Skip to content
2000
image of Research Trends and Knowledge Atlas of Radiotherapy-Related Cognitive Impairment: A Bibliometric Analysis

Abstract

Background

Radiotherapy is one of the main therapeutic methods for tumors, and radiation-related cognitive impairment has attracted increasing attention. The purpose of this study was to explore the research prospects in the field of radiotherapy-associated cognitive decline through bibliometric analysis.

Methods

Literature on radiotherapy-related cognitive impairment published during 2004-2023 were extracted from the Web of Science Core Collection database. VOSviewer and R- were utilized to perform bibliometric analysis.

Results

A total of 8,365 publications were retrieved from the database. The United States emerged as the leading country in this research field, with St. Jude Children's Research Hospital identified as the most productive institution. Thomas E. Merchant was the most prolific author in this field, while Charles L. Limoli was the most frequently cited scholar. The research hotspots have gradually shifted from cognitive function and outcome measurement to the development of new therapy models.

Conclusion

This study comprehensively examined the research hotspots and knowledge atlas of radiotherapy-related cognitive decline from a bibliometric perspective. Our results would assist scholars in identifying potential collaborators and significant literature in this field while also providing valuable guidance for future research directions.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X368986250415105149
2025-05-09
2025-09-04
Loading full text...

Full text loading...

References

  1. Baskar R. Dai J. Wenlong N. Yeo R. Yeoh K.W. Biological response of cancer cells to radiation treatment. Front. Mol. Biosci. 2014 1 24 10.3389/fmolb.2014.00024 25988165
    [Google Scholar]
  2. Wu B. Li S. Wang J. Wang J. Qiu W. Gao H. Bibliometric and visualization analysis of radiation brain injury from 2003 to 2023. Front. Neurol. 2024 14 1275836 10.3389/fneur.2023.1275836 38298563
    [Google Scholar]
  3. Takahashi T. Yamanaka T. Seto T. Harada H. Nokihara H. Saka H. Nishio M. Kaneda H. Takayama K. Ishimoto O. Takeda K. Yoshioka H. Tachihara M. Sakai H. Goto K. Yamamoto N. Prophylactic cranial irradiation versus observation in patients with extensive-disease small-cell lung cancer: A multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2017 18 5 663 671 10.1016/S1470‑2045(17)30230‑9 28343976
    [Google Scholar]
  4. Makale M.T. McDonald C.R. Hattangadi-Gluth J.A. Kesari S. Mechanisms of radiotherapy-associated cognitive disability in patients with brain tumours. Nat. Rev. Neurol. 2017 13 1 52 64 10.1038/nrneurol.2016.185 27982041
    [Google Scholar]
  5. Greene-Schloesser D. Robbins M.E. Peiffer A.M. Shaw E.G. Wheeler K.T. Chan M.D. Radiation-induced brain injury: A review. Front. Oncol. 2012 2 73 10.3389/fonc.2012.00073 22833841
    [Google Scholar]
  6. Greene-Schloesser D. Moore E. Robbins M.E. Molecular pathways: Radiation-induced cognitive impairment. Clin. Cancer Res. 2013 19 9 2294 2300 10.1158/1078‑0432.CCR‑11‑2903 23388505
    [Google Scholar]
  7. Kuil L.E. Varkevisser T.M.C.K. Huisman M.H. Jansen M. Bunt J. Compter A. Ket H. Schagen S.B. Meeteren A.Y.N.S. Partanen M. Artificial and natural interventions for chemotherapy- and/or radiotherapy-induced cognitive impairment: A systematic review of animal studies. Neurosci. Biobehav. Rev. 2024 157 105514 10.1016/j.neubiorev.2023.105514 38135266
    [Google Scholar]
  8. Phillips N.S. Duke E.S. Schofield H.L.T. Ullrich N.J. Neurotoxic effects of childhood cancer therapy and its potential neurocognitive impact. J. Clin. Oncol. 2021 39 16 1752 1765 10.1200/JCO.20.02533 33886374
    [Google Scholar]
  9. Davis C.M. Roma P.G. Armour E. Gooden V.L. Brady J.V. Weed M.R. Hienz R.D. Effects of X-ray radiation on complex visual discrimination learning and social recognition memory in rats. PLoS One 2014 9 8 e104393 10.1371/journal.pone.0104393 25099152
    [Google Scholar]
  10. Robin T.P. Rusthoven C.G. Strategies to preserve cognition in patients with brain metastases: A review. Front. Oncol. 2018 8 415 10.3389/fonc.2018.00415 30356657
    [Google Scholar]
  11. Pazzaglia S. Briganti G. Mancuso M. Saran A. Neurocognitive decline following radiotherapy: Mechanisms and therapeutic implications. Cancers (Basel) 2020 12 1 146 10.3390/cancers12010146 31936195
    [Google Scholar]
  12. Karschnia P. Parsons M.W. Dietrich J. Pharmacologic management of cognitive impairment induced by cancer therapy. Lancet Oncol. 2019 20 2 e92 e102 10.1016/S1470‑2045(18)30938‑0 30723041
    [Google Scholar]
  13. Chen C. Song M. Visualizing a field of research: A methodology of systematic scientometric reviews. PLoS One 2019 14 10 e0223994 10.1371/journal.pone.0223994 31671124
    [Google Scholar]
  14. Kokol P. Blažun Vošner H. Završnik J. Application of bibliometrics in medicine: A historical bibliometrics analysis. Health Info. Libr. J. 2021 38 2 125 138 10.1111/hir.12295 31995273
    [Google Scholar]
  15. Ninkov A. Frank J.R. Maggio L.A. Bibliometrics: Methods for studying academic publishing. Perspect. Med. Educ. 2021 11 3 173 176 10.1007/S40037‑021‑00695‑4 34914027
    [Google Scholar]
  16. Donthu N. Kumar S. Mukherjee D. Pandey N. Lim W.M. How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res. 2021 133 285 296 10.1016/j.jbusres.2021.04.070
    [Google Scholar]
  17. Fabregat-Aibar L. Barberà-Mariné M.G. Terceño A. Pié L. A bibliometric and visualization analysis of socially responsible funds. Sustainability 2019 11 9 2526 10.3390/su11092526
    [Google Scholar]
  18. Arruda H. Silva E.R. Lessa M. Proença D. Bartholo R. VOSviewer and bibliometrix. J. Med. Libr. Assoc. 2022 110 3 392 395 10.5195/jmla.2022.1434 36589296
    [Google Scholar]
  19. van Eck N.J. Waltman L. Citation-based clustering of publications using CitNetExplorer and VOSviewer. Scientometrics 2017 111 2 1053 1070 10.1007/s11192‑017‑2300‑7 28490825
    [Google Scholar]
  20. Yu Y. Li Y. Zhang Z. Gu Z. Zhong H. Zha Q. Yang L. Zhu C. Chen E. A bibliometric analysis using VOSviewer of publications on COVID-19. Ann. Transl. Med. 2020 8 13 816 10.21037/atm‑20‑4235 32793661
    [Google Scholar]
  21. Guleria D. Kaur G. Bibliometric analysis of ecopreneurship using VOSviewer and RStudio Bibliometrix, 1989–2019. Libr. Hi Tech 2021 39 4 1001 1024 10.1108/LHT‑09‑2020‑0218
    [Google Scholar]
  22. Oyewola D.O. Dada E.G. Exploring machine learning: A scientometrics approach using bibliometrix and VOSviewer. SN Appl. Sci. 2022 4 5 143 10.1007/s42452‑022‑05027‑7 35434524
    [Google Scholar]
  23. Aria M. Cuccurullo C. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetrics 2017 11 4 959 975 10.1016/j.joi.2017.08.007
    [Google Scholar]
  24. Derviş H. Bibliometric analysis using bibliometrix an R package. J. Scientometr. Res. 2020 8 3 156 160 10.5530/jscires.8.3.32
    [Google Scholar]
  25. Rodríguez-Soler R. Uribe-Toril J. De Pablo Valenciano J. Worldwide trends in the scientific production on rural depopulation, a bibliometric analysis using bibliometrix R-tool. Land Use Policy 2020 97 104787 10.1016/j.landusepol.2020.104787
    [Google Scholar]
  26. Zhao R. Wang X. Liu Z. Qi Y. Zhang Z. Chang R. Research on the impact evaluation of academic journals based on altmetrics and citation indicators. Proc. Assoc. Inf. Sci. Technol. 2019 56 1 336 345 10.1002/pra2.27
    [Google Scholar]
  27. Batista-Canino R.M. Santana-Hernández L. Medina-Brito P. A scientometric analysis on entrepreneurial intention literature: Delving deeper into local citation. Heliyon 2023 9 2 e13046 10.1016/j.heliyon.2023.e13046 36755622
    [Google Scholar]
  28. Durieux V. Gevenois P.A. Bibliometric indicators: Quality measurements of scientific publication. Radiology 2010 255 2 342 351 10.1148/radiol.09090626 20413749
    [Google Scholar]
  29. Tan Y. Song Q. Research trends and hotspots on the links between caveolin and cancer: Bibliometric and visual analysis from 2003 to 2022. Front. Pharmacol. 2023 14 1237456 10.3389/fphar.2023.1237456 37576808
    [Google Scholar]
  30. Winkler F. Venkatesh H.S. Amit M. Batchelor T. Demir I.E. Deneen B. Gutmann D.H. Hervey-Jumper S. Kuner T. Mabbott D. Platten M. Rolls A. Sloan E.K. Wang T.C. Wick W. Venkataramani V. Monje M. Cancer neuroscience: State of the field, emerging directions. Cell 2023 186 8 1689 1707 10.1016/j.cell.2023.02.002 37059069
    [Google Scholar]
  31. Jacob J. Durand T. Feuvret L. Mazeron J.J. Delattre J.Y. Hoang-Xuan K. Psimaras D. Douzane H. Ribeiro M. Capelle L. Carpentier A. Ricard D. Maingon P. Cognitive impairment and morphological changes after radiation therapy in brain tumors: A review. Radiother. Oncol. 2018 128 2 221 228 10.1016/j.radonc.2018.05.027 30041961
    [Google Scholar]
  32. Toader C. Tataru C.P. Munteanu O. Covache-Busuioc R.A. Serban M. Ciurea A.V. Enyedi M. Revolutionizing neuroimmunology: Unraveling immune dynamics and therapeutic innovations in CNS disorders. Int. J. Mol. Sci. 2024 25 24 13614 10.3390/ijms252413614 39769374
    [Google Scholar]
  33. Surendran H.P. Narmadha M.P. Kalavagunta S. Sasidharan A. Dutta D. Preservation of cognitive function after brain irradiation. J. Oncol. Pharm. Pract. 2022 28 5 1182 1188 10.1177/10781552221077037 35112915
    [Google Scholar]
  34. Bassant M.H. Court L. Effects of whole-body gamma irradiation on the activity of rabbit hippocampal neurons. Radiat. Res. 1978 75 3 593 606 10.2307/3574846 724988
    [Google Scholar]
  35. Pellmar T.C. Lepinski D.L. Gamma radiation (5-10 Gy) impairs neuronal function in the guinea pig hippocampus. Radiat. Res. 1993 136 2 255 261 10.2307/3578619 8248483
    [Google Scholar]
  36. Kalm M. Karlsson N. Nilsson M.K.L. Blomgren K. Loss of hippocampal neurogenesis, increased novelty-induced activity, decreased home cage activity, and impaired reversal learning one year after irradiation of the young mouse brain. Exp. Neurol. 2013 247 402 409 10.1016/j.expneurol.2013.01.006 23333566
    [Google Scholar]
  37. Mizumatsu S. Monje M.L. Morhardt D.R. Rola R. Palmer T.D. Fike J.R. Extreme sensitivity of adult neurogenesis to low doses of X-irradiation. Cancer Res. 2003 63 14 4021 4027 12874001
    [Google Scholar]
  38. Chen X. Jiang S. Wang R. Bao X. Li Y. Neural stem cells in the treatment of Alzheimer’s disease: Current status, challenges, and future prospects. J. Alzheimers Dis. 2023 94 s1 S173 S186 10.3233/JAD‑220721 36336934
    [Google Scholar]
  39. Schmal Z. Rübe C.E. Region-specific effects of fractionated low-dose versus single-dose radiation on hippocampal neurogenesis and neuroinflammation. Cancers (Basel) 2022 14 22 5477 10.3390/cancers14225477 36428572
    [Google Scholar]
  40. Chen H. Goodus M.T. de Toledo S.M. Azzam E.I. Levison S.W. Souayah N. Ionizing radiation perturbs cell cycle progression of neural precursors in the subventricular zone without affecting their long-term self-renewal. ASN Neuro 2015 7 3 1759091415578026 10.1177/1759091415578026 26056396
    [Google Scholar]
  41. Warrington J.P. Csiszar A. Mitschelen M. Lee Y.W. Sonntag W.E. Whole brain radiation-induced impairments in learning and memory are time-sensitive and reversible by systemic hypoxia. PLoS One 2012 7 1 e30444 10.1371/journal.pone.0030444 22279591
    [Google Scholar]
  42. Venkatesulu B.P. Mahadevan L.S. Aliru M.L. Yang X. Bodd M.H. Singh P.K. Yusuf S.W. Abe J. Krishnan S. Radiation-induced endothelial vascular injury: A review of possible mechanisms. JACC Basic Transl. Sci. 2018 3 4 563 572 10.1016/j.jacbts.2018.01.014 30175280
    [Google Scholar]
  43. Rooney J.W. Laack N.N. Pharmacological interventions to treat or prevent neurocognitive decline after brain radiation. CNS Oncol. 2013 2 6 531 541 10.2217/cns.13.60 25054823
    [Google Scholar]
  44. Jain V. de Godoy L.L. Mohan S. Chawla S. Learned K. Jain G. Wehrli F.W. Alonso-Basanta M. Cerebral hemodynamic and metabolic dysregulation in the postradiation brain. J. Neuroimaging 2022 32 6 1027 1043 10.1111/jon.13053 36156829
    [Google Scholar]
  45. Petr J. Hogeboom L. Nikulin P. Wiegers E. Schroyen G. Kallehauge J. Chmelík M. Clement P. Nechifor R.E. Fodor L.A. De Witt Hamer P.C. Barkhof F. Pernet C. Lequin M. Deprez S. Jančálek R. Mutsaerts H.J.M.M. Pizzini F.B. Emblem K.E. Keil V.C. A systematic review on the use of quantitative imaging to detect cancer therapy adverse effects in normal-appearing brain tissue. MAGMA 2022 35 1 163 186 10.1007/s10334‑021‑00985‑2 34919195
    [Google Scholar]
  46. Pál B. Astrocytic actions on extrasynaptic neuronal currents. Front. Cell. Neurosci. 2015 9 474 10.3389/fncel.2015.00474 26696832
    [Google Scholar]
  47. Marsland A. Krajina K. Gianaros P.J. 64. Systemic inflammation and the integrity of brain white matter tracts. Brain Behav. Immun. 2012 26 S18 10.1016/j.bbi.2012.07.088
    [Google Scholar]
  48. Gibson E.M. Monje M. Microglia in cancer therapy-related cognitive impairment. Trends Neurosci. 2021 44 6 441 451 10.1016/j.tins.2021.02.003 33674135
    [Google Scholar]
  49. Gorbunov N.V. Kiang J.G. Brain damage and patterns of neurovascular disorder after ionizing irradiation. Complications in radiotherapy and radiation combined injury. Radiat. Res. 2021 196 1 1 16 10.1667/RADE‑20‑00147.1 33979447
    [Google Scholar]
  50. Michaelidesová A. Konířová J. Bartůněk P. Zíková M. Effects of radiation therapy on neural stem cells. Genes (Basel) 2019 10 9 640 10.3390/genes10090640 31450566
    [Google Scholar]
  51. Cramer C.K. Cummings T.L. Andrews R.N. Strowd R. Rapp S.R. Shaw E.G. Chan M.D. Lesser G.J. Treatment of radiation-induced cognitive decline in adult brain tumor patients. Curr. Treat. Options Oncol. 2019 20 5 42 10.1007/s11864‑019‑0641‑6 30963289
    [Google Scholar]
  52. Scaringi C. Agolli L. Minniti G. Technical advances in radiation therapy for brain tumors. Anticancer Res. 2018 38 11 6041 6045 10.21873/anticanres.12954 30396918
    [Google Scholar]
  53. Vogin G. Hettal L. Bartau C. Thariat J. Claeys M.V. Peyraga G. Retif P. Schick U. Antoni D. Bodgal Z. Dhermain F. Feuvret L. Cranial organs at risk delineation: Heterogenous practices in radiotherapy planning. Radiat. Oncol. 2021 16 1 26 10.1186/s13014‑021‑01756‑y 33541394
    [Google Scholar]
  54. Haldbo-Classen L. Amidi A. Lukacova S. Wu L.M. Oettingen G. Lassen-Ramshad Y. Zachariae R. Kallehauge J.F. Høyer M. Cognitive impairment following radiation to hippocampus and other brain structures in adults with primary brain tumours. Radiother. Oncol. 2020 148 1 7 10.1016/j.radonc.2020.03.023 32298906
    [Google Scholar]
  55. Gommlich A. Raschke F. Wahl H. Troost E.G.C. Retrospective assessment of MRI-based volumetric changes of normal tissues in glioma patients following radio(chemo)therapy. Clin. Transl. Radiat. Oncol. 2018 8 17 21 10.1016/j.ctro.2017.11.008 29594238
    [Google Scholar]
  56. Ma J. Cao H. Hou D. Wang W. Liu T. Investigation of high-dose radiotherapy’s effect on brain structure aggravated cognitive impairment and deteriorated patient psychological status in brain tumor treatment. Sci. Rep. 2024 14 1 10149 10.1038/s41598‑024‑59694‑0 38698048
    [Google Scholar]
  57. Wartena R. Brandsma D. Belderbos J. Are memantine, methylphenidate and donepezil effective in sparing cognitive functioning after brain irradiation? J. Cancer Metastasis Treat. 2018 2018 4 59 10.20517/2394‑4722.2018.66
    [Google Scholar]
  58. Brown P.D. Pugh S. Laack N.N. Wefel J.S. Khuntia D. Meyers C. Choucair A. Fox S. Suh J.H. Roberge D. Kavadi V. Bentzen S.M. Mehta M.P. Watkins-Bruner D. Memantine for the prevention of cognitive dysfunction in patients receiving whole-brain radiotherapy: A randomized, double-blind, placebo-controlled trial. Neuro-oncol. 2013 15 10 1429 1437 10.1093/neuonc/not114 23956241
    [Google Scholar]
  59. Attia A. Page B.R. Lesser G.J. Chan M. Treatment of radiation-induced cognitive decline. Curr. Treat. Options Oncol. 2014 15 4 539 550 10.1007/s11864‑014‑0307‑3 25228143
    [Google Scholar]
  60. Shamsesfandabadi P. Patel A. Liang Y. Shepard M. Wegner R. Radiation-induced cognitive decline: Challenges and solutions. Cancer Manag. Res. 2024 16 1043 1052 10.2147/CMAR.S441360 39183756
    [Google Scholar]
  61. Erpolat O.P. Demircan N.V. Sarıbas G.S. Kuzucu P. Senturk E. Elmas C. Borcek A. Kurt G. A comparison of ramipril and bevacizumab to mitigate radiation-induced brain necrosis: An experimental study. World Neurosurg. 2020 144 e210 e220 10.1016/j.wneu.2020.08.081 32822951
    [Google Scholar]
  62. Jenrow K.A. Brown S.L. Liu J. Kolozsvary A. Lapanowski K. Kim J.H. Ramipril mitigates radiation-induced impairment of neurogenesis in the rat dentate gyrus. Radiat. Oncol. 2010 5 1 6 10.1186/1748‑717X‑5‑6 20122169
    [Google Scholar]
  63. Fidaleo M. Fanelli F. Ceru M. Moreno S. Neuroprotective properties of peroxisome proliferator-activated receptor alpha (PPARα) and its lipid ligands. Curr. Med. Chem. 2014 21 24 2803 2821 10.2174/0929867321666140303143455 24606520
    [Google Scholar]
  64. Ramanan S. Kooshki M. Zhao W. Hsu F.C. Riddle D.R. Robbins M.E. The PPARalpha agonist fenofibrate preserves hippocampal neurogenesis and inhibits microglial activation after whole-brain irradiation. Int. J. Radiat. Oncol. Biol. Phys. 2009 75 3 870 877 10.1016/j.ijrobp.2009.06.059 19801103
    [Google Scholar]
  65. Acharya M.M. Rosi S. Jopson T. Limoli C.L. Human neural stem cell transplantation provides long-term restoration of neuronal plasticity in the irradiated hippocampus. Cell Transplant. 2015 24 4 691 702 10.3727/096368914X684600 25289634
    [Google Scholar]
  66. Soria B. Martin-Montalvo A. Aguilera Y. Mellado-Damas N. López-Beas J. Herrera-Herrera I. López E. Barcia J.A. Alvarez-Dolado M. Hmadcha A. Capilla-González V. Human mesenchymal stem cells prevent neurological complications of radiotherapy. Front. Cell. Neurosci. 2019 13 204 10.3389/fncel.2019.00204 31156392
    [Google Scholar]
  67. Duncan T. Valenzuela M. Alzheimer’s disease, dementia, and stem cell therapy. Stem Cell Res. Ther. 2017 8 1 111 10.1186/s13287‑017‑0567‑5 28494803
    [Google Scholar]
  68. Wong-Goodrich S.J.E. Pfau M.L. Flores C.T. Fraser J.A. Williams C.L. Jones L.W. Voluntary running prevents progressive memory decline and increases adult hippocampal neurogenesis and growth factor expression after whole-brain irradiation. Cancer Res. 2010 70 22 9329 9338 10.1158/0008‑5472.CAN‑10‑1854 20884629
    [Google Scholar]
  69. Kingwell K. An exercise-linked mediator of memory protection. Nat. Rev. Drug Discov. 2019 18 2 97 10.1038/d41573‑019‑00006‑x 30710134
    [Google Scholar]
  70. Johnson D.R. Sawyer A.M. Meyers C.A. O’Neill B.P. Wefel J.S. Early measures of cognitive function predict survival in patients with newly diagnosed glioblastoma. Neuro-oncol. 2012 14 6 808 816 10.1093/neuonc/nos082 22508762
    [Google Scholar]
  71. Országhová Z. Mego M. Chovanec M. Long-term cognitive dysfunction in cancer survivors. Front. Mol. Biosci. 2021 8 770413 10.3389/fmolb.2021.770413 34970595
    [Google Scholar]
  72. Lange M. Clarisse B. Leconte A. Dembélé K.P. Lequesne J. Nicola C. Dubois M. Derues L. Gidron Y. Castel H. Joly F. Cognitive assessment in patients treated by immunotherapy: The prospective Cog-Immuno trial. BMC Cancer 2022 22 1 1308 10.1186/s12885‑022‑10384‑y 36513991
    [Google Scholar]
  73. Kiang A. Weinberg V.K. Cheung K.H.N. Shugard E. Chen J. Quivey J.M. Yom S.S. Long-term disease-specific and cognitive quality of life after intensity-modulated radiation therapy: A cross-sectional survey of nasopharyngeal carcinoma survivors. Radiat. Oncol. 2016 11 1 127 10.1186/s13014‑016‑0704‑9 27671196
    [Google Scholar]
  74. McDowell L.J. Rock K. Xu W. Chan B. Waldron J. Lu L. Ezzat S. Pothier D. Bernstein L.J. So N. Huang S.H. Giuliani M. Hope A. O’Sullivan B. Bratman S.V. Cho J. Kim J. Jang R. Bayley A. Ringash J. Long-term late toxicity, quality of life, and emotional distress in patients with nasopharyngeal carcinoma treated with intensity modulated radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 2018 102 2 340 352 10.1016/j.ijrobp.2018.05.060 30191868
    [Google Scholar]
  75. Parihar V.K. Allen B. Tran K.K. Macaraeg T.G. Chu E.M. Kwok S.F. Chmielewski N.N. Craver B.M. Baulch J.E. Acharya M.M. Cucinotta F.A. Limoli C.L. What happens to your brain on the way to Mars. Sci. Adv. 2015 1 4 e1400256 10.1126/sciadv.1400256 26180843
    [Google Scholar]
  76. Braun U. Schäfer A. Walter H. Erk S. Romanczuk-Seiferth N. Haddad L. Schweiger J.I. Grimm O. Heinz A. Tost H. Meyer-Lindenberg A. Bassett D.S. Dynamic reconfiguration of frontal brain networks during executive cognition in humans. Proc. Natl. Acad. Sci. USA 2015 112 37 11678 11683 10.1073/pnas.1422487112 26324898
    [Google Scholar]
  77. Schimmel W.C.M. Gehring K. Eekers D.B.P. Hanssens P.E.J. Sitskoorn M.M. Cognitive effects of stereotactic radiosurgery in adult patients with brain metastases: A systematic review. Adv. Radiat. Oncol. 2018 3 4 568 581 10.1016/j.adro.2018.06.003 30370357
    [Google Scholar]
  78. Duan F. Cheng J. Jiang J. Chang J. Zhang Y. Qiu S. Whole-brain changes in white matter microstructure after radiotherapy for nasopharyngeal carcinoma: A diffusion tensor imaging study. Eur. Arch. Otorhinolaryngol. 2016 273 12 4453 4459 10.1007/s00405‑016‑4127‑x 27272052
    [Google Scholar]
  79. Chinnaiyan P. McTyre E. Scott J. Whole brain radiotherapy for brain metastasis. Surg. Neurol. Int. 2013 4 5 236 10.4103/2152‑7806.111301 23717795
    [Google Scholar]
  80. Connor M. Karunamuni R. McDonald C. White N. Pettersson N. Moiseenko V. Seibert T. Marshall D. Cervino L. Bartsch H. Kuperman J. Murzin V. Krishnan A. Farid N. Dale A. Hattangadi-Gluth J. Dose-dependent white matter damage after brain radiotherapy. Radiother. Oncol. 2016 121 2 209 216 10.1016/j.radonc.2016.10.003 27776747
    [Google Scholar]
  81. Hanbury D.B. Robbins M.E. Bourland J.D. Wheeler K.T. Peiffer A.M. Mitchell E.L. Daunais J.B. Deadwyler S.A. Cline J.M. Pathology of fractionated whole-brain irradiation in rhesus monkeys (Macaca mulatta). Radiat. Res. 2015 183 3 367 374 10.1667/RR13898.1 25688996
    [Google Scholar]
  82. Kempf S.J. Casciati A. Buratovic S. Janik D. Toerne C. Ueffing M. Neff F. Moertl S. Stenerlöw B. Saran A. Atkinson M.J. Eriksson P. Pazzaglia S. Tapio S. The cognitive defects of neonatally irradiated mice are accompanied by changed synaptic plasticity, adult neurogenesis and neuroinflammation. Mol. Neurodegener. 2014 9 1 57 10.1186/1750‑1326‑9‑57 25515237
    [Google Scholar]
  83. Yahya N. Manan H.A. Utilisation of diffusion tensor imaging in intracranial radiotherapy and radiosurgery planning for white matter dose optimization: A systematic review. World Neurosurg. 2019 130 e188 e198 10.1016/j.wneu.2019.06.027 31326352
    [Google Scholar]
  84. Qiu Y. Guo Z. Han L. Yang Y. Li J. Liu S. Lv X. Network-level dysconnectivity in patients with nasopharyngeal carcinoma (NPC) early post-radiotherapy: Longitudinal resting state fMRI study. Brain Imaging Behav. 2018 12 5 1279 1289 10.1007/s11682‑017‑9801‑0 29164505
    [Google Scholar]
/content/journals/cn/10.2174/011570159X368986250415105149
Loading
/content/journals/cn/10.2174/011570159X368986250415105149
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test