDonaldC.J. Use of menopausal hormone therapy beyond age 65 years and its effects on women’s health outcomes by types, routes, and doses.Menopause202431536337110.1097/GME.0000000000002335 38595196
    [Google Scholar]
  40. ShughrueP.J. LaneM.V. MerchenthalerI. Comparative distribution of estrogen receptor-α and-β mRNA in the rat central nervous system.J. Comp. Neurol.1997388450752510.1002/(SICI)1096‑9861(19971201)388:4<507:AID‑CNE1>3.0.CO;2‑6 9388012
    [Google Scholar]
  41. SaitoK. CuiH. Emerging roles of estrogen-related receptors in the brain: Potential interactions with estrogen signaling.Int. J. Mol. Sci.2018194109110.3390/ijms19041091 29621182
    [Google Scholar]
  42. LorschZ.S. LohY.H.E. PurushothamanI. WalkerD.M. PariseE.M. SaleryM. CahillM.E. HodesG.E. PfauM.L. KronmanH. HamiltonP.J. IsslerO. LabontéB. SymondsA.E. ZuckerM. ZhangT.Y. MeaneyM.J. RussoS.J. ShenL. BagotR.C. NestlerE.J. Estrogen receptor α drives pro-resilient transcription in mouse models of depression.Nat. Commun.201891111610.1038/s41467‑018‑03567‑4 29549264
    [Google Scholar]
  43. WalfA.A. FryeC.A. A review and update of mechanisms of estrogen in the hippocampus and amygdala for anxiety and depression behavior.Neuropsychopharmacology20063161097111110.1038/sj.npp.1301067 16554740
    [Google Scholar]
  44. GressierF. VerstuyftC. HardyP. BecquemontL. CorrubleE. Menopausal status could modulate the association between 5-HTTLPR and antidepressant efficacy in depressed women: A pilot study.Arch. Women Ment. Health201417656957310.1007/s00737‑014‑0464‑1 25257397
    [Google Scholar]
  45. GrochansE. GrzywaczA. JurczakA. SamochowiecA. KarakiewiczB. BrodowskaA. StarczewskiA. SamochowiecJ. The 5HTT and MAO-A polymorphisms associate with depressive mood and climacteric symptoms in postmenopausal women.Prog. Neuropsychopharmacol. Biol. Psychiatry20134512513010.1016/j.pnpbp.2013.05.007 23707423
    [Google Scholar]
  46. Pestana-OliveiraN. KalilB. LeiteC.M. CarolinoR.O.G. DebarbaL.K. EliasL.L.K. Antunes-RodriguesJ. Anselmo-FranciJ.A. Effects of estrogen therapy on the serotonergic system in an animal model of perimenopause induced by 4- Vinylcyclohexen Diepoxide (VCD).eNeuro201851ENEURO.0247-17.2017.10.1523/ENEURO.0247‑17.201729362726
    [Google Scholar]
  47. Estrada-CamarenaE. Fernández-GuastiA. López-RubalcavaC. Participation of the 5-HT1A receptor in the antidepressant-like effect of estrogens in the forced swimming test.Neuropsychopharmacology200631224725510.1038/sj.npp.1300821 16012533
    [Google Scholar]
  48. SuzukiH. BarrosR.P.A. SugiyamaN. KrishnanV. YadenB.C. KimH-J. WarnerM. GustafssonJ-Å. Involvement of estrogen receptor β in maintenance of serotonergic neurons of the dorsal raphe.Mol. Psychiatry201318667468010.1038/mp.2012.62 22665260
    [Google Scholar]
  49. ClarkJ.A. AlvesS. GundlahC. RochaB. BirzinE.T. CaiS.J. FlickR. HayesE. HoK. WarrierS. PaiL. YudkovitzJ. FleischerR. ColwellL. LiS. WilkinsonH. SchaefferJ. WilkeningR. MattinglyE. HammondM. RohrerS.P. Selective estrogen receptor-beta (SERM-beta) compounds modulate raphe nuclei tryptophan hydroxylase-1 (TPH-1) mRNA expression and cause antidepressant-like effects in the forced swim test.Neuropharmacology20126361051106310.1016/j.neuropharm.2012.07.004 22796107
    [Google Scholar]
  50. NomuraM. AkamaK.T. AlvesS.E. KorachK.S. GustafssonJ.Å. PfaffD.W. OgawaS. Differential distribution of estrogen receptor (ER)-α and ER-β in the midbrain raphe nuclei and periaqueductal gray in male mouse: Predominant role of ER-β in midbrain serotonergic systems.Neuroscience2005130244545610.1016/j.neuroscience.2004.09.028 15664701
    [Google Scholar]
  51. YangF. TaoJ. XuL. ZhaoN. ChenJ. ChenW. ZhuY. QiuJ. Estradiol decreases rat depressive behavior by estrogen receptor beta but not alpha.Neuroreport201425210010410.1097/WNR.0000000000000052 24128867
    [Google Scholar]
  52. WalfA.A. RhodesM.E. FryeC.A. Antidepressant effects of ERβ-selective estrogen receptor modulators in the forced swim test.Pharmacol. Biochem. Behav.200478352352910.1016/j.pbb.2004.03.023 15251261
    [Google Scholar]
  53. KrȩżelW. DupontS. KrustA. ChambonP. ChapmanP.F. Increased anxiety and synaptic plasticity in estrogen receptor β-deficient mice.Proc. Natl. Acad. Sci. USA20019821122781228210.1073/pnas.221451898 11593044
    [Google Scholar]
  54. SohrabjiF. MirandaR.C. Toran-AllerandC.D. Identification of a putative estrogen response nlm in the gene encoding brain-derived neurotrophic factor.Proc. Natl. Acad. Sci. USA19959224111101111410.1073/pnas.92.24.11110 7479947
    [Google Scholar]
  55. FurutaM. NumakawaT. ChibaS. NinomiyaM. KajiyamaY. AdachiN. AkemaT. KunugiH. Estrogen, predominantly via estrogen receptor α, attenuates postpartum-induced anxiety- and depression-like behaviors in female rats.Endocrinology2013154103807381610.1210/en.2012‑2136 23913447
    [Google Scholar]
  56. QuN. WangX.M. ZhangT. ZhangS.F. LiY. CaoF.Y. WangQ. NingL.N. TianQ. Estrogen receptor α agonist is beneficial for young female rats against chronic unpredicted mild stress-induced depressive behavior and cognitive deficits.J. Alzheimers Dis.20207731077109310.3233/JAD‑200486 32804146
    [Google Scholar]
  57. SchillerC.E. JohnsonS.L. AbateA.C. SchmidtP.J. RubinowD.R. Reproductive steroid regulation of mood and behavior.Compr. Physiol.20166311351160 27347888
    [Google Scholar]
  58. KimJ.J. PaeC.U. KimM.R. MinJ.A. KimK.H. LeeC.U. LeeC. PaikI.H. Association between estrogen receptor gene polymorphisms and depression in post-menopausal women: A preliminary study.Psychiatry Investig.20107322422710.4306/pi.2010.7.3.224 20927313
    [Google Scholar]
  59. McEwenB.S. AlvesS.E. Estrogen actions in the central nervous system.Endocr. Rev.199920327930710.1210/er.20.3.279 10368772
    [Google Scholar]
  60. BorrowA.P. CameronN.M. Estrogenic mediation of serotonergic and neurotrophic systems: Implications for female mood disorders.Prog. Neuropsychopharmacol. Biol. Psychiatry201454132510.1016/j.pnpbp.2014.05.009 24865152
    [Google Scholar]
  61. HalbreichU. RojanskyN. PalterS. TworekH. HissinP. WangK. Estrogen augments serotonergic activity in postmenopausal women.Biol. Psychiatry199537743444110.1016/0006‑3223(94)00181‑2 7786956
    [Google Scholar]
  62. ZhangX. GainetdinovR.R. BeaulieuJ.M. SotnikovaT.D. BurchL.H. WilliamsR.B. SchwartzD.A. KrishnanK.R.R. CaronM.G. Loss-of-function mutation in tryptophan hydroxylase-2 identified in unipolar major depression.Neuron2005451111610.1016/j.neuron.2004.12.014 15629698
    [Google Scholar]
  63. HouX. AdeosunS.O. ZhaoX. HillR. ZhengB. ReddyR. SuX. MeyerJ. MosleyT. WangJ.M. ERβ agonist alters RNA splicing factor expression and has a longer window of antidepressant effectiveness than estradiol after long-term ovariectomy.J. Psychiatry Neurosci.2019441193110.1503/jpn.170199 30565903
    [Google Scholar]
  64. RekkasP.V. WilsonA.A. LeeV.W.H. YogalingamP. SacherJ. RusjanP. HouleS. StewartD.E. KollaN.J. KishS. ChiuccarielloL. MeyerJ.H. Greater monoamine oxidase a binding in perimenopausal age as measured with carbon 11-labeled harmine positron emission tomography.JAMA Psychiatry201471887387910.1001/jamapsychiatry.2014.250 24898155
    [Google Scholar]
  65. HiroiR. McDevittR.A. NeumaierJ.F. Estrogen selectively increases tryptophan hydroxylase-2 mRNA expression in distinct subregions of rat midbrain raphe nucleus: Association between gene expression and anxiety behavior in the open field.Biol. Psychiatry200660328829510.1016/j.biopsych.2005.10.019 16458260
    [Google Scholar]
  66. SmithL.J. HendersonJ.A. AbellC.W. BetheaC.L. Effects of ovarian steroids and raloxifene on proteins that synthesize, transport, and degrade serotonin in the raphe region of macaques.Neuropsychopharmacology200429112035204510.1038/sj.npp.1300510 15199371
    [Google Scholar]
  67. Curran-RauhutM.A. PetersenS.L. Oestradiol-dependent and -independent modulation of tyrosine hydroxylase mRNA levels in subpopulations of A1 and A2 neurones with oestrogen receptor (ER)alpha and ER beta gene expression.J. Neuroendocrinol.200315329630310.1046/j.1365‑2826.2003.01011.x 12588519
    [Google Scholar]
  68. ThompsonT.L. MossR.L. Estrogen regulation of dopamine release in the nucleus accumbens: Genomic- and nongenomic-mediated effects.J. Neurochem.19946251750175610.1046/j.1471‑4159.1994.62051750.x 8158125
    [Google Scholar]
  69. LandryM. LévesqueD. Di PaoloT. Estrogenic properties of raloxifene, but not tamoxifen, on D2 and D3 dopamine receptors in the rat forebrain.Neuroendocrinology200276421422210.1159/000065951 12411738
    [Google Scholar]
  70. BeckerJ.B. Direct effect of 17β‐estradiol on striatum: Sex differences in dopamine release.Synapse19905215716410.1002/syn.890050211 2309159
    [Google Scholar]
  71. EtgenA.M. KarkaniasG.B. Estrogen regulation of noradrenergic signaling in the hypothalamus.Psychoneuroendocrinology1994195-760361010.1016/0306‑4530(94)90044‑2 7938358
    [Google Scholar]
  72. SerovaL. RivkinM. NakashimaA. SabbanE.L. Estradiol stimulates gene expression of norepinephrine biosynthetic enzymes in rat locus coeruleus.Neuroendocrinology200275319320010.1159/000048237 11914591
    [Google Scholar]
  73. DumasJ.A. KutzA.M. NaylorM.R. JohnsonJ.V. NewhouseP.A. Estradiol treatment altered anticholinergic-related brain activation during working memory in postmenopausal women.Neuroimage20126021394140310.1016/j.neuroimage.2012.01.043 22266175
    [Google Scholar]
  74. DumasJ. Hancur-BucciC. NaylorM. SitesC. NewhouseP. Estrogen treatment effects on anticholinergic-induced cognitive dysfunction in normal postmenopausal women.Neuropsychopharmacology20063192065207810.1038/sj.npp.1301042 16482084
    [Google Scholar]
  75. NewhouseP. DumasJ. Estrogen–cholinergic interactions: Implications for cognitive aging.Horm. Behav.20157417318510.1016/j.yhbeh.2015.06.022 26187712
    [Google Scholar]
  76. SiuciakJ.A. LewisD.R. WiegandS.J. LindsayR.M. Antidepressant-like effect of brain-derived neurotrophic factor (BDNF).Pharmacol. Biochem. Behav.199756113113710.1016/S0091‑3057(96)00169‑4 8981620
    [Google Scholar]
  77. ShirayamaY. ChenA.C.H. NakagawaS. RussellD.S. DumanR.S. Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression.J. Neurosci.20022283251326110.1523/JNEUROSCI.22‑08‑03251.2002 11943826
    [Google Scholar]
  78. DumanR. NakagawaS. MalbergJ. Regulation of adult neurogenesis by antidepressant treatment.Neuropsychopharmacology200125683684410.1016/S0893‑133X(01)00358‑X 11750177
    [Google Scholar]
  79. JezierskiM.K. SohrabjiF. Neurotrophin expression in the reproductively senescent forebrain is refractory to estrogen stimulation.Neurobiol. Aging200122231132110.1016/S0197‑4580(00)00230‑X 11182481
    [Google Scholar]
  80. ZhouJ. ZhangH. CohenR.S. PandeyS.C. Effects of estrogen treatment on expression of brain-derived neurotrophic factor and cAMP response nlm-binding protein expression and phosphorylation in rat amygdaloid and hippocampal structures.Neuroendocrinology200581529431010.1159/000088448 16179807
    [Google Scholar]
  81. GibbsR.B. Levels of trkA and BDNF mRNA, but not NGF mRNA, fluctuate across the estrous cycle and increase in response to acute hormone replacement.Brain Res.1998787225926810.1016/S0006‑8993(97)01511‑4 9813376
    [Google Scholar]
  82. AllenA.L. McCarsonK.E. Estrogen increases nociception-evoked brain-derived neurotrophic factor gene expression in the female rat.Neuroendocrinology200581319319910.1159/000087002 16020928
    [Google Scholar]
  83. GibbsR.B. PfaffD.W. Effects of estrogen and fimbria/fornix transection on p75NGFR and ChAT expression in the medial septum and diagonal band of Broca.Exp. Neurol.19921161233910.1016/0014‑4886(92)90173‑N 1313767
    [Google Scholar]
  84. McMillanP.J. SingerC.A. DorsaD.M. The effects of ovariectomy and estrogen replacement on trkA and choline acetyltransferase mRNA expression in the basal forebrain of the adult female Sprague-Dawley rat.J. Neurosci.19961651860186510.1523/JNEUROSCI.16‑05‑01860.1996 8774454
    [Google Scholar]
  85. PatapoutianA. ReichardtL.F. Trk receptors: Mediators of neurotrophin action.Curr. Opin. Neurobiol.200111327228010.1016/S0959‑4388(00)00208‑7 11399424
    [Google Scholar]
  86. FanL. ZhaoZ. OrrP.T. ChambersC.H. LewisM.C. FrickK.M. Estradiol-induced object memory consolidation in middle-aged female mice requires dorsal hippocampal extracellular signal-regulated kinase and phosphatidylinositol 3-kinase activation.J. Neurosci.201030124390440010.1523/JNEUROSCI.4333‑09.2010 20335475
    [Google Scholar]
  87. GrossK.S. AlfR.L. PolzinT.R. FrickK.M. 17β-estradiol activation of dorsal hippocampal TrkB is independent of increased mature BDNF expression and is required for enhanced memory consolidation in female mice.Psychoneuroendocrinology202112510511010.1016/j.psyneuen.2020.105110 33352471
    [Google Scholar]
  88. WangW. KantorovichS. BabayanA.H. HouB. GallC.M. LynchG. Estrogen’s effects on excitatory synaptic transmission entail integrin and trkb transactivation and depend upon β1-integrin function.Neuropsychopharmacology201641112723273210.1038/npp.2016.83 27272766
    [Google Scholar]
  89. Toran-AllerandC.D. MirandaR.C. BenthamW.D. SohrabjiF. BrownT.J. HochbergR.B. MacLuskyN.J. Estrogen receptors colocalize with low-affinity nerve growth factor receptors in cholinergic neurons of the basal forebrain.Proc. Natl. Acad. Sci. USA199289104668467210.1073/pnas.89.10.4668 1316615
    [Google Scholar]
  90. SinghM. MeyerE.M. SimpkinsJ.W. The effect of ovariectomy and estradiol replacement on brain-derived neurotrophic factor messenger ribonucleic acid expression in cortical and hippocampal brain regions of female Sprague-Dawley rats.Endocrinology199513652320232410.1210/endo.136.5.7720680 7720680
    [Google Scholar]
  91. BoraS.H. LiuZ. KecojevicA. MerchenthalerI. KoliatsosV.E. Direct, complex effects of estrogens on basal forebrain cholinergic neurons.Exp. Neurol.2005194250652210.1016/j.expneurol.2005.03.015 15893308
    [Google Scholar]
  92. EsvaldE.E. TuvikeneJ. SirpA. PatilS. BramhamC.R. TimmuskT. CREB family transcription factors are major mediators of BDNF transcriptional autoregulation in cortical neurons.J. Neurosci.20204071405142610.1523/JNEUROSCI.0367‑19.2019 31915257
    [Google Scholar]
  93. BlendyJ.A. The role of CREB in depression and antidepressant treatment.Biol. Psychiatry200659121144115010.1016/j.biopsych.2005.11.003 16457782
    [Google Scholar]
  94. ZhouJ. CohenR.S. PandeyS.C. Estrogen affects the expression of Ca2+/calmodulin-dependent protein kinase IV in amygdala.Neuroreport200112132987299010.1097/00001756‑200109170‑00046 11588616
    [Google Scholar]
  95. NestlerE.J. BarrotM. DiLeoneR.J. EischA.J. GoldS.J. MonteggiaL.M. Neurobiology of depression.Neuron2002341132510.1016/S0896‑6273(02)00653‑0 11931738
    [Google Scholar]
  96. VisentinA.P.V. ColomboR. ScottonE. FracassoD.S. da RosaA.R. BrancoC.S. SalvadorM. Targeting inflammatory-mitochondrial response in major depression: Current evidence and further challenges.Oxid. Med. Cell. Longev.2020202012010.1155/2020/2972968 32351669
    [Google Scholar]
  97. MalviyaS.A. KellyS.D. GreenleeM.M. EatonD.C. DukeB.J. BourkeC.H. NeighG.N. Estradiol stimulates an anti-translocation expression pattern of glucocorticoid co-regulators in a hippocampal cell model.Physiol. Behav.201312218719210.1016/j.physbeh.2013.03.018 23541378
    [Google Scholar]
  98. GoelN. WorkmanJ.L. LeeT.T. InnalaL. ViauV. Sex differences in the HPA axis.Compr. Physiol.20144311211155 24944032
    [Google Scholar]
  99. McEwenB.S. NascaC. GrayJ.D. Stress effects on neuronal structure: Hippocampus, amygdala, and prefrontal cortex.Neuropsychopharmacology201641132310.1038/npp.2015.171 26076834
    [Google Scholar]
  100. LindheimS.R. LegroR.S. BernsteinL. StanczykF.Z. VijodM.A. PresserS.C. LoboR.A. Behavioral stress responses in premenopausal and postmenopausal women and the effects of estrogen.Am. J. Obstet. Gynecol.199216761831183610.1016/0002‑9378(92)91783‑7 1471706
    [Google Scholar]
  101. BetheaC.L. CentenoM.L. Ovarian steroid treatment decreases corticotropin-releasing hormone (CRH) mRNA and protein in the hypothalamic paraventricular nucleus of ovariectomized monkeys.Neuropsychopharmacology200833354655610.1038/sj.npp.1301442 17507918
    [Google Scholar]
  102. SatoK. AkaishiT. MatsukiN. OhnoY. NakazawaK. β-Estradiol induces synaptogenesis in the hippocampus by enhancing brain-derived neurotrophic factor release from dentate gyrus granule cells.Brain Res.2007115010812010.1016/j.brainres.2007.02.093 17433270
    [Google Scholar]
  103. LundT.D. RovisT. ChungW.C.J. HandaR.J. Novel actions of estrogen receptor-beta on anxiety-related behaviors.Endocrinology2005146279780710.1210/en.2004‑1158 15514081
    [Google Scholar]
  104. HandaR.J. WeiserM.J. ZuloagaD.G. A role for the androgen metabolite, 5alpha-androstane-3beta,17beta-diol, in modulating oestrogen receptor beta-mediated regulation of hormonal stress reactivity.J. Neuroendocrinol.200921435135810.1111/j.1365‑2826.2009.01840.x 19207807
    [Google Scholar]
  105. GavinK.M.G.E. StavrosA. NakamuraT. VillalonK.L. KohrtW.M. Ovarian hormone suppression with estradiol add-back therapy in premenopausal women reduces dynamic HPA axis activity.Endocr. Rev.201334SSUN-55
    [Google Scholar]
  106. Kiecolt-GlaserJ.K. DerryH.M. FagundesC.P. Inflammation: Depression fans the flames and feasts on the heat.Am. J. Psychiatry2015172111075109110.1176/appi.ajp.2015.15020152 26357876
    [Google Scholar]
  107. WohlebE.S. FranklinT. IwataM. DumanR.S. Integrating neuroimmune systems in the neurobiology of depression.Nat. Rev. Neurosci.201617849751110.1038/nrn.2016.69 27277867
    [Google Scholar]
  108. YoungJ.J. BrunoD. PomaraN. A review of the relationship between proinflammatory cytokines and major depressive disorder.J. Affect. Disord.2014169152010.1016/j.jad.2014.07.032 25128861
    [Google Scholar]
  109. StraubR.H. The complex role of estrogens in inflammation.Endocr. Rev.200728552157410.1210/er.2007‑0001 17640948
    [Google Scholar]
  110. ZannasA.S. GordonJ.L. HinderliterA.L. GirdlerS.S. RubinowD.R. IL-6 response to psychosocial stress predicts 12-month changes in cardiometabolic biomarkers in perimenopausal women.J. Clin. Endocrinol. Metab.202010510e3757e376510.1210/clinem/dgaa476 32706883
    [Google Scholar]
  111. StraubR.H. HenseH.W. AndusT. SchölmerichJ. RieggerG.A.J. SchunkertH. Hormone replacement therapy and interrelation between serum interleukin-6 and body mass index in postmenopausal women: A population-based study.J. Clin. Endocrinol. Metab.20008531340134410.1210/jcem.85.3.6355 10720088
    [Google Scholar]
  112. RachońD. MyśliwskaJ. Suchecka-RachońK. WieckiewiczJ. MyśliwskiA. Effects of oestrogen deprivation on interleukin-6 production by peripheral blood mononuclear cells of postmenopausal women.J. Endocrinol.2002172238739510.1677/joe.0.1720387 11834456
    [Google Scholar]
  113. KimO.Y. ChaeJ.S. PaikJ.K. SeoH.S. JangY. CavaillonJ.M. LeeJ.H. Effects of aging and menopause on serum interleukin-6 levels and peripheral blood mononuclear cell cytokine production in healthy nonobese women.Age (Omaha)201234241542510.1007/s11357‑011‑9244‑2 21487705
    [Google Scholar]
  114. WangJ. HouY. ZhangL. LiuM. ZhaoJ. ZhangZ. MaY. HouW. Estrogen attenuates traumatic brain injury by inhibiting the activation of microglia and astrocyte-mediated neuroinflammatory responses.Mol. Neurobiol.20215831052106110.1007/s12035‑020‑02171‑2 33085047
    [Google Scholar]
  115. DengY. MaY. ZhangZ. ZhangL. GuoH. QinP. HouY. GaoZ. HouW. Astrocytic N-Myc downstream-regulated gene–2 is involved in nuclear transcription factor κB–mediated inflammation induced by global cerebral ischemia.Anesthesiology2018128357458610.1097/ALN.0000000000002044 29252510
    [Google Scholar]
  116. GorinaR. Font-NievesM. Márquez-KisinouskyL. SantaluciaT. PlanasA.M. Astrocyte TLR4 activation induces a proinflammatory environment through the interplay between MyD88‐dependent NFκB signaling, MAPK, and Jak1/Stat1 pathways.Glia201159224225510.1002/glia.21094 21125645
    [Google Scholar]
  117. GhislettiS. MedaC. MaggiA. VegetoE. 17beta-estradiol inhibits inflammatory gene expression by controlling NF-kappaB intracellular localization.Mol. Cell. Biol.20052582957296810.1128/MCB.25.8.2957‑2968.2005 15798185
    [Google Scholar]
  118. DodelR. DuY. BalesK.R. GaoF. PaulS. Sodium salicylate and 17beta-estradiol attenuate nuclear transcription factor NF-kappaB translocation in cultured rat astroglial cultures following exposure to amyloid A beta(1-40) and lipopolysaccharides.J. Neurochem.19997341453146010.1046/j.1471‑4159.1999.0731453.x 10501189
    [Google Scholar]
  119. SunW.H. KellerE.T. SteblerB.S. ErshlerW.B. Estrogen inhibits phorbol ester-induced I kappa B alpha transcription and protein degradation.Biochem. Biophys. Res. Commun.1998244369169510.1006/bbrc.1998.8324 9535726
    [Google Scholar]
  120. SharmaRV GurjarMV BhallaRC Selected contribution: estrogen receptor-alpha gene transfer inhibits proliferation and NF-kappaB activation in VSM cells from female rats.J. Appl Physiol19859152400240610.1152/jappl.2001.91.5.2400
    [Google Scholar]
  121. IwataM. OtaK.T. DumanR.S. The inflammasome: Pathways linking psychological stress, depression, and systemic illnesses.Brain Behav. Immun.20133110511410.1016/j.bbi.2012.12.008 23261775
    [Google Scholar]
  122. KaufmannF.N. CostaA.P. GhisleniG. DiazA.P. RodriguesA.L.S. PeluffoH. KasterM.P. NLRP3 inflammasome-driven pathways in depression: Clinical and preclinical findings.Brain Behav. Immun.20176436738310.1016/j.bbi.2017.03.002 28263786
    [Google Scholar]
  123. XuY. ShengH. BaoQ. WangY. LuJ. NiX. NLRP3 inflammasome activation mediates estrogen deficiency-induced depression- and anxiety-like behavior and hippocampal inflammation in mice.Brain Behav. Immun.20165617518610.1016/j.bbi.2016.02.022 26928197
    [Google Scholar]
  124. LuY. SareddyG.R. WangJ. WangR. LiY. DongY. ZhangQ. LiuJ. O’ConnorJ.C. XuJ. VadlamudiR.K. BrannD.W. Neuron-derived estrogen regulates synaptic plasticity and memory.J. Neurosci.201939152792280910.1523/JNEUROSCI.1970‑18.2019 30728170
    [Google Scholar]
  125. BrandtN. VierkR. RuneG.M. Sexual dimorphism in estrogen-induced synaptogenesis in the adult hippocampus.Int. J. Dev. Biol.201357535135610.1387/ijdb.120217gr 23873366
    [Google Scholar]
  126. QiaoH. LiM.X. XuC. ChenH.B. AnS.C. MaX.M. Dendritic spines in depression: What we learned from animal models.Neural Plast.2016201612610.1155/2016/8056370 26881133
    [Google Scholar]
  127. WoolleyC.S. GouldE. FrankfurtM. McEwenB.S. Naturally occurring fluctuation in dendritic spine density on adult hippocampal pyramidal neurons.J. Neurosci.199010124035403910.1523/JNEUROSCI.10‑12‑04035.1990 2269895
    [Google Scholar]
  128. WoolleyC.S. McEwenB.S. Estradiol mediates fluctuation in hippocampal synapse density during the estrous cycle in the adult rat.J. Neurosci.19921272549255410.1523/JNEUROSCI.12‑07‑02549.1992 1613547
    [Google Scholar]
  129. FesterL. Prange-KielJ. ZhouL. BlittersdorfB. BöhmJ. JarryH. SchumacherM. RuneG.M. Estrogen-regulated synaptogenesis in the hippocampus: Sexual dimorphism in vivo but not in vitro.J. Steroid Biochem. Mol. Biol.20121311-2242910.1016/j.jsbmb.2011.11.010 22138012
    [Google Scholar]
  130. LiuF. DayM. MuñizL.C. BitranD. AriasR. Revilla-SanchezR. GrauerS. ZhangG. KelleyC. PulitoV. SungA. MervisR.F. NavarraR. HirstW.D. ReinhartP.H. MarquisK.L. MossS.J. PangalosM.N. BrandonN.J. Activation of estrogen receptor-β regulates hippocampal synaptic plasticity and improves memory.Nat. Neurosci.200811333434310.1038/nn2057 18297067
    [Google Scholar]
  131. PhanA. LancasterK.E. ArmstrongJ.N. MacLuskyN.J. CholerisE. Rapid effects of estrogen receptor α and β selective agonists on learning and dendritic spines in female mice.Endocrinology201115241492150210.1210/en.2010‑1273 21285321
    [Google Scholar]
  132. RappP.R. MorrisonJ.H. RobertsJ.A. Cyclic estrogen replacement improves cognitive function in aged ovariectomized rhesus monkeys.J. Neurosci.200323135708571410.1523/JNEUROSCI.23‑13‑05708.2003 12843274
    [Google Scholar]
  133. MahmoudR. WainwrightS.R. GaleaL.A.M. Sex hormones and adult hippocampal neurogenesis: Regulation, implications, and potential mechanisms.Front. Neuroendocrinol.20164112915210.1016/j.yfrne.2016.03.002 26988999
    [Google Scholar]
  134. HillererK.M. SlatteryD.A. PletzerB. Neurobiological mechanisms underlying sex-related differences in stress-related disorders: Effects of neuroactive steroids on the hippocampus.Front. Neuroendocrinol.20195510079610.1016/j.yfrne.2019.100796 31580837
    [Google Scholar]
  135. TangC. WangQ. ShenJ. WangC. DingH. WenS. YangF. JiaoR. WuX. LiJ. KongL. Neuron stem cell NLRP6 sustains hippocampal neurogenesis to resist stress-induced depression.Acta Pharm. Sin. B20231352017203810.1016/j.apsb.2023.03.010 37250149
    [Google Scholar]
  136. ChenX.Q. LiC.F. ChenS.J. LiangW.N. WangM. WangS.S. DongS.Q. YiL.T. LiC.D. The antidepressant-like effects of Chaihu Shugan San: Dependent on the hippocampal BDNF-TrkB-ERK/Akt signaling activation in perimenopausal depression-like rats.Biomed. Pharmacother.2018105455210.1016/j.biopha.2018.04.035 29843044
    [Google Scholar]
  137. OkadaM. MakinoA. NakajimaM. OkuyamaS. FurukawaS. FurukawaY. Estrogen stimulates proliferation and differentiation of neural stem/progenitor cells through different signal transduction pathways.Int. J. Mol. Sci.201011104114412310.3390/ijms11104114 21152324
    [Google Scholar]
  138. ZhangZ. HongJ. ZhangS. ZhangT. ShaS. YangR. QianY. ChenL. Postpartum estrogen withdrawal impairs hippocampal neurogenesis and causes depression- and anxiety-like behaviors in mice.Psychoneuroendocrinology20166613814910.1016/j.psyneuen.2016.01.013 26803529
    [Google Scholar]
  139. KimJ. SeolS. KimT.E. LeeJ. KooJ.W. KangH.J. Synaptotagmin-4 induces anhedonic responses to chronic stress via BDNF signaling in the medial prefrontal cortex.Exp. Mol. Med.202456232934310.1038/s12276‑024‑01156‑8 38297157
    [Google Scholar]
  140. BrannD.W. LuY. WangJ. SareddyG.R. PratapU.P. ZhangQ. TekmalR.R. VadlamudiR.K. Neuron-derived estrogen: A key neuromodulator in synaptic function and memory.Int. J. Mol. Sci.202122241324210.3390/ijms222413242 34948039
    [Google Scholar]
  141. SheppardP.A.S. AslingH.A. Walczyk-MooradallyA. ArmstrongS.E. EladV.M. LalondeJ. CholerisE. Protein synthesis and actin polymerization in the rapid effects of 17β-estradiol on short-term social memory and dendritic spine dynamics in female mice.Psychoneuroendocrinology202112810523210.1016/j.psyneuen.2021.105232 33892375
    [Google Scholar]
  142. SheppardP.A.S. CholerisE. GaleaL.A.M. Structural plasticity of the hippocampus in response to estrogens in female rodents.Mol. Brain20191212210.1186/s13041‑019‑0442‑7 30885239
    [Google Scholar]
  143. LaiY.J. YuD. ZhangJ.H. ChenG.J. Cooperation of genomic and rapid nongenomic actions of estrogens in synaptic plasticity.Mol. Neurobiol.20175464113412610.1007/s12035‑016‑9979‑y 27324789
    [Google Scholar]
  144. QuanZ. WangS. XieH. ZhangJ. DuanR. LiM. ZhangJ. ROS regulation in CNS disorder therapy: Unveiling the dual roles of nanomedicine.Small2025215241003110.1002/smll.202410031 39676433
    [Google Scholar]
  145. HuY. ZhaoM. WangH. GuoY. ChengX. ZhaoT. WangH. ZhangY. MaY. TaoW. Exosome-sheathed ROS-responsive nanogel to improve targeted therapy in perimenopausal depression.J. Nanobiotechnology202321126110.1186/s12951‑023‑02005‑y 37553718
    [Google Scholar]
  146. BaltgalvisK.A. GreisingS.M. WarrenG.L. LoweD.A. Estrogen regulates estrogen receptors and antioxidant gene expression in mouse skeletal muscle.PLoS One201054e1016410.1371/journal.pone.0010164 20405008
    [Google Scholar]
  147. BukatoK. KostrzewaT. GammazzaA.M. Gorska-PonikowskaM. SawickiS. Endogenous estrogen metabolites as oxidative stress mediators and endometrial cancer biomarkers.Cell Commun. Signal.202422120510.1186/s12964‑024‑01583‑0 38566107
    [Google Scholar]
  148. YanQ. LvJ. ShenX. Ou-YangX. YangJ. NieR. LuJ. HuangY. WangJ. ShenX. Patchouli alcohol as a selective estrogen receptor β agonist ameliorates AD-like pathology of APP/PS1 model mice.Acta Pharmacol. Sin.20224392226224110.1038/s41401‑021‑00857‑4 35091686
    [Google Scholar]
  149. NilsenJ. Estradiol and neurodegenerative oxidative stress.Front. Neuroendocrinol.200829446347510.1016/j.yfrne.2007.12.005 18275991
    [Google Scholar]
  150. Bustamante-BarrientosF.A. Méndez-RuetteM. OrtloffA. Luz-CrawfordP. RiveraF.J. FigueroaC.D. MolinaL. BátizL.F. The impact of estrogen and estrogen-like molecules in neurogenesis and neurodegeneration: Beneficial or harmful?Front. Cell. Neurosci.20211563617610.3389/fncel.2021.636176 33762910
    [Google Scholar]
  151. WiseP.M. Estrogens and neuroprotection.Trends Endocrinol. Metab.200213622923010.1016/S1043‑2760(02)00611‑2 12128278
    [Google Scholar]
  152. ElliotS.J. CatanutoP. Pereira-SimonS. XiaX. PastarI. ThallerS. HeadC.R. StojadinovicO. Tomic-CanicM. GlassbergM.K. Catalase, a therapeutic target in the reversal of estrogen-mediated aging.Mol. Ther.202230294796210.1016/j.ymthe.2021.06.020 34174444
    [Google Scholar]
  153. ZhangQ.G. RazL. WangR. HanD. De SevillaL. YangF. VadlamudiR.K. BrannD.W. Estrogen attenuates ischemic oxidative damage via an estrogen receptor alpha-mediated inhibition of NADPH oxidase activation.J. Neurosci.20092944138231383610.1523/JNEUROSCI.3574‑09.2009 19889994
    [Google Scholar]
  154. RemiganteA. SpinelliS. GambardellaL. BozzutoG. VonaR. CarusoD. VillariV. CappelloT. MaisanoM. DossenaS. MarinoA. MorabitoR. StrafaceE. Internalization of nano- and micro-plastics in human erythrocytes leads to oxidative stress and estrogen receptor-mediated cellular responses.Free Radic. Biol. Med.202422311710.1016/j.freeradbiomed.2024.07.017 39038767
    [Google Scholar]
  155. KardehS. Ashkani-EsfahaniS. AlizadehA.M. Paradoxical action of reactive oxygen species in creation and therapy of cancer.Eur. J. Pharmacol.201473515016810.1016/j.ejphar.2014.04.023 24780648
    [Google Scholar]
  156. SticeJ.P. KnowltonA.A. Estrogen, NFkappaB, and the heat shock response.Mol. Med.2008147-851752710.2119/2008‑00026.Stice 18431462
    [Google Scholar]
  157. SunQ. LiG. ZhaoF. DongM. XieW. LiuQ. YangW. CuiR. Role of estrogen in treatment of female depression.Aging (Albany NY)20241633021304210.18632/aging.205507 38309292
    [Google Scholar]
  158. LiangG. KowA.S.F. YusofR. ThamC.L. HoY.C. LeeM.T. Menopause-associated depression: Impact of oxidative stress and neuroinflammation on the central nervous system: A review.Biomedicines202412118410.3390/biomedicines12010184 38255289
    [Google Scholar]
  159. LópezM. Tena-SempereM. Estrogens and the control of energy homeostasis: A brain perspective.Trends Endocrinol. Metab.201526841142110.1016/j.tem.2015.06.003 26126705
    [Google Scholar]
  160. KoS.H. JungY. Energy metabolism changes and dysregulated lipid metabolism in postmenopausal women.Nutrients20211312455610.3390/nu13124556 34960109
    [Google Scholar]
  161. GavinK.M. SullivanT.M. KohrtW.M. MajkaS.M. KlemmD.J. Ovarian hormones regulate the production of adipocytes from bone marrow-derived cells.Front. Endocrinol. (Lausanne)2018927610.3389/fendo.2018.00276 29892267
    [Google Scholar]
  162. KangS. ParkY.M. KwonD.J. ChungY.J. NamkungJ. HanK. KoS.H. Reproductive life span and severe hypoglycemia risk in postmenopausal women with Type 2 Diabetes Mellitus.Diabetes Metab. J.202246457859110.4093/dmj.2021.0135 35067011
    [Google Scholar]
  163. PuJ. LiuY. GuiS. TianL. YuY. WangD. ZhongX. ChenW. ChenX. ChenY. ChenX. GongX. LiuL. LiW. WangH. XieP. Effects of pharmacological treatment on metabolomic alterations in animal models of depression.Transl. Psychiatry202212117510.1038/s41398‑022‑01947‑5 35487889
    [Google Scholar]
  164. TorresM.J. KewK.A. RyanT.E. PenningtonE.R. LinC.T. BuddoK.A. FixA.M. SmithC.A. GilliamL.A. KarvinenS. LoweD.A. SpangenburgE.E. ZeczyckiT.N. ShaikhS.R. NeuferP.D. 17β-estradiol directly lowers mitochondrial membrane microviscosity and improves bioenergetic function in skeletal muscle.Cell Metab.2018271167179.e710.1016/j.cmet.2017.10.003 29103922
    [Google Scholar]
  165. KlingeC.M. Estrogenic control of mitochondrial function and biogenesis.J. Cell. Biochem.200810561342135110.1002/jcb.21936 18846505
    [Google Scholar]
  166. KarabatsiakisA. Schönfeldt-LecuonaC. Depression, mitochondrial bioenergetics, and electroconvulsive therapy: A new approach towards personalized medicine in psychiatric treatment: A short review and current perspective.Transl. Psychiatry202010122610.1038/s41398‑020‑00901‑7 32647150
    [Google Scholar]
  167. AllenJ. Romay-TallonR. BrymerK.J. CarunchoH.J. KalynchukL.E. Mitochondria and mood: Mitochondrial dysfunction as a key player in the manifestation of depression.Front. Neurosci.20181238610.3389/fnins.2018.00386 29928190
    [Google Scholar]
  168. DamriO. NatourS. AsslihS. AgamG. Does treatment with autophagy-enhancers and/or ROS-scavengers alleviate behavioral and neurochemical consequences of low-dose rotenone-induced mild mitochondrial dysfunction in mice?Mol. Psychiatry20232841667167810.1038/s41380‑023‑01955‑x 36690794
    [Google Scholar]
  169. Du ToitA. Gut microbiota and depression.Nat. Rev. Microbiol.2022204190 35169287
    [Google Scholar]
  170. TetelM.J. de VriesG.J. MelcangiR.C. PanzicaG. O’MahonyS.M. Steroids, stress and the gut microbiome‐brain axis.J. Neuroendocrinol.2018302e1254810.1111/jne.12548 29024170
    [Google Scholar]
  171. FosterJ.A. McVey NeufeldK.A. Gut–brain axis: How the microbiome influences anxiety and depression.Trends Neurosci.201336530531210.1016/j.tins.2013.01.005 23384445
    [Google Scholar]
  172. O’MahonyS.M. ClarkeG. BorreY.E. DinanT.G. CryanJ.F. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis.Behav. Brain Res.2015277324810.1016/j.bbr.2014.07.027 25078296
    [Google Scholar]
  173. OgbonnayaE.S. ClarkeG. ShanahanF. DinanT.G. CryanJ.F. O’LearyO.F. Adult hippocampal neurogenesis is regulated by the microbiome.Biol. Psychiatry2015784e7e910.1016/j.biopsych.2014.12.023 25700599
    [Google Scholar]
  174. PalepuM.S.K. DandekarM.P. Remodeling of microbiota gut-brain axis using psychobiotics in depression.Eur. J. Pharmacol.202293117517110.1016/j.ejphar.2022.175171 35926568
    [Google Scholar]
  175. KellyJ.R. BorreY. O’ BrienC. PattersonE. El AidyS. DeaneJ. KennedyP.J. BeersS. ScottK. MoloneyG. HobanA.E. ScottL. FitzgeraldP. RossP. StantonC. ClarkeG. CryanJ.F. DinanT.G. Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat.J. Psychiatr. Res.20168210911810.1016/j.jpsychires.2016.07.019 27491067
    [Google Scholar]
  176. TianP. ChenY. ZhuH. WangL. QianX. ZouR. ZhaoJ. ZhangH. QianL. WangQ. WangG. ChenW. Bifidobacterium breve CCFM1025 attenuates major depression disorder via regulating gut microbiome and tryptophan metabolism: A randomized clinical trial.Brain Behav. Immun.202210023324110.1016/j.bbi.2021.11.023 34875345
    [Google Scholar]
  177. SnigdhaS. HaK. TsaiP. DinanT.G. BartosJ.D. ShahidM. Probiotics: Potential novel therapeutics for microbiota-gut-brain axis dysfunction across gender and lifespan.Pharmacol. Ther.202223110797810.1016/j.pharmthera.2021.107978 34492236
    [Google Scholar]
  178. GuF. WuY. LiuY. DouM. JiangY. LiangH. Lactobacillus casei improves depression-like behavior in chronic unpredictable mild stress-induced rats by the BDNF-TrkB signal pathway and the intestinal microbiota.Food Funct.20201176148615710.1039/D0FO00373E 32578646
    [Google Scholar]
  179. MessaoudiM. ViolleN. BissonJ.F. DesorD. JavelotH. RougeotC. Beneficial psychological effects of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in healthy human volunteers.Gut Microbes20112425626110.4161/gmic.2.4.16108 21983070
    [Google Scholar]
  180. FuhrmanB.J. FeigelsonH.S. FloresR. GailM.H. XuX. RavelJ. GoedertJ.J. Associations of the fecal microbiome with urinary estrogens and estrogen metabolites in postmenopausal women.J. Clin. Endocrinol. Metab.201499124632464010.1210/jc.2014‑2222 25211668
    [Google Scholar]
  181. KaliannanK. RobertsonR.C. MurphyK. StantonC. KangC. WangB. HaoL. BhanA.K. KangJ.X. Estrogen-mediated gut microbiome alterations influence sexual dimorphism in metabolic syndrome in mice.Microbiome20186120510.1186/s40168‑018‑0587‑0 30424806
    [Google Scholar]
  182. JavurekA.B. SpollenW.G. JohnsonS.A. BivensN.J. BromertK.H. GivanS.A. RosenfeldC.S. Effects of exposure to bisphenol A and ethinyl estradiol on the gut microbiota of parents and their offspring in a rodent model.Gut Microbes20167647148510.1080/19490976.2016.1234657 27624382
    [Google Scholar]
  183. AcharyaK.D. NohH.L. GrahamM.E. SukS. FriedlineR.H. GomezC.C. ParakoyiA.E.R. ChenJ. KimJ.K. TetelM.J. Distinct changes in gut microbiota are associated with estradiol-mediated protection from diet-induced obesity in female mice.Metabolites202111849910.3390/metabo11080499 34436440
    [Google Scholar]
  184. WangC. SymingtonJ.W. MaE. CaoB. MysorekarI.U. Estrogenic modulation of uropathogenic Escherichia coli infection pathogenesis in a murine menopause model.Infect. Immun.201381373373910.1128/IAI.01234‑12 23264047
    [Google Scholar]
  185. CrossT.W.L. KasaharaK. ReyF.E. Sexual dimorphism of cardiometabolic dysfunction: Gut microbiome in the play?Mol. Metab.201815708110.1016/j.molmet.2018.05.016 29887245
    [Google Scholar]
  186. TranA. ScholtesC. SonganeM. ChampagneC. GalarneauL. LevasseurM.P. FodilN. DufourC.R. GiguèreV. SalehM. Estrogen-related receptor alpha (ERRα) is a key regulator of intestinal homeostasis and protects against colitis.Sci. Rep.20211111507310.1038/s41598‑021‑94499‑5 34302001
    [Google Scholar]
  187. HuangF. LiuX. XuS. HuS. WangS. ShiD. WangK. WangZ. LinQ. LiS. ZhaoS. JinK. WangC. ChenL. WangF. Prevotella histicola mitigated estrogen deficiency-induced depression via gut microbiota-dependent modulation of inflammation in ovariectomized mice.Front. Nutr.2022880546510.3389/fnut.2021.805465 35155523
    [Google Scholar]
  188. FloresR. ShiJ. FuhrmanB. XuX. VeenstraT.D. GailM.H. GajerP. RavelJ. GoedertJ.J. Fecal microbial determinants of fecal and systemic estrogens and estrogen metabolites: A cross-sectional study.J. Transl. Med.201210125310.1186/1479‑5876‑10‑253 23259758
    [Google Scholar]
  189. BakerJ.M. Al-NakkashL. Herbst-KralovetzM.M. Estrogen–gut microbiome axis: Physiological and clinical implications.Maturitas2017103455310.1016/j.maturitas.2017.06.025 28778332
    [Google Scholar]
  190. ErvinS.M. LiH. LimL. RobertsL.R. LiangX. ManiS. RedinboM.R. Gut microbial β-glucuronidases reactivate estrogens as components of the estrobolome that reactivate estrogens.J. Biol. Chem.201929449185861859910.1074/jbc.RA119.010950 31636122
    [Google Scholar]
  191. ParkS. KimD.S. KangE.S. KimD.B. KangS. Low-dose brain estrogen prevents menopausal syndrome while maintaining the diversity of the gut microbiomes in estrogen-deficient rats.Am. J. Physiol. Endocrinol. Metab.20183151E99E10910.1152/ajpendo.00005.2018 29558207
    [Google Scholar]
  192. LachG. SchellekensH. DinanT.G. CryanJ.F. Anxiety, depression, and the microbiome: A role for gut peptides.Neurotherapeutics2018151365910.1007/s13311‑017‑0585‑0 29134359
    [Google Scholar]
  193. Catena-Dell’OssoM. FagioliniA. MarazzitiD. BaroniS. BellantuonoC. Non-monoaminergic targets for the development of antidepressants: Focus on neuropeptides.Mini Rev. Med. Chem.201313121010.2174/138955713804484758 22876945
    [Google Scholar]
  194. KojimaM. HosodaH. DateY. NakazatoM. MatsuoH. KangawaK. Ghrelin is a growth-hormone-releasing acylated peptide from stomach.Nature1999402676265666010.1038/45230 10604470
    [Google Scholar]
  195. SpencerS.J. EmmerzaalT.L. KoziczT. AndrewsZ.B. Ghrelin’s role in the hypothalamic-pituitary-adrenal axis stress response: Implications for mood disorders.Biol. Psychiatry2015781192710.1016/j.biopsych.2014.10.021 25534754
    [Google Scholar]
  196. HanQ.Q. HuangH.J. WangY.L. YangL. PilotA. ZhuX.C. YuR. WangJ. ChenX.R. LiuQ. LiB. WuG.C. YuJ. Ghrelin exhibited antidepressant and anxiolytic effect via the p38-MAPK signaling pathway in hippocampus.Prog. Neuropsychopharmacol. Biol. Psychiatry201993112010.1016/j.pnpbp.2019.02.013 30853341
    [Google Scholar]
  197. SchellekensH. FingerB.C. DinanT.G. CryanJ.F. Ghrelin signalling and obesity: At the interface of stress, mood and food reward.Pharmacol. Ther.2012135331632610.1016/j.pharmthera.2012.06.004 22749794
    [Google Scholar]
  198. LutterM. SakataI. Osborne-LawrenceS. RovinskyS.A. AndersonJ.G. JungS. BirnbaumS. YanagisawaM. ElmquistJ.K. NestlerE.J. ZigmanJ.M. The orexigenic hormone ghrelin defends against depressive symptoms of chronic stress.Nat. Neurosci.200811775275310.1038/nn.2139 18552842
    [Google Scholar]
  199. HuangH.J. ZhuX.C. HanQ.Q. WangY.L. YueN. WangJ. YuR. LiB. WuG.C. LiuQ. YuJ. Ghrelin alleviates anxiety- and depression-like behaviors induced by chronic unpredictable mild stress in rodents.Behav. Brain Res.2017326334310.1016/j.bbr.2017.02.040 28245976
    [Google Scholar]
  200. NakashimaK. AkiyoshiJ. HatanoK. HanadaH. TanakaY. TsuruJ. MatsushitaH. KodamaK. IsogawaK. Ghrelin gene polymorphism is associated with depression, but not panic disorder.Psychiatr. Genet.200818525710.1097/YPG.0b013e328306c979 18797403
    [Google Scholar]
  201. BarkanA.L. DimarakiE.V. JessupS.K. SymonsK.V. ErmolenkoM. JaffeC.A. Ghrelin secretion in humans is sexually dimorphic, suppressed by somatostatin, and not affected by the ambient growth hormone levels.J. Clin. Endocrinol. Metab.20038852180218410.1210/jc.2002‑021169 12727973
    [Google Scholar]
  202. JohnsonM.L. SaffreyM.J. TaylorV.J. Plasma ghrelin concentrations were altered with oestrous cycle stage and increasing age in reproductively competent wistar females.PLoS One20161111e016622910.1371/journal.pone.0166229 27829021
    [Google Scholar]
  203. AkamizuT. MurayamaT. TeramukaiS. MiuraK. BandoI. IrakoT. IwakuraH. AriyasuH. HosodaH. TadaH. MatsuyamaA. KojimaS. WadaT. WakatsukiY. MatsubayashiK. KawakitaT. ShimizuA. FukushimaM. YokodeM. KangawaK. Plasma ghrelin levels in healthy elderly volunteers: The levels of acylated ghrelin in elderly females correlate positively with serum IGF-I levels and bowel movement frequency and negatively with systolic blood pressure.J. Endocrinol.2006188233334410.1677/joe.1.06442 16461559
    [Google Scholar]
  204. KellokoskiE. PöykköS.M. KarjalainenA.H. UkkolaO. HeikkinenJ. KesäniemiY.A. HörkköS. Estrogen replacement therapy increases plasma ghrelin levels.J. Clin. Endocrinol. Metab.20059052954296310.1210/jc.2004‑2016 15872336
    [Google Scholar]
  205. FanJ. LiB.J. WangX.F. ZhongL.L. CuiR.J. Ghrelin produces antidepressant-like effect in the estrogen deficient mice.Oncotarget2017835589645897310.18632/oncotarget.19768 28938610
    [Google Scholar]
  206. SakataI. TanakaT. YamazakiM. TanizakiT. ZhengZ. SakaiT. Gastric estrogen directly induces ghrelin expression and production in the rat stomach.J. Endocrinol.2006190374975710.1677/joe.1.06808 17003276
    [Google Scholar]
  207. MatsubaraM. SakataI. WadaR. YamazakiM. InoueK. SakaiT. Estrogen modulates ghrelin expression in the female rat stomach.Peptides200425228929710.1016/j.peptides.2003.12.020 15063011
    [Google Scholar]
  208. RedrobeJ.P. DumontY. QuirionR. NeuropeptideY. Neuropeptide Y (NPY) and depression: From animal studies to the human condition.Life Sci.200271252921293710.1016/S0024‑3205(02)02159‑8 12384178
    [Google Scholar]
  209. AlldredgeB. Pathogenic involvement of neuropeptides in anxiety and depression.Neuropeptides201044321522410.1016/j.npep.2009.12.014 20096456
    [Google Scholar]
  210. PaschosK.A. VeletzaS. ChatzakiE. Neuropeptide and sigma receptors as novel therapeutic targets for the pharmacotherapy of depression.CNS Drugs200923975577210.2165/11310830‑000000000‑00000 19689166
    [Google Scholar]
  211. CaberlottoL. JimenezP. OverstreetD.H. HurdY.L. MathéA.A. FuxeK. Alterations in neuropeptide Y levels and Y1 binding sites in the Flinders Sensitive Line rats, a genetic animal model of depression.Neurosci. Lett.1999265319119410.1016/S0304‑3940(99)00234‑7 10327163
    [Google Scholar]
  212. SergeyevV. FetissovS. MathéA.A. JimenezP.A. BartfaiT. MortasP. GaudetL. MoreauJ.L. HökfeltT. Neuropeptide expression in rats exposed to chronic mild stresses.Psychopharmacology (Berl.)20051782-311512410.1007/s00213‑004‑2015‑3 15719227
    [Google Scholar]
  213. WiddowsonP.S. OrdwayG.A. HalarisA.E. Reduced neuropeptide Y concentrations in suicide brain.J. Neurochem.1992591738010.1111/j.1471‑4159.1992.tb08877.x 1613514
    [Google Scholar]
  214. HeiligM. KoobG.F. EkmanR. BrittonK.T. Corticotropin-releasing factor and neuropeptide y: Role in emotional integration.Trends Neurosci.1994172808510.1016/0166‑2236(94)90079‑5 7512773
    [Google Scholar]
  215. RugarnO. HammarM. TheodorssonA. TheodorssonE. StenforsC. Sex differences in neuropeptide distribution in the rat brain.Peptides1999201818610.1016/S0196‑9781(98)00139‑9 10098627
    [Google Scholar]
  216. NahviR.J. SabbanE.L. Sex differences in the neuropeptide Y system and implications for stress related disorders.Biomolecules2020109124810.3390/biom10091248 32867327
    [Google Scholar]
  217. HilkeS. HolmL. ÅmanK. HökfeltT. TheodorssonE. Rapid change of neuropeptide Y levels and gene-expression in the brain of ovariectomized mice after administration of 17β-estradiol.Neuropeptides200943432733210.1016/j.npep.2009.04.005 19481799
    [Google Scholar]
  218. VelíškováJ. IacobasD. IacobasS. SidyelyevaG. ChachuaT. VelíšekL. Oestradiol regulates neuropeptide Y release and gene coupling with the gabaergic and glutamatergic synapses in the adult female rat dentate gyrus.J. Neuroendocrinol.2015271291192010.1111/jne.12332 26541912
    [Google Scholar]
  219. Bauer-DantoinA.C. UrbanJ.H. LevineJ.E. Neuropeptide Y gene expression in the arcuate nucleus is increased during preovulatory luteinizing hormone surges.Endocrinology199213162953295810.1210/endo.131.6.1446633 1446633
    [Google Scholar]
  220. UrbanJ.H. Bauer-DantoinA.C. LevineJ.E. Neuropeptide Y gene expression in the arcuate nucleus: sexual dimorphism and modulation by testosterone.Endocrinology1993132113914510.1210/endo.132.1.8419120 8419120
    [Google Scholar]
  221. MartiniM. SicaM. GottiS. EvaC. PanzicaG.C. Effects of estrous cycle and sex on the expression of neuropeptide Y Y1 receptor in discrete hypothalamic and limbic nuclei of transgenic mice.Peptides20113261330133410.1016/j.peptides.2011.04.004 21514339
    [Google Scholar]
  222. EvaC. SerraM. MeleP. PanzicaG. ObertoA. Physiology and gene regulation of the brain NPY Y1 receptor.Front. Neuroendocrinol.200627330833910.1016/j.yfrne.2006.07.002 16989896
    [Google Scholar]
  223. NakamuraN.H. McEwenB.S. Changes in interneuronal phenotypes regulated by estradiol in the adult rat hippocampus: A potential role for neuropeptide Y.Neuroscience2005136135736910.1016/j.neuroscience.2005.07.056 16198490
    [Google Scholar]
  224. TitoloD. MayerC.M. DhillonS.S. CaiF. BelshamD.D. Estrogen facilitates both phosphatidylinositol 3-kinase/Akt and ERK1/2 mitogen-activated protein kinase membrane signaling required for long-term neuropeptide Y transcriptional regulation in clonal, immortalized neurons.J. Neurosci.200828256473648210.1523/JNEUROSCI.0514‑08.2008 18562618
    [Google Scholar]
  225. BirnbaumerM. Vasopressin receptors.Trends Endocrinol. Metab.2000111040641010.1016/S1043‑2760(00)00304‑0 11091117
    [Google Scholar]
  226. MeynenG. UnmehopaU.A. van HeerikhuizeJ.J. HofmanM.A. SwaabD.F. HoogendijkW.J.G. Increased arginine vasopressin mRNA expression in the human hypothalamus in depression: A preliminary report.Biol. Psychiatry200660889289510.1016/j.biopsych.2005.12.010 16499879
    [Google Scholar]
  227. PurbaJ.S. HoogendijkW.J. HofmanM.A. SwaabD.F. Increased number of vasopressin- and oxytocin-expressing neurons in the paraventricular nucleus of the hypothalamus in depression.Arch. Gen. Psychiatry199653213714310.1001/archpsyc.1996.01830020055007 8629889
    [Google Scholar]
  228. NomuraM. McKennaE. KorachK.S. PfaffD.W. OgawaS. Estrogen receptor-β regulates transcript levels for oxytocin and arginine vasopressin in the hypothalamic paraventricular nucleus of male mice.Brain Res. Mol. Brain Res.20021091-2849410.1016/S0169‑328X(02)00525‑9 12531518
    [Google Scholar]
  229. LagunasN. MarraudinoM. de AmorimM. PinosH. ColladoP. PanzicaG. Garcia-SeguraL.M. GrassiD. Estrogen receptor beta and G protein-coupled estrogen receptor 1 are involved in the acute estrogenic regulation of arginine-vasopressin immunoreactive levels in the supraoptic and paraventricular hypothalamic nuclei of female rats.Brain Res.201917129310010.1016/j.brainres.2019.02.002 30731078
    [Google Scholar]
  230. SomponpunS. SladekC.D. Role of estrogen receptor-beta in regulation of vasopressin and oxytocin release in vitro.Endocrinology200214382899290410.1210/endo.143.8.8946 12130554
    [Google Scholar]
  231. SladekC.D. SomponpunS.J. Estrogen receptors: Their roles in regulation of vasopressin release for maintenance of fluid and electrolyte homeostasis.Front. Neuroendocrinol.200829111412710.1016/j.yfrne.2007.08.005 18022678
    [Google Scholar]
  232. ShapiroR.A. XuC. DorsaD.M. Differential transcriptional regulation of rat vasopressin gene expression by estrogen receptor alpha and beta.Endocrinology2000141114056406410.1210/endo.141.11.7796 11089536
    [Google Scholar]
  233. HrabovszkyE. KallóI. HajszánT. ShughrueP.J. MerchenthalerI. LipositsZ. Expression of estrogen receptor-beta messenger ribonucleic acid in oxytocin and vasopressin neurons of the rat supraoptic and paraventricular nuclei.Endocrinology199813952600260410.1210/endo.139.5.6024 9564876
    [Google Scholar]
  234. GrassiD. AmorimM.A. Garcia-SeguraL.M. PanzicaG. Estrogen receptor α is involved in the estrogenic regulation of arginine vasopressin immunoreactivity in the supraoptic and paraventricular nuclei of ovariectomized rats.Neurosci. Lett.2010474313513910.1016/j.neulet.2010.03.022 20298751
    [Google Scholar]
  235. MitraS. DashR. SohelM. ChowdhuryA. MunniY.A. AliM.C. HannanM.A. IslamM.T. MoonI.S. Targeting estrogen signaling in the radiation-induced neurodegeneration: A possible role of phytoestrogens.Curr. Neuropharmacol.202321235337910.2174/1570159X20666220310115004 35272592
    [Google Scholar]
  236. DesmawatiD. SulastriD. Phytoestrogens and their health effect.Open Access Maced. J. Med. Sci.20197349549910.3889/oamjms.2019.086 30834024
    [Google Scholar]
  237. PetrineJ.C.P. Del Bianco-BorgesB. The influence of phytoestrogens on different physiological and pathological processes: An overview.Phytother. Res.202135118019710.1002/ptr.6816 32780464
    [Google Scholar]
  238. ChavdaV.P. ChaudhariA.Z. BalarP.C. GholapA. VoraL.K. Phytoestrogens: Chemistry, potential health benefits, and their medicinal importance.Phytother. Res.20243863060307910.1002/ptr.8196 38602108
    [Google Scholar]
  239. RichardA. RohrmannS. Mohler-KuoM. RodgersS. MoffatR. GüthU. EichholzerM. Urinary phytoestrogens and depression in perimenopausal US women: NHANES 2005–2008.J. Affect. Disord.201415620020510.1016/j.jad.2013.12.029 24434020
    [Google Scholar]
  240. LiJ. LiH. YanP. GuoL. LiJ. HanJ. QiuJ. YangK. Efficacy and safety of phytoestrogens in the treatment of perimenopausal and postmenopausal depressive disorders: A systematic review and meta‐analysis.Int. J. Clin. Pract.20217510e1436010.1111/ijcp.14360 33987926
    [Google Scholar]
  241. ChenLR ChenKH Utilization of isoflavones in soybeans for women with menopausal syndrome: An overview.Int J. Mol. Sci2021226321210.3390/ijms22063212
    [Google Scholar]
  242. de Sousa-MuñozR.L. FilizolaR.G. Efficacy of soy isoflavones for depressive symptoms of the climacteric syndrome.Maturitas2009631899310.1016/j.maturitas.2009.02.008 19339127
    [Google Scholar]
  243. WangY.F. XuZ.K. YangD.H. YaoH.Y. KuB.S. MaX.Q. WangC.Z. LiuS.L. CaiS.Q. The antidepressant effect of secoisolariciresinol, a lignan-type phytoestrogen constituent of flaxseed, on ovariectomized mice.J. Nat. Med.201367122222710.1007/s11418‑012‑0655‑x 22476613
    [Google Scholar]
  244. LuC. GaoR. ZhangY. JiangN. ChenY. SunJ. WangQ. FanB. LiuX. WangF. S-equol, a metabolite of dietary soy isoflavones, alleviates lipopolysaccharide-induced depressive-like behavior in mice by inhibiting neuroinflammation and enhancing synaptic plasticity.Food Funct.202112135770577810.1039/D1FO00547B 34038497
    [Google Scholar]
  245. HouY. QianH. YaoR. JiangN. ChenY. SunJ. WangQ. FanB. Untargeted metabolomics revealed that quercetin inhibited ferroptosis by improving metabolic disorder in the hippocampus of perimenopausal depression model rats.Mol. Neurobiol.2024 39179684
    [Google Scholar]
  246. ThangavelP. Puga-OlguínA. Rodríguez-LandaJ.F. ZepedaR.C. Genistein as potential therapeutic candidate for menopausal symptoms and other related diseases.Molecules20192421389210.3390/molecules24213892 31671813
    [Google Scholar]
  247. MaretiE. AbatziC. VavilisD. LambrinoudakiI. GoulisD.G. Effect of oral phytoestrogens on endometrial thickness and breast density of perimenopausal and postmenopausal women: A systematic review and meta-analysis.Maturitas2019124818810.1016/j.maturitas.2019.03.023 31097185
    [Google Scholar]
  248. RietjensI.M.C.M. LouisseJ. BeekmannK. The potential health effects of dietary phytoestrogens.Br. J. Pharmacol.2017174111263128010.1111/bph.13622 27723080
    [Google Scholar]
/content/journals/cn/10.2174/011570159X371863250327073835
Loading
/content/journals/cn/10.2174/011570159X371863250327073835
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test