Skip to content
2000
image of Hydroxychloroquine Prevents High-altitude Cerebral Edema by Inhibiting Endothelial Claudin-5 Autophagic Degradation

Abstract

Background

High-altitude cerebral edema (HACE) is a serious condition caused by prolonged hypobaric hypoxia (HH). Autophagic degradation of Claudin-5 plays a crucial role in HH-induced blood-brain barrier (BBB) damage. Hydroxychloroquine (HCQ), a lysosomal inhibitor used in autophagy treatment, reduces inflammation and BBB damage in traumatic brain injury. However, its effectiveness in preventing HACE is still unknown.

Methods

C57BL/6J mice were treated with HCQ and exposed to HH for 24 hrs to study BBB integrity. We evaluated BBB disruption brain water content, Evans blue, and FITC-dextran assays. Changes in tight junctions (TJs) of cerebrovascular endothelial cells were analyzed using electron microscopy and immunofluorescence. Western blotting quantified autophagy protein levels in brain tissue. Hypoxia-mimetic models were used to explore HCQ's effects on TJs and BBB permeability, confirmed by various assays, including immunofluorescence, electron microscopy, and Western blotting.

Results

HCQ significantly mitigated rapamycin-induced autophagy and Claudin-5 degradation. Prolonged hypoxia exposure promoted lysosomal degradation of Claudin-5, increasing endothelial cell permeability. HCQ inhibited autophagy in bEnd.3 cells the PI3K-Akt-mTOR and Erk pathway, reducing hypoxia-induced Claudin-5 down-regulation. In mice, HH exposure increased brain autophagy, damaging the vascular endothelial TJs and subsequently increasing endothelial permeability. Pretreatment with HCQ significantly reduced the level of autophagy in the brains of HH-exposed mice, thereby mitigating the HH-induced damage to vascular TJs, alleviating the downregulation of Claudin-5, and enhancing endothelial integrity.

Conclusion

HCQ effectively prevented HACE by inhibiting HH-induced Claudin-5 membrane expression downregulation, thus mitigating BBB damage and brain water content increase in HH-exposed mice.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X371235250417051313
2025-05-09
2025-09-08
Loading full text...

Full text loading...

References

  1. Gehner J. Altitude-related illness. Emerg. Med. Clin. North Am. 2024 42 3 527 539 10.1016/j.emc.2024.02.013 38925772
    [Google Scholar]
  2. Denorme F. Portier I. Rustad J.L. Cody M.J. de Araujo C.V. Hoki C. Alexander M.D. Grandhi R. Dyer M.R. Neal M.D. Majersik J.J. Yost C.C. Campbell R.A. Neutrophil extracellular traps regulate ischemic stroke brain injury. J. Clin. Invest. 2022 132 10 e154225 10.1172/JCI154225 35358095
    [Google Scholar]
  3. Dehnert C. Bärtsch P. Acute mountain sickness and high-altitude cerebral edema. Ther. Umsch. 2017 74 10 535 541 10.1024/0040‑5930/a000954 29690831
    [Google Scholar]
  4. Luks A.M. Swenson E.R. Bärtsch P. Acute high-altitude sickness. Eur. Respir. Rev. 2017 26 143 160096 10.1183/16000617.0096‑2016 28143879
    [Google Scholar]
  5. Jensen J.D. Vincent A.L. High altitude cerebral edema. In: StatPearls 2023
    [Google Scholar]
  6. Eide C.P.T.R.P. Asplund C.A. Altitude illness. Curr. Sports Med. Rep. 2012 11 3 124 130 10.1249/JSR.0b013e3182563e7a 22580489
    [Google Scholar]
  7. Ulrich S. Lichtblau M. Schneider S.R. Saxer S. Bloch K.E. Clinician’s corner: Counseling patients with pulmonary vascular disease traveling to high altitude. High Alt Med. Biol. 2022 233ham.2022.0051 10.1089/ham.2022.0051 35852848
    [Google Scholar]
  8. Aksel G. Çorbacıoğlu Ş.K. Özen C. High-altitude illness: Management approach. Turk. J. Emerg. Med. 2019 19 4 121 126 10.1016/j.tjem.2019.09.002 31687609
    [Google Scholar]
  9. Li Y. Zhang Y. Zhang Y. Research advances in pathogenesis and prophylactic measures of acute high altitude illness. Respir. Med. 2018 145 145 152 10.1016/j.rmed.2018.11.004 30509704
    [Google Scholar]
  10. Reschke M. Salvador E. Schlegel N. Burek M. Karnati S. Wunder C. Förster C.Y. Isosteviol sodium (STVNA) reduces pro-inflammatory cytokine IL-6 and GM-CSF in an in vitro murine stroke model of the blood–brain barrier (BBB). Pharmaceutics 2022 14 9 1753 10.3390/pharmaceutics14091753 36145501
    [Google Scholar]
  11. Choi C. Kim H.M. Shon J. Park J. Kim H.T. Kang S.H. Oh S.H. Kim N.K. Kim O.J. The combination of mannitol and temozolomide increases the effectiveness of stem cell treatment in a chronic stroke model. Cytotherapy 2018 20 6 820 829 10.1016/j.jcyt.2018.04.004 29776835
    [Google Scholar]
  12. Kawoos U. Abutarboush R. Zarriello S. Qadri A. Ahlers S.T. McCarron R.M. Chavko M. N-acetylcysteine amide ameliorates blast-induced changes in blood-brain barrier integrity in rats. Front. Neurol. 2019 10 650 651 10.3389/fneur.2019.00650 31297080
    [Google Scholar]
  13. Hackett P.H. High altitude cerebral edema and acute mountain sickness. A pathophysiology update. Adv. Exp. Med. Biol. 1999 474 23 45 10.1007/978‑1‑4615‑4711‑2_2 10634991
    [Google Scholar]
  14. Urushida Y. Kikuchi Y. Shimizu C. Amari M. Kawarabayashi T. Nakamura T. Ikeda Y. Takatama M. Shoji M. Improved neuroimaging findings and cognitive function in a case of high-altitude cerebral edema. Intern. Med. 2021 60 8 1299 1302 10.2169/internalmedicine.5747‑20 33229804
    [Google Scholar]
  15. Turner R.E.F. Gatterer H. Falla M. Lawley J.S. High-altitude cerebral edema: Its own entity or end-stage acute mountain sickness? J. Appl. Physiol. 2021 131 1 313 325 10.1152/japplphysiol.00861.2019 33856254
    [Google Scholar]
  16. Stokum J.A. Gerzanich V. Simard J.M. Molecular pathophysiology of cerebral edema. J. Cereb. Blood Flow Metab. 2016 36 3 513 538 10.1177/0271678X15617172 26661240
    [Google Scholar]
  17. Bosch M.M. Merz T.M. Barthelmes D. Petrig B.L. Truffer F. Bloch K.E. Turk A. Maggiorini M. Hess T. Schoch O.D. Hefti U. Sutter F.K.P. Pichler J. Huber A. Landau K. New insights into ocular blood flow at very high altitudes. J. Appl. Physiol. 2009 106 2 454 460 10.1152/japplphysiol.90904.2008 19057000
    [Google Scholar]
  18. Xue Y. Wang X. Wan B. Wang D. Li M. Cheng K. Luo Q. Wang D. Lu Y. Zhu L. Caveolin-1 accelerates hypoxia-induced endothelial dysfunction in high-altitude cerebral edema. Cell Commun. Signal. 2022 20 1 160 10.1186/s12964‑022‑00976‑3 36253854
    [Google Scholar]
  19. Deshwar A.R. Cytrynbaum C. Murthy H. Zon J. Variants in CLDN5 cause a syndrome characterized by seizures, microcephaly and brain calcifications. Brain 2023 146 6 2285 2297 10.1093/brain/awac461 36477332
    [Google Scholar]
  20. Yang Z. Lin P. Chen B. Zhang X. Xiao W. Wu S. Huang C. Feng D. Zhang W. Zhang J. Autophagy alleviates hypoxia-induced blood-brain barrier injury via regulation of CLDN5 (claudin 5). Autophagy 2021 17 10 3048 3067 10.1080/15548627.2020.1851897 33280500
    [Google Scholar]
  21. Qiao N. An Z. Fu Z. Chen X. Tong Q. Zhang Y. Ren H. Kinsenoside alleviates oxidative stress-induced blood-brain barrier dysfunction via promoting Nrf2/HO-1 pathway in ischemic stroke. Eur. J. Pharmacol. 2023 949 175717 10.1016/j.ejphar.2023.175717 37054938
    [Google Scholar]
  22. Greene C. Hanley N. Reschke C.R. Reddy A. Mäe M.A. Connolly R. Behan C. O’Keeffe E. Bolger I. Hudson N. Delaney C. Farrell M.A. O’Brien D.F. Cryan J. Brett F.M. Beausang A. Betsholtz C. Henshall D.C. Doherty C.P. Campbell M. Microvascular stabilization via blood-brain barrier regulation prevents seizure activity. Nat. Commun. 2022 13 1 2003 10.1038/s41467‑022‑29657‑y 35422069
    [Google Scholar]
  23. Tedeschi V. Sapienza S. Ciancio R. Canzoniero L.M.T. Pannaccione A. Secondo A. Lysosomal channels as new molecular targets in the pharmacological therapy of neurodegenerative diseases via autophagy regulation. Curr. Neuropharmacol. 2025 23 4 375 385 10.2174/1570159X22666240517101846 38766825
    [Google Scholar]
  24. Lei Z.N. Wu Z.X. Dong S. Yang D.H. Zhang L. Ke Z. Zou C. Chen Z.S. Chloroquine and hydroxychloroquine in the treatment of malaria and repurposing in treating COVID-19. Pharmacol. Ther. 2020 216 107672 10.1016/j.pharmthera.2020.107672 32910933
    [Google Scholar]
  25. Zhai J. Ji B. Cai L. Liu S. Sun Y. Wang J. Physiologically-based pharmacokinetics modeling for hydroxychloroquine as a treatment for malaria and optimized dosing regimens for different populations. J. Pers. Med. 2022 12 5 796 10.3390/jpm12050796 35629219
    [Google Scholar]
  26. Dima A Jurcut C Chasset F Felten R Arnaud L Hydroxychloroquine in systemic lupus erythematosus: Overview of current knowledge. Ther. Adv. Musculoskelet Dis. 2022 141759720X211073001 10.1177/1759720X211073001
    [Google Scholar]
  27. Hussein R.K. Elkhair H.M. Molecular docking identification for the efficacy of some zinc complexes with chloroquine and hydroxychloroquine against main protease of COVID-19. J. Mol. Struct. 2021 1231 129979 10.1016/j.molstruc.2021.129979 33518801
    [Google Scholar]
  28. Ferreira P.M.P. Sousa R.W.R. Ferreira J.R.O. Militão G.C.G. Bezerra D.P. Chloroquine and hydroxychloroquine in antitumor therapies based on autophagy-related mechanisms. Pharmacol. Res. 2021 168 105582 10.1016/j.phrs.2021.105582 33775862
    [Google Scholar]
  29. Hartman O. Kovanen P.T. Lehtonen J. Eklund K.K. Sinisalo J. Hydroxychloroquine for the prevention of recurrent cardiovascular events in myocardial infarction patients: Rationale and design of the OXI trial. Eur. Heart J. Cardiovasc. Pharmacother. 2016 3 2 pvw035 10.1093/ehjcvp/pvw035 28025216
    [Google Scholar]
  30. Dernoncourt A. Hedhli K. Abisror N. Cheloufi M. Cohen J. Kolanska K. McAvoy C. Selleret L. Ballot E. Mathieu d’Argent E. Chabbert Buffet N. Fain O. Kayem G. Mekinian A. Hydroxychloroquine in recurrent pregnancy loss: Data from a French prospective multicenter registry. Hum. Reprod. 2024 39 9 1934 1941 10.1093/humrep/deae146 38942601
    [Google Scholar]
  31. Hu J. Wang X. Chen X. Fang Y. Chen K. Peng W. Wang Z. Guo K. Tan X. Liang F. Lin L. Xiong Y. Hydroxychloroquine attenuates neuroinflammation following traumatic brain injury by regulating the TLR4/NF-κB signaling pathway. J. Neuroinflammation 2022 19 1 71 10.1186/s12974‑022‑02430‑0 35346242
    [Google Scholar]
  32. Schrezenmeier E. Dörner T. Mechanisms of action of hydroxychloroquine and chloroquine: Implications for rheumatology. Nat. Rev. Rheumatol. 2020 16 3 155 166 10.1038/s41584‑020‑0372‑x 32034323
    [Google Scholar]
  33. McAfee Q. Zhang Z. Samanta A. Levi S.M. Ma X.H. Piao S. Lynch J.P. Uehara T. Sepulveda A.R. Davis L.E. Winkler J.D. Amaravadi R.K. Autophagy inhibitor Lys05 has single-agent antitumor activity and reproduces the phenotype of a genetic autophagy deficiency. Proc. Natl. Acad. Sci. USA 2012 109 21 8253 8258 10.1073/pnas.1118193109 22566612
    [Google Scholar]
  34. Jiang X. Gao J. Fei X. Geng Y. Yue X. Shi Z. Cheng X. Zhao T. Fan M. Wu H. Zhao M. Zhu L. Global profiling of protein lactylation in microglia in experimental high-altitude cerebral edema. Cell Commun. Signal. 2024 22 1 374 10.1186/s12964‑024‑01748‑x 39054523
    [Google Scholar]
  35. Lu Y. Chang P. Ding W. Bian J. Wang D. Wang X. Luo Q. Wu X. Zhu L. Pharmacological inhibition of mitochondrial division attenuates simulated high-altitude exposure-induced cerebral edema in mice: Involvement of inhibition of the NF-κB signaling pathway in glial cells. Eur. J. Pharmacol. 2022 929 175137 10.1016/j.ejphar.2022.175137 35793726
    [Google Scholar]
  36. Chen G. Cheng K. Niu Y. Zhu L. Wang X. (−)-Epicatechin gallate prevents inflammatory response in hypoxia-activated microglia and cerebral edema by inhibiting NF-κB signaling. Arch. Biochem. Biophys. 2022 729 109393 10.1016/j.abb.2022.109393 36084697
    [Google Scholar]
  37. Wang X. Chen G. Wan B. Dong Z. Xue Y. Luo Q. Wang D. Lu Y. Zhu L. NRF1-mediated microglial activation triggers high-altitude cerebral edema. J. Mol. Cell Biol. 2022 14 5 mjac036 10.1093/jmcb/mjac036 35704676
    [Google Scholar]
  38. Liu Z-L. Chen X-Y. Sun Z-L. Jiang X-F. Cheng Y-C. Liu Y-F. Yang K. Zhu S-L. Kong X-B. Tu Y. Bian K-F. Exendin-4 inhibits high-altitude cerebral edema by protecting against neurobiological dysfunction. Neural Regen. Res. 2018 13 4 653 663 10.4103/1673‑5374.230291 29722317
    [Google Scholar]
  39. Wang X. Xie Y. Niu Y. Wan B. Lu Y. Luo Q. Zhu L. CX3CL1/CX3CR1 signal mediates M1-type microglia and accelerates high-altitude-induced forgetting. Front. Cell. Neurosci. 2023 17 1189348 10.3389/fncel.2023.1189348 37234914
    [Google Scholar]
  40. Srinivasan B. Kolli A.R. Esch M.B. Abaci H.E. Shuler M.L. Hickman J.J. TEER measurement techniques for in vitro barrier model systems. SLAS Technol. 2015 20 2 107 126 10.1177/2211068214561025 25586998
    [Google Scholar]
  41. Robinson B.D. Shaji C.A. Lomas A. Tharakan B. Measurement of microvascular endothelial barrier dysfunction and hyperpermeability in vitro. Methods Mol. Biol. 2018 1717 237 242 10.1007/978‑1‑4939‑7526‑6_19 29468597
    [Google Scholar]
  42. Tian W. Alsaadi R. Guo Z. Kalinina A. Carrier M. Tremblay M.E. Lacoste B. Lagace D. Russell R.C. An antibody for analysis of autophagy induction. Nat. Methods 2020 17 2 232 239 10.1038/s41592‑019‑0661‑y 31768061
    [Google Scholar]
  43. Chen J. Chen G. Li J. Qian C. Mo H. Gu C. Yan F. Yan W. Wang L. Melatonin attenuates inflammatory response-induced brain edema in early brain injury following a subarachnoid hemorrhage: A possible role for the regulation of pro-inflammatory cytokines. J. Pineal Res. 2014 57 3 340 347 10.1111/jpi.12173 25187344
    [Google Scholar]
  44. Şansaçar M. Gencer Akçok E.B. Measurement of autophagic activity in cancer cells with flow cytometric analysis using cyto-ID staining. Methods Mol. Biol. 2024 2879 219 224 10.1007/7651_2024_526 38446407
    [Google Scholar]
  45. Bernard-Patrzynski F. Lécuyer M.A. Puscas I. Boukhatem I. Charabati M. Bourbonnière L. Ramassamy C. Leclair G. Prat A. Roullin V.G. Isolation of endothelial cells, pericytes and astrocytes from mouse brain. PLoS One 2019 14 12 e0226302 10.1371/journal.pone.0226302 31851695
    [Google Scholar]
  46. Kim Y. Lee S. Zhang H. Lee S. Kim H. Kim Y. Won M.H. Kim Y.M. Kwon Y.G. CLEC14A deficiency exacerbates neuronal loss by increasing blood-brain barrier permeability and inflammation. J. Neuroinflammation 2020 17 1 48 10.1186/s12974‑020‑1727‑6 32019570
    [Google Scholar]
  47. Chun Y. Kim J. AMPK–mTOR signaling and cellular adaptations in hypoxia. Int. J. Mol. Sci. 2021 22 18 9765 10.3390/ijms22189765 34575924
    [Google Scholar]
  48. Choi I. Zhang Y. Seegobin S.P. Pruvost M. Wang Q. Purtell K. Zhang B. Yue Z. Microglia clear neuron-released α-synuclein via selective autophagy and prevent neurodegeneration. Nat. Commun. 2020 11 1 1386 10.1038/s41467‑020‑15119‑w 32170061
    [Google Scholar]
  49. Damri O. Natur S. Agam G. Do Autophagy enhancers/ROS scavengers alleviate consequences of mild mitochondrial dysfunction induced in neuronal-derived cells? Int. J. Mol. Sci. 2021 22 11 5753 10.3390/ijms22115753 34072255
    [Google Scholar]
  50. Nirk E.L. Reggiori F. Mauthe M. Hydroxychloroquine in rheumatic autoimmune disorders and beyond. EMBO Mol. Med. 2020 12 8 e12476 e1 10.15252/emmm.202012476 32715647
    [Google Scholar]
  51. Hassan A.M.I.A. Zhao Y. Chen X. He C. Blockage of autophagy for cancer therapy: A comprehensive review. Int. J. Mol. Sci. 2024 25 13 7459 10.3390/ijms25137459 39000565
    [Google Scholar]
  52. Bai X. Xiong J. Li L. Yu C. Sun C. Suppression of hypoxia-induced CAV1 autophagic degradation enhances nanoalbumin-paclitaxel transcytosis and improves therapeutic activity in pancreatic cancer. Eur. J. Pharmacol. 2024 969 176431 10.1016/j.ejphar.2024.176431 38395374
    [Google Scholar]
  53. Bonam S.R. Muller S. Bayry J. Klionsky D.J. Autophagy as an emerging target for COVID-19: Lessons from an old friend, chloroquine. Autophagy 2020 16 12 2260 2266 10.1080/15548627.2020.1779467 32522067
    [Google Scholar]
  54. An N. Chen Y. Wang C. Yang C. Wu Z. Xue J. Ye L. Wang S. Liu H. Pan Q. Chloroquine autophagic inhibition rebalances Th17/Treg-mediated immunity and ameliorates systemic lupus erythematosus. Cell. Physiol. Biochem. 2017 44 1 412 422 10.1159/000484955 29141242
    [Google Scholar]
  55. Xu Z. Han X. Ou D. Liu T. Li Z. Jiang G. Liu J. Zhang J. Targeting PI3K/AKT/mTOR-mediated autophagy for tumor therapy. Appl. Microbiol. Biotechnol. 2020 104 2 575 587 10.1007/s00253‑019‑10257‑8 31832711
    [Google Scholar]
  56. Yu L. Wei J. Liu P. Attacking the PI3K/Akt/mTOR signaling pathway for targeted therapeutic treatment in human cancer. Semin. Cancer Biol. 2022 85 69 94 10.1016/j.semcancer.2021.06.019 34175443
    [Google Scholar]
  57. Sun K. Luo J. Guo J. Yao X. Jing X. Guo F. The PI3K/AKT/mTOR signaling pathway in osteoarthritis: A narrative review. Osteoarthritis Cartilage 2020 28 4 400 409 10.1016/j.joca.2020.02.027 32081707
    [Google Scholar]
  58. Sharma A. Mehan S. Targeting PI3K-AKT/mTOR signaling in the prevention of autism. Neurochem. Int. 2021 147 105067 10.1016/j.neuint.2021.105067 33992742
    [Google Scholar]
  59. Li R. Lin H. Ye Y. Xiao Y. Xu S. Wang J. Wang C. Zou Y. Shi M. Liang L. Xu H. Attenuation of antimalarial agent hydroxychloroquine on TNF-α-induced endothelial inflammation. Int. Immunopharmacol. 2018 63 261 269 10.1016/j.intimp.2018.08.008 30121047
    [Google Scholar]
  60. Wong S.K. Repurposing new use for old drug chloroquine against metabolic syndrome: A review on animal and human evidence. Int. J. Med. Sci. 2021 18 12 2673 2688 10.7150/ijms.58147 34104100
    [Google Scholar]
  61. Feng R. Adeniran S.O. Huang F. Li Y. Ma M. Zheng P. Zhang G. The ameliorative effect of melatonin on LPS-induced Sertoli cells inflammatory and tight junctions damage via suppression of the TLR4/MyD88/NF-κB signaling pathway in newborn calf. Theriogenology 2022 179 103 116 10.1016/j.theriogenology.2021.11.020 34871925
    [Google Scholar]
  62. Dabrowski W. Siwicka-Gieroba D. Kotfis K. Zaid S. Terpilowska S. Robba C. Siwicki A.K. The brain-gut axis-where are we now and how can we modulate these connections? Curr. Neuropharmacol. 2021 19 8 1164 1177 10.2174/1570159X18666201119155535 33213347
    [Google Scholar]
  63. Persidsky Y. Heilman D. Haorah J. Zelivyanskaya M. Persidsky R. Weber G.A. Shimokawa H. Kaibuchi K. Ikezu T. Rho-mediated regulation of tight junctions during monocyte migration across the blood-brain barrier in HIV-1 encephalitis (HIVE). Blood 2006 107 12 4770 4780 10.1182/blood‑2005‑11‑4721 16478881
    [Google Scholar]
  64. Wu S. Wang J. Liu J. Zhu H. Li R. Wan X. Lei J. Li Y. You C. Hu F. Zhang S. Zhao K. Shu K. Lei T. Programmed cell death 10 increased blood-brain barrier permeability through HMGB1/TLR4 mediated downregulation of endothelial ZO-1 in glioblastoma. Cell. Signal. 2023 107 110683 10.1016/j.cellsig.2023.110683 37075875
    [Google Scholar]
  65. Swaminathan A. Kasiviswanathan D. Balaguru U.M. Kolluru G.K. SuryaKumar, G.; Chatterjee, S. Hypoxia perturbs endothelium by re-organizing cellular actin architecture: Nitric oxide offers limited protection. Tissue Cell 2018 50 114 124 10.1016/j.tice.2017.12.007 29429511
    [Google Scholar]
  66. Jamieson J.J. Lin Y. Malloy N.A. Soto D. Searson P.C. Gerecht S. Hypoxia-induced blood-brain barrier dysfunction is prevented by pericyte-conditioned media via attenuated actomyosin contractility and claudin-5 stabilization. FASEB J. 2022 36 5 e22331 10.1096/fj.202200010RR 35476363
    [Google Scholar]
  67. Ares G. Buonpane C. Sincavage J. Yuan C. Wood D.R. Hunter C.J. Caveolin 1 is associated with upregulated claudin 2 in necrotizing enterocolitis. Sci. Rep. 2019 9 1 4982 10.1038/s41598‑019‑41442‑4 30899070
    [Google Scholar]
  68. Kayyali U.S. Pennella C.M. Trujillo C. Villa O. Gaestel M. Hassoun P.M. Cytoskeletal changes in hypoxic pulmonary endothelial cells are dependent on MAPK-activated protein kinase MK2. J. Biol. Chem. 2002 277 45 42596 42602 10.1074/jbc.M205863200 12202485
    [Google Scholar]
  69. Han Y. Yuan H. Li F. Yuan Y. Zheng X. Zhang X. Sun J. Ammidin ameliorates myocardial hypoxia/reoxygenation injury by inhibiting the ACSL4/AMPK/mTOR-mediated ferroptosis pathway. BMC Complement. Med. Ther. 2023 23 1 459 10.1186/s12906‑023‑04289‑x 38102654
    [Google Scholar]
  70. Fan C. Cai W. Ye M. Chen M. Dai Y. Qili Qiangxin, a compound herbal medicine formula, alleviates hypoxia-reoxygenation-induced apoptotic and autophagic cell death via suppression of ROS/AMPK/mTOR pathway in vitro. J. Integr. Med. 2022 20 4 365 375 10.1016/j.joim.2022.04.005 35534381
    [Google Scholar]
  71. Sun J. Yue F. Suppression of REDD1 attenuates oxygen glucose deprivation/reoxygenation-evoked ischemic injury in neuron by suppressing mTOR-mediated excessive autophagy. J. Cell. Biochem. 2019 120 9 14771 14779 10.1002/jcb.28737 31021470
    [Google Scholar]
  72. Preau S. Delguste F. Yu Y. Remy-Jouet I. Richard V. Saulnier F. Boulanger E. Neviere R. Endotoxemia engages the RhoA kinase pathway to impair cardiac function by altering cytoskeleton, mitochondrial fission, and autophagy. Antioxid. Redox Signal. 2016 24 10 529 542 10.1089/ars.2015.6421 26602979
    [Google Scholar]
  73. Huber J.D. Egleton R.D. Davis T.P. Molecular physiology and pathophysiology of tight junctions in the blood–brain barrier. Trends Neurosci. 2001 24 12 719 725 10.1016/S0166‑2236(00)02004‑X 11718877
    [Google Scholar]
  74. Muradashvili N. Khundmiri S.J. Tyagi R. Gartung A. Dean W.L. Lee M.J. Lominadze D. Sphingolipids affect fibrinogen-induced caveolar transcytosis and cerebrovascular permeability. Am. J. Physiol. Cell Physiol. 2014 307 2 C169 C179 10.1152/ajpcell.00305.2013 24829496
    [Google Scholar]
  75. Campbell M. Hanrahan F. Gobbo O.L. Kelly M.E. Kiang A.S. Humphries M.M. Nguyen A.T.H. Ozaki E. Keaney J. Blau C.W. Kerskens C.M. Cahalan S.D. Callanan J.J. Wallace E. Grant G.A. Doherty C.P. Humphries P. Targeted suppression of claudin-5 decreases cerebral oedema and improves cognitive outcome following traumatic brain injury. Nat. Commun. 2012 3 1 849 10.1038/ncomms1852 22617289
    [Google Scholar]
  76. Ye Z.Y. Xing H.Y. Wang B. Liu M. Lv P.Y. DL-3-n-butylphthalide protects the blood-brain barrier against ischemia/hypoxia injury via upregulation of tight junction proteins. Chin. Med. J. 2019 132 11 1344 1353 10.1097/CM9.0000000000000232 30939485
    [Google Scholar]
/content/journals/cn/10.2174/011570159X371235250417051313
Loading
/content/journals/cn/10.2174/011570159X371235250417051313
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test