Skip to content
2000
image of The Mechanisms and Application Prospects of Astrocyte Reprogramming into Neurons in Central Nervous System Diseases

Abstract

Central nervous system (CNS) diseases, including ischemic stroke (IS), Alzheimer’s disease (AD), and Parkinson’s disease (PD), are leading causes of global disability and mortality, characterized by progressive neuronal loss and irreversible neural circuit damage. Despite advances in understanding their pathophysiology, therapeutic options remain limited due to the complexity of disease mechanisms and challenges in delivering treatments across the blood-brain barrier (BBB). In this context, astrocyte reprogramming has emerged as a groundbreaking strategy for neural repair. By leveraging the plasticity of astrocytes, researchers have demonstrated the potential to convert these glial cells into functional neurons, offering a novel approach to replenish lost neurons and restore neural function. This review explores the latest advancements in astrocyte reprogramming, focusing on transcription factor-mediated, miRNA-induced, and small molecule-based strategies, as well as the molecular mechanisms underlying this process. We also discuss the therapeutic potential of astrocyte reprogramming in CNS diseases, including IS, AD, PD, and other neurodegenerative disorders, while addressing the challenges and future directions for clinical translation. Through a systematic analysis of recent studies, this review highlights the promise of astrocyte reprogramming as a transformative therapeutic strategy for CNS repair, providing new hope for patients with debilitating neurological conditions.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X379061250415094751
2025-05-08
2025-09-15
Loading full text...

Full text loading...

References

  1. Wang F. Cheng L. Zhang X. Reprogramming glial cells into functional neurons for neuro-regeneration: Challenges and promise. Neurosci. Bull. 2021 37 11 1625 1636 10.1007/s12264‑021‑00751‑3 34283396
    [Google Scholar]
  2. Wan W. Ao X. Chen Q. Yu Y. Ao L. Xing W. Guo W. Wu X. Pu C. Hu X. Li Z. Yao M. Luo D. Xu X. METTL3/IGF2BP3 axis inhibits tumor immune surveillance by upregulating N6-methyladenosine modification of PD-L1 mRNA in breast cancer. Mol. Cancer 2022 21 1 60 10.1186/s12943‑021‑01447‑y 35197058
    [Google Scholar]
  3. Wu H. Zhang T. Li N. Gao J. Cell membrane-based biomimetic vehicles for effective central nervous system target delivery: Insights and challenges. J. Control. Release 2023 360 169 184 10.1016/j.jconrel.2023.06.023 37343724
    [Google Scholar]
  4. Fan Y. Chen Z. Zhang M. Role of exosomes in the pathogenesis, diagnosis, and treatment of central nervous system diseases. J. Transl. Med. 2022 20 1 291 10.1186/s12967‑022‑03493‑6 35761337
    [Google Scholar]
  5. Zhang X. Li H. Zhao Y. Zhao T. Wang Z. Tang Q. Neuronal injury after ischemic stroke: Mechanisms of crosstalk involving necroptosis. J. Mol. Neurosci. 2025 75 1 15 10.1007/s12031‑025‑02313‑y 39903429
    [Google Scholar]
  6. Liu X. Wu W. Li X. Wang C. Chai K. Yuan F. Zheng H. Yao Y. Li C. Ye Z.C. Zha D. The compound (E)-2-(3,4-dihydroxystyryl)-3-hydroxy-4H-pyran-4-one alleviates neuroinflammation and cognitive impairment in a mouse model of Alzheimer’s disease. Neural Regen. Res. 2025 20 11 3330 3344 10.4103/NRR.NRR‑D‑23‑01890 39715098
    [Google Scholar]
  7. Zhang Y. Mo C. Ai P. He X. Xiao Q. Yang X. Pharmacomicrobiomics: A new field contributing to optimizing drug therapy in Parkinson’s disease. Gut Microbes 2025 17 1 2454937 10.1080/19490976.2025.2454937 39875349
    [Google Scholar]
  8. Li W. Cheng J. He F. Zhang P. Zhang N. Wang J. Song Q. Hou Y. Gan Z. Cell membrane-based nanomaterials for theranostics of central nervous system diseases. J. Nanobiotechnology 2023 21 1 276 10.1186/s12951‑023‑02004‑z 37596631
    [Google Scholar]
  9. Toader C. Dumitru A.V. Eva L. Serban M. Covache-Busuioc R.A. Ciurea A.V. Nanoparticle strategies for treating cns disorders: A comprehensive review of drug delivery and theranostic applications. Int. J. Mol. Sci. 2024 25 24 13302 10.3390/ijms252413302 39769066
    [Google Scholar]
  10. Liu T. Li X. Zhou X. Chen W. Wen A. Liu M. Ding Y. PI3K/AKT signaling and neuroprotection in ischemic stroke: Molecular mechanisms and therapeutic perspectives. Neural Regen. Res. 2025 20 10 2758 2775 10.4103/NRR.NRR‑D‑24‑00568 39435629
    [Google Scholar]
  11. Sharma C. Kim S. Eo H. Kim S.R. Recovery of the injured neural system through gene delivery to surviving neurons in Parkinson’s disease. Neural Regen. Res. 2025 20 10 2855 2861 10.4103/NRR.NRR‑D‑24‑00724 39610091
    [Google Scholar]
  12. Wei J. Wang M. Li S. Han R. Xu W. Zhao A. Yu Q. Li H. Li M. Chi G. Reprogramming of astrocytes and glioma cells into neurons for central nervous system repair and glioblastoma therapy. Biomed. Pharmacother. 2024 176 116806 10.1016/j.biopha.2024.116806 38796971
    [Google Scholar]
  13. Gao F. Li J-J. Talifu Z. Liu J-Y. Pan Y-Z. Ke H. Zhang C-J. Xu X. Yu Y. Du L-J. In vivo astrocyte-to-neuron reprogramming for central nervous system regeneration: A narrative review. Neural Regen. Res. 2023 18 4 750 755 10.4103/1673‑5374.353482 36204831
    [Google Scholar]
  14. Chen Y.C. Ma N.X. Pei Z.F. Wu Z. Do-Monte F.H. Keefe S. Yellin E. Chen M.S. Yin J.C. Lee G. Minier-Toribio A. Hu Y. Bai Y.T. Lee K. Quirk G.J. Chen G. A NeuroD1 AAV-based gene therapy for functional brain repair after ischemic injury through in vivo astrocyte-to-neuron conversion. Mol. Ther. 2020 28 1 217 234 10.1016/j.ymthe.2019.09.003 31551137
    [Google Scholar]
  15. Wei Z.Y.D. Shetty A.K. Treating Parkinson’s disease by astrocyte reprogramming: Progress and challenges. Sci. Adv. 2021 7 26 eabg3198 10.1126/sciadv.abg3198 34162545
    [Google Scholar]
  16. Sikora E. Bielak-Zmijewska A. Dudkowska M. Krzystyniak A. Mosieniak G. Wesierska M. Wlodarczyk J. Cellular senescence in brain aging. Front. Aging Neurosci. 2021 13 646924 10.3389/fnagi.2021.646924 33732142
    [Google Scholar]
  17. Orre M. Kamphuis W. Osborn L.M. Jansen A.H.P. Kooijman L. Bossers K. Hol E.M. Isolation of glia from Alzheimer’s mice reveals inflammation and dysfunction. Neurobiol. Aging 2014 35 12 2746 2760 10.1016/j.neurobiolaging.2014.06.004 25002035
    [Google Scholar]
  18. Jyothi H.J. Vidyadhara D.J. Mahadevan A. Philip M. Parmar S.K. Manohari S.G. Shankar S.K. Raju T.R. Alladi P.A. Aging causes morphological alterations in astrocytes and microglia in human substantia nigra pars compacta. Neurobiol. Aging 2015 36 12 3321 3333 10.1016/j.neurobiolaging.2015.08.024 26433682
    [Google Scholar]
  19. John Lin C.C. Yu K. Hatcher A. Huang T.W. Lee H.K. Carlson J. Weston M.C. Chen F. Zhang Y. Zhu W. Mohila C.A. Ahmed N. Patel A.J. Arenkiel B.R. Noebels J.L. Creighton C.J. Deneen B. Identification of diverse astrocyte populations and their malignant analogs. Nat. Neurosci. 2017 20 3 396 405 10.1038/nn.4493 28166219
    [Google Scholar]
  20. Bayraktar O.A. Fuentealba L.C. Alvarez-Buylla A. Rowitch D.H. Astrocyte development and heterogeneity. Cold Spring Harb. Perspect. Biol. 2015 7 1 a020362 10.1101/cshperspect.a020362 25414368
    [Google Scholar]
  21. Clarke L.E. Barres B.A. Emerging roles of astrocytes in neural circuit development. Nat. Rev. Neurosci. 2013 14 5 311 321 10.1038/nrn3484 23595014
    [Google Scholar]
  22. Heins N. Malatesta P. Cecconi F. Nakafuku M. Tucker K.L. Hack M.A. Chapouton P. Barde Y.A. Götz M. Glial cells generate neurons: The role of the transcription factor Pax6. Nat. Neurosci. 2002 5 4 308 315 10.1038/nn828 11896398
    [Google Scholar]
  23. Berninger B. Costa M.R. Koch U. Schroeder T. Sutor B. Grothe B. Götz M. Functional properties of neurons derived from in vitro reprogrammed postnatal astroglia. J. Neurosci. 2007 27 32 8654 8664 10.1523/JNEUROSCI.1615‑07.2007 17687043
    [Google Scholar]
  24. Heinrich C. Blum R. Gascón S. Masserdotti G. Tripathi P. Sánchez R. Tiedt S. Schroeder T. Götz M. Berninger B. Directing astroglia from the cerebral cortex into subtype specific functional neurons. PLoS Biol. 2010 8 5 e1000373 10.1371/journal.pbio.1000373 20502524
    [Google Scholar]
  25. Addis R.C. Hsu F.C. Wright R.L. Dichter M.A. Coulter D.A. Gearhart J.D. Efficient conversion of astrocytes to functional midbrain dopaminergic neurons using a single polycistronic vector. PLoS One 2011 6 12 e28719 10.1371/journal.pone.0028719 22174877
    [Google Scholar]
  26. Niu W. Zang T. Zou Y. Fang S. Smith D.K. Bachoo R. Zhang C.L. In vivo reprogramming of astrocytes to neuroblasts in the adult brain. Nat. Cell Biol. 2013 15 10 1164 1175 10.1038/ncb2843 24056302
    [Google Scholar]
  27. Torper O. Pfisterer U. Wolf D.A. Pereira M. Lau S. Jakobsson J. Björklund A. Grealish S. Parmar M. Generation of induced neurons via direct conversion in vivo. Proc. Natl. Acad. Sci. USA 2013 110 17 7038 7043 10.1073/pnas.1303829110 23530235
    [Google Scholar]
  28. Sofroniew M.V. Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci. 2009 32 12 638 647 10.1016/j.tins.2009.08.002 19782411
    [Google Scholar]
  29. Robel S. Berninger B. Götz M. The stem cell potential of glia: Lessons from reactive gliosis. Nat. Rev. Neurosci. 2011 12 2 88 104 10.1038/nrn2978 21248788
    [Google Scholar]
  30. Sofroniew M.V. Vinters H.V. Astrocytes: Biology and pathology. Acta Neuropathol. 2010 119 1 7 35 10.1007/s00401‑009‑0619‑8 20012068
    [Google Scholar]
  31. Guo Z. Zhang L. Wu Z. Chen Y. Wang F. Chen G. In vivo direct reprogramming of reactive glial cells into functional neurons after brain injury and in an Alzheimer’s disease model. Cell Stem Cell 2014 14 2 188 202 10.1016/j.stem.2013.12.001 24360883
    [Google Scholar]
  32. Liu Y. Miao Q. Yuan J. Han S. Zhang P. Li S. Rao Z. Zhao W. Ye Q. Geng J. Zhang X. Cheng L. Ascl1 converts dorsal midbrain astrocytes into functional neurons in vivo. J. Neurosci. 2015 35 25 9336 9355 10.1523/JNEUROSCI.3975‑14.2015 26109658
    [Google Scholar]
  33. Su Z. Niu W. Liu M.L. Zou Y. Zhang C.L. In vivo conversion of astrocytes to neurons in the injured adult spinal cord. Nat. Commun. 2014 5 1 3338 10.1038/ncomms4338 24569435
    [Google Scholar]
  34. Wang L.L. Su Z. Tai W. Zou Y. Xu X.M. Zhang C.L. The p53 pathway controls SOX2-mediated reprogramming in the adult mouse spinal cord. Cell Rep. 2016 17 3 891 903 10.1016/j.celrep.2016.09.038 27732862
    [Google Scholar]
  35. Ingusci S. Hall B.L. Goins W.F. Cohen J.B. Glorioso J.C. Viral vectors for gene delivery to the central nervous system. Handb. Clin. Neurol. 2024 205 59 81 10.1016/B978‑0‑323‑90120‑8.00001‑0 39341663
    [Google Scholar]
  36. Wang Q. Li W. Lei W. Chen G. Xiang Z. Xu L. Liu M. Lineage tracing of direct astrocyte-to-neuron conversion in the mouse cortex. Neural Regen. Res. 2021 16 4 750 756 10.4103/1673‑5374.295925 33063738
    [Google Scholar]
  37. Puls B. Ding Y. Zhang F. Pan M. Lei Z. Pei Z. Jiang M. Bai Y. Forsyth C. Metzger M. Rana T. Zhang L. Ding X. Keefe M. Cai A. Redilla A. Lai M. He K. Li H. Chen G. Regeneration of functional neurons after spinal cord injury via in situ NeuroD1-mediated astrocyte-to-neuron conversion. Front. Cell Dev. Biol. 2020 8 591883 10.3389/fcell.2020.591883 33425896
    [Google Scholar]
  38. Brulet R. Matsuda T. Zhang L. Miranda C. Giacca M. Kaspar B.K. Nakashima K. Hsieh J. NEUROD1 instructs neuronal conversion in non-reactive astrocytes. Stem Cell Reports 2017 8 6 1506 1515 10.1016/j.stemcr.2017.04.013 28506534
    [Google Scholar]
  39. Duan C.L. Liu C.W. Shen S.W. Yu Z. Mo J.L. Chen X.H. Sun F.Y. Striatal astrocytes transdifferentiate into functional mature neurons following ischemic brain injury. Glia 2015 63 9 1660 1670 10.1002/glia.22837 26031629
    [Google Scholar]
  40. Liu S. Xu X. Omari-Siaw E. Yu J. Deng W. Progress of reprogramming astrocytes into neuron. Mol. Cell. Neurosci. 2024 130 103947 10.1016/j.mcn.2024.103947 38862082
    [Google Scholar]
  41. Lentz T.B. Gray S.J. Samulski R.J. Viral vectors for gene delivery to the central nervous system. Neurobiol. Dis. 2012 48 2 179 188 10.1016/j.nbd.2011.09.014 22001604
    [Google Scholar]
  42. Hewett J.A. Determinants of regional and local diversity within the astroglial lineage of the normal central nervous system. J. Neurochem. 2009 110 6 1717 1736 10.1111/j.1471‑4159.2009.06288.x 19627442
    [Google Scholar]
  43. Zhuo L. Theis M. Alvarez-Maya I. Brenner M. Willecke K. Messing A. hGFAP‐cre transgenic mice for manipulation of glial and neuronal function in vivo. Genesis 2001 31 2 85 94 10.1002/gene.10008 11668683
    [Google Scholar]
  44. Jopling C. Boue S. Belmonte J.C.I. Dedifferentiation, transdifferentiation and reprogramming: three routes to regeneration. Nat. Rev. Mol. Cell Biol. 2011 12 2 79 89 10.1038/nrm3043 21252997
    [Google Scholar]
  45. Janowska J. Gargas J. Ziemka-Nalecz M. Zalewska T. Buzanska L. Sypecka J. Directed glial differentiation and transdifferentiation for neural tissue regeneration. Exp. Neurol. 2019 319 112813 10.1016/j.expneurol.2018.08.010 30171864
    [Google Scholar]
  46. Sugimori M. Nagao M. Bertrand N. Parras C.M. Guillemot F. Nakafuku M. Combinatorial actions of patterning and HLH transcription factors in the spatiotemporal control of neurogenesis and gliogenesis in the developing spinal cord. Development 2007 134 8 1617 1629 10.1242/dev.001255 17344230
    [Google Scholar]
  47. Zhang L. Yin J.C. Yeh H. Ma N.X. Lee G. Chen X.A. Wang Y. Lin L. Chen L. Jin P. Wu G.Y. Chen G. Small molecules efficiently reprogram human astroglial cells into functional neurons. Cell Stem Cell 2015 17 6 735 747 10.1016/j.stem.2015.09.012 26481520
    [Google Scholar]
  48. Wang L.L. Serrano C. Zhong X. Ma S. Zou Y. Zhang C.L. Revisiting astrocyte to neuron conversion with lineage tracing in vivo. Cell 2021 184 21 5465 5481.e16 10.1016/j.cell.2021.09.005 34582787
    [Google Scholar]
  49. Rivetti di Val Cervo P. Romanov R.A. Spigolon G. Masini D. Martín-Montañez E. Toledo E.M. La Manno G. Feyder M. Pifl C. Ng Y.H. Sánchez S.P. Linnarsson S. Wernig M. Harkany T. Fisone G. Arenas E. Induction of functional dopamine neurons from human astrocytes in vitro and mouse astrocytes in a Parkinson’s disease model. Nat. Biotechnol. 2017 35 5 444 452 10.1038/nbt.3835 28398344
    [Google Scholar]
  50. Wu Z. Parry M. Hou X.Y. Liu M.H. Wang H. Cain R. Pei Z.F. Chen Y.C. Guo Z.Y. Abhijeet S. Chen G. Gene therapy conversion of striatal astrocytes into GABAergic neurons in mouse models of Huntington’s disease. Nat. Commun. 2020 11 1 1105 10.1038/s41467‑020‑14855‑3 32107381
    [Google Scholar]
  51. Li H. Chen G. In vivo reprogramming for CNS repair: Regenerating neurons from endogenous glial cells. Neuron 2016 91 4 728 738 10.1016/j.neuron.2016.08.004 27537482
    [Google Scholar]
  52. Latchman D.S. Transcription factors: An overview. Int. J. Biochem. Cell Biol. 1997 29 12 1305 1312 10.1016/S1357‑2725(97)00085‑X 9570129
    [Google Scholar]
  53. Ohori Y. Yamamoto S. Nagao M. Sugimori M. Yamamoto N. Nakamura K. Nakafuku M. Growth factor treatment and genetic manipulation stimulate neurogenesis and oligodendrogenesis by endogenous neural progenitors in the injured adult spinal cord. J. Neurosci. 2006 26 46 11948 11960 10.1523/JNEUROSCI.3127‑06.2006 17108169
    [Google Scholar]
  54. Zhou Q. Brown J. Kanarek A. Rajagopal J. Melton D.A. In vivo reprogramming of adult pancreatic exocrine cells to β-cells. Nature 2008 455 7213 627 632 10.1038/nature07314 18754011
    [Google Scholar]
  55. Jiang M.Q. Yu S.P. Wei Z.Z. Zhong W. Cao W. Gu X. Wu A. McCrary M.R. Berglund K. Wei L. Conversion of reactive astrocytes to induced neurons enhances neuronal repair and functional recovery after ischemic stroke. Front. Aging Neurosci. 2021 13 612856 10.3389/fnagi.2021.612856 33841125
    [Google Scholar]
  56. Tang Y. Wu Q. Gao M. Ryu E. Pei Z. Kissinger S.T. Chen Y. Rao A.K. Xiang Z. Wang T. Li W. Chen G. Chubykin A.A. Restoration of visual function and cortical connectivity after ischemic injury through NeuroD1-mediated gene therapy. Front. Cell Dev. Biol. 2021 9 720078 10.3389/fcell.2021.720078 34490268
    [Google Scholar]
  57. Ge L.J. Yang F.H. Li W. Wang T. Lin Y. Feng J. Chen N.H. Jiang M. Wang J.H. Hu X.T. Chen G. In vivo neuroregeneration to treat ischemic stroke through NeuroD1 AAV-based gene therapy in adult non-human primates. Front. Cell Dev. Biol. 2020 8 590008 10.3389/fcell.2020.590008 33224952
    [Google Scholar]
  58. Gresita A. Glavan D. Udristoiu I. Catalin B. Hermann D.M. Popa-Wagner A. Very low efficiency of direct reprogramming of astrocytes into neurons in the brains of young and aged mice after cerebral ischemia. Front. Aging Neurosci. 2019 11 334 10.3389/fnagi.2019.00334 31849638
    [Google Scholar]
  59. Gleichman A.J. Kawaguchi R. Sofroniew M.V. Carmichael S.T. A toolbox of astrocyte-specific, serotype-independent adeno-associated viral vectors using microRNA targeting sequences. Nat. Commun. 2023 14 1 7426 10.1038/s41467‑023‑42746‑w 37973910
    [Google Scholar]
  60. Sands M.S. AAV-mediated liver-directed gene therapy. Methods Mol. Biol. 2012 807 141 157 10.1007/978‑1‑61779‑370‑7_6 22034029
    [Google Scholar]
  61. Penaud-Budloo M. François A. Clément N. Ayuso E. Pharmacology of recombinant adeno-associated virus production. Mol. Ther. Methods Clin. Dev. 2018 8 166 180 10.1016/j.omtm.2018.01.002 29687035
    [Google Scholar]
  62. Samulski R.J. Muzyczka N. AAV-mediated gene therapy for research and therapeutic purposes. Annu. Rev. Virol. 2014 1 1 427 451 10.1146/annurev‑virology‑031413‑085355 26958729
    [Google Scholar]
  63. Masserdotti G. Gascón S. Götz M. Direct neuronal reprogramming: Learning from and for development. Development 2016 143 14 2494 2510 10.1242/dev.092163 27436039
    [Google Scholar]
  64. Mattugini N. Bocchi R. Scheuss V. Russo G.L. Torper O. Lao C.L. Götz M. Inducing different neuronal subtypes from astrocytes in the injured mouse cerebral cortex. Neuron 2019 103 6 1086 1095.e5 10.1016/j.neuron.2019.08.009 31488328
    [Google Scholar]
  65. Visvanathan J. Lee S. Lee B. Lee J.W. Lee S.K. The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes Dev. 2007 21 7 744 749 10.1101/gad.1519107 17403776
    [Google Scholar]
  66. Lu T.X. Rothenberg M.E. microRNA. J. Allergy Clin. Immunol. 2018 141 4 1202 1207 10.1016/j.jaci.2017.08.034 29074454
    [Google Scholar]
  67. Smirnova L. Gräfe A. Seiler A. Schumacher S. Nitsch R. Wulczyn F.G. Regulation of miRNA expression during neural cell specification. Eur. J. Neurosci. 2005 21 6 1469 1477 10.1111/j.1460‑9568.2005.03978.x 15845075
    [Google Scholar]
  68. Sun Y. Luo Z.M. Guo X.M. Su D.F. Liu X. An updated role of microRNA-124 in central nervous system disorders: A review. Front. Cell. Neurosci. 2015 9 193 10.3389/fncel.2015.00193 26041995
    [Google Scholar]
  69. Zheng Y. Huang Z. Xu J. Hou K. Yu Y. Lv S. Chen L. Li Y. Quan C. Chi G. MiR-124 and small molecules synergistically regulate the generation of neuronal cells from rat cortical reactive astrocytes. Mol. Neurobiol. 2021 58 5 2447 2464 10.1007/s12035‑021‑02345‑6 33725319
    [Google Scholar]
  70. Papadimitriou E. Koutsoudaki P.N. Thanou I. Karagkouni D. Karamitros T. Chroni-Tzartou D. Gaitanou M. Gkemisis C. Margariti M. Xingi E. Tzartos S.J. Hatzigeorgiou A.G. Thomaidou D. A miR-124-mediated post-transcriptional mechanism controlling the cell fate switch of astrocytes to induced neurons. Stem Cell Reports 2023 18 4 915 935 10.1016/j.stemcr.2023.02.009 36963393
    [Google Scholar]
  71. Mo J.L. Liu Q. Kou Z.W. Wu K.W. Yang P. Chen X.H. Sun F.Y. MicroRNA‐365 modulates astrocyte conversion into neuron in adult rat brain after stroke by targeting Pax6. Glia 2018 66 7 1346 1362 10.1002/glia.23308 29451327
    [Google Scholar]
  72. Ghasemi-Kasman M. Shojaei A. Gol M. Moghadamnia A.A. Baharvand H. Javan M. miR-302/367-induced neurons reduce behavioral impairment in an experimental model of Alzheimer’s disease. Mol. Cell. Neurosci. 2018 86 50 57 10.1016/j.mcn.2017.11.012 29174617
    [Google Scholar]
  73. Xie X. Fu Y. Liu J. Chemical reprogramming and transdifferentiation. Curr. Opin. Genet. Dev. 2017 46 104 113 10.1016/j.gde.2017.07.003 28755566
    [Google Scholar]
  74. Gao L. Guan W. Wang M. Wang H. Yu J. Liu Q. Qiu B. Yu Y. Ping Y. Bian X. Shen L. Pei G. Direct generation of human neuronal cells from adult astrocytes by small molecules. Stem Cell Reports 2017 8 3 538 547 10.1016/j.stemcr.2017.01.014 28216149
    [Google Scholar]
  75. Yin J.C. Zhang L. Ma N.X. Wang Y. Lee G. Hou X.Y. Lei Z.F. Zhang F.Y. Dong F.P. Wu G.Y. Chen G. Chemical conversion of human fetal astrocytes into neurons through modulation of multiple signaling pathways. Stem Cell Reports 2019 12 3 488 501 10.1016/j.stemcr.2019.01.003 30745031
    [Google Scholar]
  76. Fernandes G.S. Singh R.D. Kim K.K. Generation of a pure culture of neuron-like cells with a glutamatergic phenotype from mouse astrocytes. Biomedicines 2022 10 4 928 10.3390/biomedicines10040928 35453678
    [Google Scholar]
  77. Ma Y. Xie H. Du X. Wang L. Jin X. Zhang Q. Han Y. Sun S. Wang L. Li X. Zhang C. Wang M. Li C. Xu J. Huang Z. Wang X. Chai Z. Deng H. In vivo chemical reprogramming of astrocytes into neurons. Cell Discov. 2021 7 1 12 10.1038/s41421‑021‑00243‑8 33649311
    [Google Scholar]
  78. Tan Z. Qin S. Yuan Y. Hu X. Huang X. Liu H. Pu Y. He C. Su Z. NOTCH1 signaling regulates the latent neurogenic program in adult reactive astrocytes after spinal cord injury. Theranostics 2022 12 10 4548 4563 10.7150/thno.71378 35832093
    [Google Scholar]
  79. Shen K. Wu D. Sun B. Zhu Y. Wang H. Zou W. Ma Y. Lu Z. Ginsenoside Rg1 promotes astrocyte‐to‐neuron transdifferentiation in rat and its possible mechanism. CNS Neurosci. Ther. 2023 29 1 256 269 10.1111/cns.14000 36352836
    [Google Scholar]
  80. Zhao A.D. Qin H. Sun M.L. Ma K. Fu X.B. Efficient and rapid conversion of human astrocytes and ALS mouse model spinal cord astrocytes into motor neuron-like cells by defined small molecules. Mil. Med. Res. 2020 7 1 42 10.1186/s40779‑020‑00271‑7 32892745
    [Google Scholar]
  81. Wang S. Duan Y. Zhang Q. Komarla A. Gong H. Gao W. Zhang L. Drug targeting via platelet membrane–coated nanoparticles. Small Struct. 2020 1 1 2000018 10.1002/sstr.202000018 33817693
    [Google Scholar]
  82. Ma N.X. Yin J.C. Chen G. Transcriptome analysis of small molecule–mediated astrocyte-to-neuron reprogramming. Front. Cell Dev. Biol. 2019 7 82 10.3389/fcell.2019.00082 31231645
    [Google Scholar]
  83. Maimon R. Chillon-Marinas C. Snethlage C.E. Singhal S.M. McAlonis-Downes M. Ling K. Rigo F. Bennett C.F. Da Cruz S. Hnasko T.S. Muotri A.R. Cleveland D.W. Therapeutically viable generation of neurons with antisense oligonucleotide suppression of PTB. Nat. Neurosci. 2021 24 8 1089 1099 10.1038/s41593‑021‑00864‑y 34083786
    [Google Scholar]
  84. Qian H. Kang X. Hu J. Zhang D. Liang Z. Meng F. Zhang X. Xue Y. Maimon R. Dowdy S.F. Devaraj N.K. Zhou Z. Mobley W.C. Cleveland D.W. Fu X.D. Reversing a model of Parkinson’s disease with in situ converted nigral neurons. Nature 2020 582 7813 550 556 10.1038/s41586‑020‑2388‑4 32581380
    [Google Scholar]
  85. Zhou H. Su J. Hu X. Zhou C. Li H. Chen Z. Xiao Q. Wang B. Wu W. Sun Y. Zhou Y. Tang C. Liu F. Wang L. Feng C. Liu M. Li S. Zhang Y. Xu H. Yao H. Shi L. Yang H. Glia-to-neuron conversion by CRISPR-CasRx alleviates symptoms of neurological disease in mice. Cell 2020 181 3 590 603.e16 10.1016/j.cell.2020.03.024 32272060
    [Google Scholar]
  86. Xue Y. Qian H. Hu J. Zhou B. Zhou Y. Hu X. Karakhanyan A. Pang Z. Fu X.D. Sequential regulatory loops as key gatekeepers for neuronal reprogramming in human cells. Nat. Neurosci. 2016 19 6 807 815 10.1038/nn.4297 27110916
    [Google Scholar]
  87. Manuel M.N. Mi D. Mason J.O. Price D.J. Regulation of cerebral cortical neurogenesis by the Pax6 transcription factor. Front. Cell. Neurosci. 2015 9 70 10.3389/fncel.2015.00070 25805971
    [Google Scholar]
  88. Weinberg M.S. Criswell H.E. Powell S.K. Bhatt A.P. McCown T.J. Viral vector reprogramming of adult resident striatal oligodendrocytes into functional neurons. Mol. Ther. 2017 25 4 928 934 10.1016/j.ymthe.2017.01.016 28202388
    [Google Scholar]
  89. Hoang T. Kim D.W. Appel H. Ozawa M. Zheng S. Kim J. Blackshaw S. Ptbp1 deletion does not induce astrocyte-to-neuron conversion. Nature 2023 618 7964 E1 E7 10.1038/s41586‑023‑06066‑9 37286658
    [Google Scholar]
  90. Amador-Arjona A. Cimadamore F. Huang C.T. Wright R. Lewis S. Gage F.H. Terskikh A.V. SOX2 primes the epigenetic landscape in neural precursors enabling proper gene activation during hippocampal neurogenesis. Proc. Natl. Acad. Sci. USA 2015 112 15 E1936 E1945 10.1073/pnas.1421480112 25825708
    [Google Scholar]
  91. Niu W. Zang T. Smith D.K. Vue T.Y. Zou Y. Bachoo R. Johnson J.E. Zhang C.L. SOX2 reprograms resident astrocytes into neural progenitors in the adult brain. Stem Cell Reports 2015 4 5 780 794 10.1016/j.stemcr.2015.03.006 25921813
    [Google Scholar]
  92. Masserdotti G. Gillotin S. Sutor B. Drechsel D. Irmler M. Jørgensen H.F. Sass S. Theis F.J. Beckers J. Berninger B. Guillemot F. Götz M. Transcriptional mechanisms of proneural factors and REST in regulating neuronal reprogramming of astrocytes. Cell Stem Cell 2015 17 1 74 88 10.1016/j.stem.2015.05.014 26119235
    [Google Scholar]
  93. Guillemot F. Spatial and temporal specification of neural fates by transcription factor codes. Development 2007 134 21 3771 3780 10.1242/dev.006379 17898002
    [Google Scholar]
  94. Rao Z. Wang R. Li S. Shi Y. Mo L. Han S. Yuan J. Jing N. Cheng L. Molecular mechanisms underlying Ascl1-mediated astrocyte-to-neuron conversion. Stem Cell Reports 2021 16 3 534 547 10.1016/j.stemcr.2021.01.006 33577795
    [Google Scholar]
  95. Bocchi R. Masserdotti G. Götz M. Direct neuronal reprogramming: Fast forward from new concepts toward therapeutic approaches. Neuron 2022 110 3 366 393 10.1016/j.neuron.2021.11.023 34921778
    [Google Scholar]
  96. Smith D.K. Yang J. Liu M.L. Zhang C.L. Small molecules modulate chromatin accessibility to promote NEUROG2-mediated fibroblast-to-neuron reprogramming. Stem Cell Reports 2016 7 5 955 969 10.1016/j.stemcr.2016.09.013 28157484
    [Google Scholar]
  97. Mall M. Kareta M.S. Chanda S. Ahlenius H. Perotti N. Zhou B. Grieder S.D. Ge X. Drake S. Euong Ang C. Walker B.M. Vierbuchen T. Fuentes D.R. Brennecke P. Nitta K.R. Jolma A. Steinmetz L.M. Taipale J. Südhof T.C. Wernig M. Myt1l safeguards neuronal identity by actively repressing many non-neuronal fates. Nature 2017 544 7649 245 249 10.1038/nature21722 28379941
    [Google Scholar]
  98. Treutlein B. Lee Q.Y. Camp J.G. Mall M. Koh W. Shariati S.A.M. Sim S. Neff N.F. Skotheim J.M. Wernig M. Quake S.R. Dissecting direct reprogramming from fibroblast to neuron using single-cell RNA-seq. Nature 2016 534 7607 391 395 10.1038/nature18323 27281220
    [Google Scholar]
  99. Lin H.C. He Z. Ebert S. Schörnig M. Santel M. Nikolova M.T. Weigert A. Hevers W. Kasri N.N. Taverna E. Camp J.G. Treutlein B. NGN2 induces diverse neuron types from human pluripotency. Stem Cell Reports 2021 16 9 2118 2127 10.1016/j.stemcr.2021.07.006 34358451
    [Google Scholar]
  100. Baumann V. Wiesbeck M. Breunig C.T. Braun J.M. Köferle A. Ninkovic J. Götz M. Stricker S.H. Targeted removal of epigenetic barriers during transcriptional reprogramming. Nat. Commun. 2019 10 1 2119 10.1038/s41467‑019‑10146‑8 31073172
    [Google Scholar]
  101. Kempf J. Knelles K. Hersbach B.A. Petrik D. Riedemann T. Bednarova V. Janjic A. Simon-Ebert T. Enard W. Smialowski P. Götz M. Masserdotti G. Heterogeneity of neurons reprogrammed from spinal cord astrocytes by the proneural factors Ascl1 and Neurogenin2. Cell Rep. 2021 36 7 109571 10.1016/j.celrep.2021.109571 34407409
    [Google Scholar]
  102. Parry A. Rulands S. Reik W. Active turnover of DNA methylation during cell fate decisions. Nat. Rev. Genet. 2021 22 1 59 66 10.1038/s41576‑020‑00287‑8 33024290
    [Google Scholar]
  103. Li G. Liu Y. Zhang Y. Kubo N. Yu M. Fang R. Kellis M. Ren B. Joint profiling of DNA methylation and chromatin architecture in single cells. Nat. Methods 2019 16 10 991 993 10.1038/s41592‑019‑0502‑z 31384045
    [Google Scholar]
  104. Lee D.S. Luo C. Zhou J. Chandran S. Rivkin A. Bartlett A. Nery J.R. Fitzpatrick C. O’Connor C. Dixon J.R. Ecker J.R. Simultaneous profiling of 3D genome structure and DNA methylation in single human cells. Nat. Methods 2019 16 10 999 1006 10.1038/s41592‑019‑0547‑z 31501549
    [Google Scholar]
  105. Noack F. Vangelisti S. Raffl G. Carido M. Diwakar J. Chong F. Bonev B. Multimodal profiling of the transcriptional regulatory landscape of the developing mouse cortex identifies Neurog2 as a key epigenome remodeler. Nat. Neurosci. 2022 25 2 154 167 10.1038/s41593‑021‑01002‑4 35132236
    [Google Scholar]
  106. Price J.D. Park K.Y. Chen J. Salinas R.D. Cho M.J. Kriegstein A.R. Lim D.A. The Ink4a/Arf locus is a barrier to direct neuronal transdifferentiation. J. Neurosci. 2014 34 37 12560 12567 10.1523/JNEUROSCI.3159‑13.2014 25209293
    [Google Scholar]
  107. Yang S. Qin C. Hu Z.W. Zhou L.Q. Yu H.H. Chen M. Bosco D.B. Wang W. Wu L.J. Tian D.S. Microglia reprogram metabolic profiles for phenotype and function changes in central nervous system. Neurobiol. Dis. 2021 152 105290 10.1016/j.nbd.2021.105290 33556540
    [Google Scholar]
  108. Wang H. Yang Y. Liu J. Qian L. Direct cell reprogramming: Approaches, mechanisms and progress. Nat. Rev. Mol. Cell Biol. 2021 22 6 410 424 10.1038/s41580‑021‑00335‑z 33619373
    [Google Scholar]
  109. Buffo A. Rite I. Tripathi P. Lepier A. Colak D. Horn A.P. Mori T. Götz M. Origin and progeny of reactive gliosis: A source of multipotent cells in the injured brain. Proc. Natl. Acad. Sci. USA 2008 105 9 3581 3586 10.1073/pnas.0709002105 18299565
    [Google Scholar]
  110. Lang B. Liu H.L. Liu R. Feng G.D. Jiao X.Y. Ju G. Astrocytes in injured adult rat spinal cord may acquire the potential of neural stem cells. Neuroscience 2004 128 4 775 783 10.1016/j.neuroscience.2004.06.033 15464285
    [Google Scholar]
  111. Shimada I.S. LeComte M.D. Granger J.C. Quinlan N.J. Spees J.L. Self-renewal and differentiation of reactive astrocyte-derived neural stem/progenitor cells isolated from the cortical peri-infarct area after stroke. J. Neurosci. 2012 32 23 7926 7940 10.1523/JNEUROSCI.4303‑11.2012 22674268
    [Google Scholar]
  112. Sirko S. Behrendt G. Johansson P.A. Tripathi P. Costa M.R. Bek S. Heinrich C. Tiedt S. Colak D. Dichgans M. Fischer I.R. Plesnila N. Staufenbiel M. Haass C. Snapyan M. Saghatelyan A. Tsai L.H. Fischer A. Grobe K. Dimou L. Götz M. Reactive glia in the injured brain acquire stem cell properties in response to sonic hedgehog. [corrected]. Cell Stem Cell 2013 12 4 426 439 10.1016/j.stem.2013.01.019 23561443
    [Google Scholar]
  113. Sirko S. Neitz A. Mittmann T. Horvat-Bröcker A. Holst A. Eysel U.T. Faissner A. Focal laser-lesions activate an endogenous population of neural stem/progenitor cells in the adult visual cortex. Brain 2009 132 8 2252 2264 10.1093/brain/awp043 19286696
    [Google Scholar]
  114. Magnusson J.P. Göritz C. Tatarishvili J. Dias D.O. Smith E.M.K. Lindvall O. Kokaia Z. Frisén J. A latent neurogenic program in astrocytes regulated by Notch signaling in the mouse. Science 2014 346 6206 237 241 10.1126/science.346.6206.237 25301628
    [Google Scholar]
  115. Shen S.W. Duan C.L. Chen X.H. Wang Y.Q. Sun X. Zhang Q.W. Cui H.R. Sun F.Y. Neurogenic effect of VEGF is related to increase of astrocytes transdifferentiation into new mature neurons in rat brains after stroke. Neuropharmacology 2016 108 451 461 10.1016/j.neuropharm.2015.11.012 26603138
    [Google Scholar]
  116. Grande A. Sumiyoshi K. López-Juárez A. Howard J. Sakthivel B. Aronow B. Campbell K. Nakafuku M. Environmental impact on direct neuronal reprogramming in vivo in the adult brain. Nat. Commun. 2013 4 1 2373 10.1038/ncomms3373 23974433
    [Google Scholar]
  117. Yamashita T. Shang J. Nakano Y. Morihara R. Sato K. Takemoto M. Hishikawa N. Ohta Y. Abe K. In vivo direct reprogramming of glial linage to mature neurons after cerebral ischemia. Sci. Rep. 2019 9 1 10956 10.1038/s41598‑019‑47482‑0 31358888
    [Google Scholar]
  118. Li G. Chen B. Sun W. Liu Z. A stacking classifier for distinguishing stages of Alzheimer’s disease from a subnetwork perspective. Cogn. Neurodynamics 2025 19 1 38 10.1007/s11571‑025‑10221‑5 39926335
    [Google Scholar]
  119. Yavarpour-Bali H. Ghasemi-Kasman M. Shojaei A. Direct reprogramming of terminally differentiated cells into neurons: A novel and promising strategy for Alzheimer’s disease treatment. Prog. Neuropsychopharmacol. Biol. Psychiatry 2020 98 109820 10.1016/j.pnpbp.2019.109820 31743695
    [Google Scholar]
  120. Liu F. Zhang Y. Chen F. Yuan J. Li S. Han S. Lu D. Geng J. Rao Z. Sun L. Xu J. Shi Y. Wang X. Liu Y. Neurog2 directly converts astrocytes into functional neurons in midbrain and spinal cord. Cell Death Dis. 2021 12 3 225 10.1038/s41419‑021‑03498‑x 33649354
    [Google Scholar]
  121. Brown R.H. Al-Chalabi A. Amyotrophic Lateral Sclerosis. N. Engl. J. Med. 2017 377 2 162 172 10.1056/NEJMra1603471 28700839
    [Google Scholar]
  122. Yang H. Liu C. Wang C.Y. Zhang Q. An J. Zhang L. Hao D.J. Therapeutical strategies for spinal cord injury and a promising autologous astrocyte-based therapy using efficient reprogramming techniques. Mol. Neurobiol. 2016 53 5 2826 2842 10.1007/s12035‑015‑9157‑7 25863960
    [Google Scholar]
  123. Liu Z. Chopp M. Astrocytes, therapeutic targets for neuroprotection and neurorestoration in ischemic stroke. Prog. Neurobiol. 2016 144 103 120 10.1016/j.pneurobio.2015.09.008 26455456
    [Google Scholar]
  124. Sun L. Zhang Y. Liu E. Ma Q. Anatol M. Han H. Yan J. The roles of astrocyte in the brain pathologies following ischemic stroke. Brain Inj. 2019 33 6 712 716 10.1080/02699052.2018.1531311 30335519
    [Google Scholar]
  125. Xu J. Du Y. Deng H. Direct lineage reprogramming: Strategies, mechanisms, and applications. Cell Stem Cell 2015 16 2 119 134 10.1016/j.stem.2015.01.013 25658369
    [Google Scholar]
  126. McDowall S. Bagda V. Hodgetts S. Mastaglia F. Li D. Controversies and insights into PTBP1-related astrocyte-neuron transdifferentiation: Neuronal regeneration strategies for Parkinson’s and Alzheimer’s disease. Transl. Neurodegener. 2024 13 1 59 10.1186/s40035‑024‑00450‑9 39627843
    [Google Scholar]
  127. Ghazale H. Park E. Vasan L. Mester J. Saleh F. Trevisiol A. Zinyk D. Chinchalongporn V. Liu M. Fleming T. Prokopchuk O. Klenin N. Kurrasch D. Faiz M. Stefanovic B. McLaurin J. Schuurmans C. Ascl1 phospho-site mutations enhance neuronal conversion of adult cortical astrocytes in vivo. Front. Neurosci. 2022 16 917071 10.3389/fnins.2022.917071 36061596
    [Google Scholar]
  128. Marichal N. Péron S. Beltrán Arranz A. Galante C. Franco Scarante F. Wiffen R. Schuurmans C. Karow M. Gascón S. Berninger B. Reprogramming astroglia into neurons with hallmarks of fast-spiking parvalbumin-positive interneurons by phospho-site–deficient Ascl1. Sci. Adv. 2024 10 43 eadl5935 10.1126/sciadv.adl5935 39454007
    [Google Scholar]
  129. Lanjakornsiripan D. Pior B.J. Kawaguchi D. Furutachi S. Tahara T. Katsuyama Y. Suzuki Y. Fukazawa Y. Gotoh Y. Layer-specific morphological and molecular differences in neocortical astrocytes and their dependence on neuronal layers. Nat. Commun. 2018 9 1 1623 10.1038/s41467‑018‑03940‑3 29691400
    [Google Scholar]
  130. Su M. Hu H. Lee Y. D’Azzo A. Messing A. Brenner M. Expression specificity of GFAP transgenes. Neurochem. Res. 2004 29 11 2075 2093 10.1007/s11064‑004‑6881‑1 15662842
    [Google Scholar]
  131. Tai W. Wu W. Wang L.L. Ni H. Chen C. Yang J. Zang T. Zou Y. Xu X.M. Zhang C.L. In vivo reprogramming of NG2 glia enables adult neurogenesis and functional recovery following spinal cord injury. Cell Stem Cell 2021 28 5 923 937.e4 10.1016/j.stem.2021.02.009 33675690
    [Google Scholar]
  132. Chen W. Zheng Q. Huang Q. Ma S. Li M. Repressing PTBP1 fails to convert reactive astrocytes to dopaminergic neurons in a 6-hydroxydopamine mouse model of Parkinson’s disease. eLife 2022 11 e75636 10.7554/eLife.75636 35535997
    [Google Scholar]
  133. Ang C.E. Wernig M. Induced neuronal reprogramming. J. Comp. Neurol. 2014 522 12 2877 2886 10.1002/cne.23620 24771471
    [Google Scholar]
  134. Mirakhori F. Zeynali B. Salekdeh G.H. Baharvand H. Induced neural lineage cells as repair kits: So close, yet so far away. J. Cell. Physiol. 2014 229 6 728 742 10.1002/jcp.24509 24242901
    [Google Scholar]
  135. Shiri Z. Simorgh S. Naderi S. Baharvand H. Optogenetics in the era of cerebral organoids. Trends Biotechnol. 2019 37 12 1282 1294 10.1016/j.tibtech.2019.05.009 31227305
    [Google Scholar]
  136. Fiorenzano A. Sozzi E. Birtele M. Kajtez J. Giacomoni J. Nilsson F. Bruzelius A. Sharma Y. Zhang Y. Mattsson B. Emnéus J. Ottosson D.R. Storm P. Parmar M. Single-cell transcriptomics captures features of human midbrain development and dopamine neuron diversity in brain organoids. Nat. Commun. 2021 12 1 7302 10.1038/s41467‑021‑27464‑5 34911939
    [Google Scholar]
  137. Xiaoshuai L. Qiushi W. Rui W. Advantages of CRISPR-Cas9 combined organoid model in the study of congenital nervous system malformations. Front. Bioeng. Biotechnol. 2022 10 932936 10.3389/fbioe.2022.932936 36118578
    [Google Scholar]
  138. Yang Y. Li Q. Guo X. Tu J. Zhang D. Mechanisms underlying sonoporation: Interaction between microbubbles and cells. Ultrason. Sonochem. 2020 67 105096 10.1016/j.ultsonch.2020.105096 32278246
    [Google Scholar]
  139. Darrigues E. Nima Z.A. Griffin R.J. Anderson J.M. Biris A.S. Rodriguez A. 3D cultures for modeling nanomaterial-based photothermal therapy. Nanoscale Horiz. 2020 5 3 400 430 10.1039/C9NH00628A 32118219
    [Google Scholar]
  140. Qian C. Dong B. Wang X.Y. Zhou F.Q. In vivo glial trans‐differentiation for neuronal replacement and functional recovery in central nervous system. FEBS J. 2021 288 16 4773 4785 10.1111/febs.15681 33351267
    [Google Scholar]
/content/journals/cn/10.2174/011570159X379061250415094751
Loading
/content/journals/cn/10.2174/011570159X379061250415094751
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test